
Semiautomatic Test Case Generation Based on Sequence Diagrams

Yao-Cheng Lei Nai-Wei Lin
Department of Computer Science and Information Engineering

National Chung Cheng University
Chiayi, Taiwan 621, R.O.C.

{lyc94,naiwei}@cs.ccu.edu.tw

Abstract-This article describes a semiautomatic
test case generation tool for Java classes based on
UML sequence diagrams. Sequence diagrams are
used to specify dynamic behaviors among objects.
This tool is developed to facilitate the
semiautomatic generation of test cases in
integration testing level. This tool automatically
generates a suite of test paths from sequence
diagrams. Given an input data and the
corresponding expected output data for each test
path from the user, this tool automatically
generates a Java method that executes the test
path. This tool generates Java test classes for the
JUnit framework.

Keywords: UML, sequence diagrams, test case
generation.

1. Introduction

Quality software is still very hard to achieve in
general [8]. To be able to consistently develop
quality software involves several factors: software
processes, software personnel, software resources,
software project management, and so on. Among
these, software testing activity in software
processes remains one of the main activities to
assure software quality. Software testing is a
systematic attempt to find faults in the software
systems. A failure of a software system is any
deviation of the observed behavior from the
specified behavior. A fault of a software system is
the cause of a failure of the system. A test case is a
pair of input and expected output that can be used
to detect faults by revealing failures caused by
faults. The goal of software testing is to use a suite
of test cases to maximize the number of faults
detected in order to assure the quality of the
software system. The costs of software testing
usually take about half of the entire software
development costs. However, the software testing

techniques and tools are still immature so that
quality software is still very hard to achieve in
general.

There are two types of software testing
techniques: black-box testing and white-box
testing [2]. The black-box testing techniques are
based on the functional specifications and focus on
the coverage of the specified external behaviors of
the software system. The white-box testing
techniques are based on the source code and focus
on the coverage of the internal structure of the
source code. These two types of testing techniques
are complementary. The white-box testing
techniques alone may fail to reveal that some
portions of the specifications are missed in the
source code. On the other hand, the black-box
testing techniques alone may fail to reveal that
some portions of the source code are not contained
in the specifications. Therefore, employing both
types of testing techniques is necessary to assure
quality software.

Software testing needs to be applied in the
different levels: unit testing, integration testing,
and system testing [2]. Unit testing finds faults
within a single software component by isolating it
from the remaining components of the system.
Integration testing finds faults among interacting
components according to specified use cases.
System testing finds faults of the external
behaviors of the entire system. Executing test
cases on a single software component or a group of
software components requires the components
under test to be isolated from the rest of the system.
A test driver simulates the part of the system that
calls the components under test. A test driver
passes the test inputs to the components under test
and displays the actual outputs. A test stub
simulates components that are called by the
components under test. The test stubs must provide
the same interfaces as the called components. A
test oracle generates the expected outputs for the
test inputs and checks if the expected outputs are
the same as the actual outputs. At present, test
input, drivers, stubs, and oracles are usually

generated manually by programmers or testers.
The Unified Modeling Language (UML) is a

visual modeling language that can be used to
specify, visualize, construct, and document the
artifacts of a software system [7]. The UML has
been widely used as the functional specifications
of object-oriented software systems. The UML
provides several types of diagrams to model
different aspects of software systems. For example,
use case diagrams are used to specify the
functional behavior of the system from the
viewpoint of users. Class diagrams are used to
describe the structure of the system in terms of
objects, classes, attributes, operations, and their
associations. State diagrams are used to specify the
dynamic behavior of an individual object as a
number of states and transitions between these
states. Sequence diagrams are used to formalize
the dynamic behavior of the system and to
visualize the communication among objects. The
UML diagrams have also been widely used to
facilitate the analysis and design of object-oriented
software systems [3].

Because of the high cost of software testing,
automation of software testing is a crucial issue.
This article describes a semiautomatic test case
generation tool for Java classes based on UML
sequence diagrams. Sequence diagrams are used to
specify dynamic behaviors among objects. This
tool is developed to facilitate the semiautomatic
generation of test cases in integration testing level.
This tool automatically generates a suite of test
paths from sequence diagrams. Given an input data
and the corresponding expected output data for
each test path from the user, this tool automatically
generates a Java method that tests the test path.
This tool generates Java test classes for the JUnit
framework [1].

The remainder of this article is organized as
follows. Section 2 gives a brief introduction to
UML sequence diagrams. Section 3 provides an
overview of our semiautomatic test case
generation tool. Section 4 describes the generation
of test paths based on sequence diagrams. Section
5 describes the generation of Java test classes
based on test paths and user-provided test data.
Second 6 reviews related work. Finally,
conclusions are given in Section 7.

2. Sequence diagrams

A sequence diagram is used to model the
interaction of a set of objects. Figure 1 is an
example of a sequence diagram. This example
displays a use case of a store system. A sequence

diagram D = <O, M> consists of a set of objects O
and a sequence of messages M. Each message m =
<o1, o2, f, a> ∈ M represents a sequential flow of
control from one object o1 to another object o2.
Sequential flow of control can be activated via
several means. This article only focuses on method
invocations and returns. A message <o1, o2, f, a>
is a method invocation f(a) from o1 to another
object o2 with arguments a, or a method return
from o2 to another object o1 with return value a.

Sequence diagrams may have structured control
constructs that specify more complex flow of
control. This article considers only three structured
control constructs: opt, alt, and loop. Each
structured control construct is represented as a
fragment (or a rectangular box). An opt construct
has a guard condition. The sequence of messages
in an opt construct is executed if the guard
condition is true; Otherwise, it is omitted. An alt
construct has two or more subfragments, each of
them has a guard condition. If more than one guard
condition is true, the sequence of messages in one
of the subfragments is selected
nondeterministically to execute. If none is true, no
execution is consistent with the specification. A
loop construct has a guard condition. The
sequence of messages in a loop construct is
executed repeatedly as long as the guard condition
is true.

3. System architecture

Our test case generation tool consists of two
components: a test path generator and a test class
generator. The system architecture is shown in
Figure 2.

The test path generator determines a set of
complete paths in the sequence diagram for testing
according to a test criterion. We have implemented
two sets of test criteria. One set does not consider
the usage profile. It includes all-node, all-edge,
and all-path coverage. The other set considers the
usage profile. It includes usage-based all-node and
all-edge coverage. The usage profile is provided
by the user.

The test class generator generates a Java
method for each test path. Each Java method acts
as a test driver that ensures the execution of the
test path and verifies its correctness. The input test
data and expected output data are provided by the
user.

The test path generator can generate the set of
constraints that ensures the execution of a test path.
The user needs to determine the input test data and
expected output data for this test path according to

Figure 1. An example sequence diagram.

the set of constraints. The determination of the
input test data and expected output data for a test
path is the step that is not automatic. The
automation of this step is our future work.

4. The test path generator

The generation of test paths consists of two
steps. The first step converts the sequence diagram
into a message flow graph. The message flow
graph defines all possible execution sequences of

messages. The message flow graph has a unique
entry node and a unique exit node. The other nodes
in the message flow graph may be a message node
or a control node. A message node represents the
execution of a message. Each message in the
sequence diagram has a corresponding message
node in the message flow graph. A control node
may be a branch node or a joint node. A branch
node contains a Boolean expression and two
outgoing edges. The value of the Boolean
expression will determine the outgoing edge

sequence
diagram

Test Path
Generator

test
paths

Test Class
Generator

class diagrams

test inputs, expected outputs

test
class

Figure 2. System architecture
control will flow. The joint node merges flows
from multiple incoming edges into one outgoing
flow.

If the sequence diagram does not contain
structured control constructs, the message control
flow graph consists of a single path. Each
structured control construct is converted to some

branch nodes and a joint node. The first branch
node is the entering node of the structured control
construct and the joint node is the exiting node of
the structured control construct.

For each opt construct in sequence diagram,
there are a corresponding branch node and a joint
node in the message flow graph. The guard

Entry getCost():int getAmount(Store):int

getArticlePrice(int):int getQuantity(int):intcalculateAmount(int,int):int

Exit

tenPercentOff(int):int

fiftyPercentOff(int):int

twentyPercentOff(int):int

cost:(30000,)

i:[0,size)

cost:(20000,)

cost:(10000,)

Lottery() drawRaffleTicket()

i:[0,3)

cost:(5000,)

F

T

T

T

T

T

T

F

F

F

F

F

opt

alt

loop

loop

Figure 3. The message flow graph corresponding to the sequence diagram in Figure 1.

condition in the opt construct is the Boolean
expression in the branch node. The true outgoing
edge of the branch node connects to the first
message in the opt construct. The last message in
the opt construct connects to the joint node.
Besides, the false outgoing edge of the branch
node connects to the joint node.

For each alt construct with n subfragments in
sequence diagram, there are n corresponding
branch nodes and a joint node in the message
control flow graph. For each subfragment, its
guard condition is the Boolean expression in the
corresponding branch node. The true outgoing
edge of the branch node connects to the first
message in the subfragment. The last message in
the subfragment connects to the joint node.
Besides, the false outgoing edge of the branch
node connects to the branch node of the next
subfragment except that the false outgoing edge of
the branch node for the last subfragment connects
to the joint node.

For each loop construct in sequence diagram,
there are a corresponding branch node and a joint
node in the message flow graph. The guard
condition in the loop construct is the Boolean
expression in the branch node. The true outgoing
edge of the branch node connects to the first
message in the loop construct. The last message in
the loop construct connects back to the branch
node. Besides, the false outgoing edge of the
branch node connects to the joint node.

The message flow graph for the sequence
diagram in Figure 1 is shown in Figure 3. Since the
sequence diagram has four structured control
construct (an opt construct, an alt construct, and
two loop constructs), the message flow graph has
four joint nodes. There is one branch node for each
opt or loop construct and there are three branch
nodes for alt construct.

The second step of the test path generation
generates a set of complete paths of the sequence
flow graph based on a test coverage criterion. We
support five kinds of test coverage criteria:
all-node, all-edge, all-path, usage-based all-node,
and usage-based all-edge. We use a depth-first
traversal to generate complete paths. The edges are
selected using a fixed order for all-node and
all-edge criteria. The edges are selected based on
usage profile for usage-based all-node and
usage-based all-edge criteria. The GUI for
displaying the set of test paths for the message
flow graph in Figure 3 using all-node coverage
criterion is shown in Figure 4. There are a total of
six test paths. The complete path for each of these
test paths can be shown. In Figure 4, the fourth

path is fully shown.
The format for message node is as follow:

[method number] method name (parameter type)
(caller object --> callee object)

The format for branch node is as follow:
variable name : {condition} ==> value

5. The test class generator

The generation of test class consists of three
steps. The first step reads in class diagrams for
objects in the sequence diagram. The second step
asks the user to input three kinds of information:
object initialization, test input data and expected
output data for each test path. The object
initialization includes information for creating
objects into appropriate states right before the
invoking of the testing method. The test input
data include parameters of the testing method. The
expected output data include the expected returned
value of the testing method and expected updates
of objects’ data members. The information in class
diagrams is used to facilitate the input of the three
kinds of information in step 2. For example,
method names can be selected from menu instead
of being typed in.

The third step of the test class generation
generates a Java class for testing the set of test
paths. Each method in the class tests a test path.
Given the information in step 2, the generation of
Java class is straightforward. The generated Java

Figure 4. Test paths.

class for our running example is shown in Figure 5.
Due to space limitation, only the code for the
fourth test path is shown.

6. Related work

Fraikin and Leonhardt studied the conditions
nder which sequence diagrams are testable [4].

Th

st programs from sequence diagrams based
on

propose to use message flow graphs as a model for

escribed a semiautomatic test
ol for Java classes based on

UM quence diagrams. This tool is developed to
fac

matically generates a Java
me

nder which sequence diagrams are testable [4].
Th

st programs from sequence diagrams based
on

propose to use message flow graphs as a model for

escribed a semiautomatic test
ol for Java classes based on

UM quence diagrams. This tool is developed to
fac

matically generates a Java
me

import junit.framework.TestCase;
import storesystem.Controller;

public class TestStoreSystem extends TestCase {

 // Objects
 private Controller control;

 private void setup() {

 // Path-independent initialization
 control = new Controller();
 control.addItem2Store(101, "computer", 15000);
 control.addItem2Store(102, "monitor", 7000);
 control.addItem2Store(103, "keyboard", 300);
 }

 public void testControllergetCost4() {

 // Object initialization
 setup();
 // Path-dependent initialization
 control.addItem2BuyList(101, 2);
 control.addItem2BuyList(102, 1);

 // Invoke testing method
 int results = control.getCost();

 // Check expected output and actual output
 assertEquals(37000, results);
 }
}

Figure 5. Java test class.

uu
e seven conditions proposed by them should be

satisfied by most sequence diagrams. They also
developed a test tool for generating test programs.
Their tool also needs the user to input test input
data and expected output data. They didn’t
consider structured control constructs in their
work.

Javed et. al. developed a tool for generating
Java te

e seven conditions proposed by them should be
satisfied by most sequence diagrams. They also
developed a test tool for generating test programs.
Their tool also needs the user to input test input
data and expected output data. They didn’t
consider structured control constructs in their
work.

Javed et. al. developed a tool for generating
Java te

 model driven architecture [5]. They first
convert the sequence diagram into a xUnit model.
They then transform xUnit into JUnit code. We

generating test paths.

7. Conclusions

 model driven architecture [5]. They first
convert the sequence diagram into a xUnit model.
They then transform xUnit into JUnit code. We

generating test paths.

7. Conclusions

This article has d

case generation to
This article has d

case generation to
L seL se

ilitate the semi-automatic generation of test
cases in integration testing level. This tool
automatically converts a sequence diagram into a
message flow graph, and then generates a suite of
test paths from the message flow graph based on
various test criteria.

Given an input data and the corresponding
expected output data for each test path from the
user, this tool auto

ilitate the semi-automatic generation of test
cases in integration testing level. This tool
automatically converts a sequence diagram into a
message flow graph, and then generates a suite of
test paths from the message flow graph based on
various test criteria.

Given an input data and the corresponding
expected output data for each test path from the
user, this tool auto

thod that tests the test path. This tool generates
Java test classes for the JUnit framework. The
most difficult jobs in test automation are test input

thod that tests the test path. This tool generates
Java test classes for the JUnit framework. The
most difficult jobs in test automation are test input

generation and expected output generation. Our
future work includes using constraint solving
techniques to automate the generation of test input
and using abstract state machine language to
automate the generation of expected output.

References

[1] K. Beck and

http://junit.sour
 E. Gamma, JUnit Cookbook,
ceforge.net/.

] B. Bezier, Software Testing Techniques, 2nd Edition,

[6]

[7]

[2
Van Nostrand, 1990.

[3] M. Blaha and J. Rumbaugh, Object-Oriented
Modeling and Design with UML, 2nd Edition,
Pearson Prentice Hall, 2005.

[4] F. Fraikin, and T. Leonhardt, “SeDiTeC - Testing
Based on Sequence Diagrams,” Proceedings of the
17th IEEE international conference on Automated
software engineering. 261-266, 2002.

[5] A. Z. Javed, P. A. Strooper, and G. N. Watson,
“Automated Generation of Test Cases Using
Model-Driven Architecture,” Proceedings of the
Second International Workshop on Automation of
Software Test. 3. 2007.
Object Technology International Incorporation,
Eclipse Platform Technical Overview, 2003.
J. Rumbaugh, I. Jacobson, and G. Booch, The
Unified Modeling Language Reference Manual, 2nd
Edition, Addison-Wesley, 2005.

[8] Standish Group, 2003 CHAOS Report, 2004.

