
A Semiautomatic Test Case Generator Based on UML Activity
Diagrams and Object Constraint Language

Tsung-Hsin Liu and Nai-Wei Lin
Department of Computer Science and Information Engineering

National Chung Cheng University
Chiayi, Taiwan 621, R.O.C.

{lth95m, naiwei}@cs.ccu.edu.tw

Abstract- Software testing is the main activity to
ensure the quality of software. This article applies
the black-box approach to designing test cases.
This article designs test cases based on the
preconditions and postconditions in the Design by
Contract software development approach. This
article uses Unified Modeling Language (UML)
activity diagrams and Object Constraint Language
(OCL) to specify the preconditions and
postconditions of Java methods. This article
develops a semiautomatic tool to generate Java
test classes for the JUnit framework based on
UML activity diagrams and OCL.

Keywords: Test case generation, Design by
Contract, UML, activity diagrams, OCL.

1. Introduction

We usually do software testing for the

following two reasons [6]. First, we need to
evaluate the quality of software in order to ensure
high quality software to customers. Second, we
need to discover and remove the faults in software
to improve the quality of software. Software
testing is the main activity to ensure the quality of
software.

Software testing is implemented by executing a
suite of test cases and verifying if the software
under test behaves correctly. Each test case is
designed to test one of the functionalities of the
software. A test case contains a test input and an
expected output. The software is executed using
the test input and the output of the software is
verified with the expected output. If the two
outputs are the same, the software is assumed to
behave correctly for the functionality tested by this
test case.

Software testing thus consists of test case
design and test case execution. The JUnit

framework is a popular test case execution tool for
Java [3]. Given the test cases as a Java class and its
methods, the JUnit framework can execute the test
cases automatically. Test case design is a difficult
job and there is no effective tool yet at this point.
Hence, it is important to develop tools that can
automatically or semi-automatically design test
cases.

Test cases can be designed using either the
black-box (or specification-based) approach or the
white-box (or implementation-based) approach.
These two approaches are complementary. This
article applies the black-box approach to designing
test cases. This article designs test cases based on
the preconditions and postconditions in the Design
by Contract software development approach [8].
We use Unified Modeling Language (UML) [10]
activity diagrams and Object Constraint Language
(OCL) [9] as a specification language to specify
the preconditions and postconditions of Java
methods.

This article develops a semiautomatic tool to
generate Java test classes for the JUnit framework
based on UML activity diagrams and OCL. This
tool is developed in Eclipse development platform
[5]. This tool is composed of four components: a
diagram reader, a test path generator, a test path
evaluator, and a test program generator, as shown
in Figure 1. The diagram reader first reads in

Figure 1. The system architecture of test case
generator.

activity diagrams and OCL, and converts them into
an internal data structure. The test path generator
then enumerates all possible test paths on the
activity diagrams. The test path evaluator allows
the user to select test paths and displays the set of
logical constraints required for traversing each
selected test path. After given the test input for a
selected test path, the test path evaluator can
execute the test path and verify whether the test
path is feasible. The test path evaluator can also
display what test coverage criteria are satisfied by
the set of selected feasible test paths. After the
desired test coverage criterion is satisfied, the test
program generator can generate the Java test
classes for the JUnit framework according to the
set of selected feasible test paths.

The rest of this article is organized as follows.
Section two introduces the related work. Section
three gives a brief introduction to the specification
language: UML activity diagrams and OCL.
Sections four to seven describe each of the four
components of our semiautomatic test case
generator, respectively. Finally, Section eight
concludes this article.

2. Related Work

The most related work is the Java Modeling

Language (JML). JML is a behavioral interface
specification language [7]. JML uses Java syntax
and specifies the preconditions and postconditions
for each Java module. A user first writes the
specification of a Java module using JML. The
user then uses the JML compiler to compile the
specification, and uses the JML runtime assertion
checker to verify the implementation with the
specification [4]. JML is specific to Java. Since
UML activity diagrams and OCL are language
independent, our work can be easily extended to
other languages.

3. The Specification Language

This section briefly introduces our specification

language: UML activity diagrams and OCL, and
describes a running example for this article.

The input and output relationships of a Java
method can be classified as a set of equivalence
classes. The input and output relationships in the
same equivalence class satisfy the same set of
logical constraints on the input. The relations of
logical constraints are usually defined using a
decision table. This article uses UML activity
diagrams as a graphical notation for decision
tables.

UML activity diagrams only describe the
logical structure among logical constraints. The
explicit representation of logical constraints and
the input and output relationships are specified
using OCL expressions as preconditions and
postconditions. With these OCL expressions and
given input test data, we can then compute the
expected output by evaluating these OCL
expressions.

The following two subsections describe the
subset of UML activity diagrams and OCL
expressions that we can handle.

3.1. UML activity diagrams

UML activity diagrams are used to describe the

logical structure of logical constraints in a Java
method. Each Java method may have some
parameters acting as input data to the method.
Each Java method may have some parameters or
return value acting as output data from the method.
We will use input variables and output variables
to refer to these parameters and return value. We
may also use some temporary variables to define
the intermediate values of OCL expressions. These
temporary variables can only be defined once.

We use the following five types of nodes in an
activity diagram: the start node, the end node,
action nodes, decision nodes, and note nodes.
The start node represents the entry of the diagram,
and the end node represents the exit of the
diagram.

An action node represents a relationship among
variables. These relationships are defined using
OCL expressions. They are usually used to define
temporary variables or output variables. A decision
node represents a logical constraint C. A decision
node has two outgoing edges. Each edge is
associated with a guard condition corresponding to
one of the two OCL expressions C and ¬C. A note
node represents a set of preconditions or
postconditions. A note node usually is associated
with the start node, the end node, or an action
node.

3.2 Object constraints language

OCL is a formal language for describing

expressions on UML models defined in UML [9].
OCL is used to define variables, logical constraints,
preconditions and postconditions.

We classify the variables into input variables
(IN), output variables (OUT), and temporary
variables (TMP), to represent data passed into,
passed back from, or used locally inside a method.

These variables are declared in a note node
associated with the start node.

Preconditions define what input conditions
must be satisfied before calling the method.
Preconditions are also defined in a note node
associated with the start node.

Postconditions define what output conditions
must be satisfied after calling the method under the
assumption that input conditions are satisfied.
Postconditions are usually defined in a note node
associated with the end node or an action node.

Some local preconditions and postconditions
are possible. These local preconditions and
postconditions are defined in a note node
associated with an action node.

Logical constraints are associated with outgoing
edges of decision nodes.

A complete path from the start node to the end
node represents an equivalent class of the input
and output relationships of a Java method. The set
of complete paths consists of the maximal set of
test cases.

3.3 An example

We illustrate the specification of a running

example using UML activity diagrams and OCL in
Figure 2. The example is the triangle problem:
given the lengths of the three edges of a triangle,
the Java method returns the type of the triangle.
The types of the triangle may be one of
NoTaTriangle, Scalene, Isosceles, or Equilateral.

4. Diagram Reader

The diagram reader reads in UML activity

diagrams and OCL, and converts them into an
internal data structure. We draw UML activity
diagrams using Omondo EclipseUML tools [11].
The diagrams are saved in XML files. We use the
Apache Xerces DOMParser to read and parse the
XML files [1]. We then convert them into an
internal data structure that can be processed more
efficiently.

5. Test Path Generator

The test path generator can enumerate all

possible test paths on the activity diagrams. Figure
3 shows the result after reading in the specification
of the triangle problem and enumerating all the
possible test paths of the triangle problem. There
are eight possible test paths in the activity diagram
of the triangle problem. The test path generator
uses the depth-first traversal algorithm to

enumerate all possible test paths on the activity
diagrams.

Figure 2. The specification for the triangle
problem.

Note that some test paths in an activity diagram
may be infeasible. A test path is infeasible if no
input data can satisfy all the logical constraints on
the test path; otherwise, it is feasible. We need to
depend on the user and the test path evaluator to
verify feasible test paths.

6. Test Path Evaluator

The test path evaluator allows the user to select

a test path and then displays the set of logical
constraints required for traversing the selected test
path. Figure 4 shows the result of selecting the
fourth test path. This test path contains the set of
logical constraints that ensures an equilateral
triangle.

After looking at the set of logical constraints,
the user may use some constraint solving tool to
solve this set of logic constraints. A Constraint
Logic Programming system like ECLiPSe may be
such a tool [1]. For the fourth test path, we can
easily provide a solution, such as {a = 3, b = 3, c =
3}.

Given one of the solutions of the set of logical

Figure 3. The set of test paths for the triangle
problem.

Figure 5. The expected output and coverage
criteria satisfaction rates for fourth test path
of the triangle problem.

constraints as the test input, the test path evaluator
can execute the test path and verify whether all the
logical constraints on the test path is satisfied. If it
is, this test path is feasible and the evaluated
output can be regarded as an expected output. The
test path, the test input, and the expected output
can then be saved as a test case. Figure 5 shows
that given the test data, the expected output is
“Equilateral”, and the fourth test path is feasible.

The test path evaluator can also display what
test coverage criteria are satisfied by the set of
selected feasible test paths. The test path evaluator
can verify all-node, all-edge, and all-path coverage
criteria. The test path evaluator can also display
what percentage of a test coverage criterion has
been satisfied by the set of selected feasible test

paths. Figure 5 shows that if only the fourth test
path is selected, then 9/16 all-node coverage
criterion, 8/22 all-edge coverage criterion, and 1/8
all-path coverage criterion, have been satisfied.

The execution of a test path is achieved by
implementing an interpreter for OCL expressions.
This interpreter first interprets the declarations of
variables. It then reads in the input given by the
user. The interpreter then checks whether all the
preconditions are satisfied. If any of the
preconditions is not satisfied, the test path is
infeasible and the interpreter terminates.

During the traversing of the test path, the
interpreter checks whether the corresponding
logical constraint is satisfied if a decision node and
its outgoing edge is traversed. If any of the
preconditions is not satisfied, the test path is
infeasible and the interpreter terminates.

Figure 4. The logical constraints and test
input for the fourth test path of the triangle
problem.

It evaluates the local postconditions or
postconditions if an action node and its associated
note nodes are traversed. The interpreter finally
evaluates the postconditions if the end node and its
associated note nodes are traversed. If the
interpreter successfully traverses the end node, the
test path is feasible.

7. Test Program Generator

After the desired test coverage criterion is

satisfied, the test program generator can generate a
Java test class for the JUnit framework according
to the set of selected feasible test paths.

For each selected feasible test path, the test
program generator first generates code to create an
object of the class in which the method under test

is. The test program generator then generates code
to invoke the Java method under test with test data
as parameters. The test program generator finally
generates code to assert that the return value of the
Java method under test is the same as the expected
output computed by the test path evaluator. The
Java class generated by the test program generator
with only the fourth test path selected is shown in
Figure 6. With such a Java test class, the user can
test the Java method using the JUnit tool.

8. Conclusion

This article has applied the black-box approach

to semiautomatically design test cases. The
approach to designing test cases is based on the
preconditions and postconditions in the Design by
Contract software development approach. This
article uses Unified Modeling Language activity
diagrams and Object Constraint Language as a
specification language to specify the preconditions
and postconditions of Java methods. This article
has also described a tool that semiautomatically
generates Java test classes for the JUnit
framework.

The tool still needs to depend on the user to
determine the test data for a selected test path. We
are investigating the means of integrating the
Constraint Logic Programming system into our
tool so that we can also automate the
determination of the test data for a selected test
path.

References

Figure 6. The Java test class generated for
the fourth test path of the triangle problem.

[1] Apache, Xerces DOMParser,

http://www.docjar.com/.
[2] K. R. Apt and M. Wallace, Constraint Logic

Programming Using ECLiPSe, Cambridge
University press, 2007.

[3] M. Beck and E. Gamma, JUnit CookBook,
http://junit.org/.

[4] Y. Cheon and G.. Leavens, “A Runtime
Assertion Checker for the Java Modeling
Language,” In Proceedings of International
Conference on Software Engineering
Research and Practice, Las Vegas, Nevada.
CSREA Press, June 2002, pp. 322-328.

[5] Eclipse Foundation, http://www.eclipse.org/.
[6] P. C. Jorgensen, Software Testing: A

Craftman’s Approach, CRC press, 1995.
[7] G.. T. Leavens, A. L. Baker, and C. Ruby,

“JML: A Notation for Detailed Design,” In
Behavioral Specifications of Businesses and
Systems, editors, H. Kilov, B. Rumpe, and I.
Simmonds, Chapter 12, Kluwer, 1999, pp.
175-188.

[8] B. Meyer, “Design by Contract,” In Advances
in Object-Oriented Software Engineering, eds.
D. Mandrioli and B. Meyer, Prentice Hall,
1991, pp. 1-50.

[9] Object Management Group, Object Constraint
Language Specification, Version 2.0,
http://www.omg.org/, 2006.

[10] Object Management Group, UML 2.1.1
Specification, http://www.uml.org/, 2007.

[11] Omondo, EclipseUML,
http://www.eclipsedownload.com/.

