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Abstract- A new fast centralized arbiter, which is
a modular design and easy for hardware
implementation, is proposed. We had derived the
state diagram of the arbiter as well as its truth
tables and Karnaugh maps, and had designed a set
of optimal Boolean functions and the
corresponding circuit for the arbiter. This new
arbiter is fair for any input combinations and
faster than all previous arbiters we knew. Using
Synopsys design tools with TSMC 0.18μm
technology, the design results have shown that our
arbiter has 22.8% improvement of execution time
and 39.1% of cost (area) reduction compared with
the existing fastest arbiter, SA [7]. Because of this
small arbiter’s the high-performance, it is
extremely useful for the realizations of NoC
routers, MPSoC arbitration, and ultra-high-speed
switches. This new arbiter is being applied for a
patent of the ROC (application No.: 0971xxxxx).
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1. Introduction
Following the rapid technological evolution, the

complexity becomes one of the most constraining
aspects in the design of embedded systems. Cost
and timing issues come along to add to the
difficulties in realization of network-on-chip [1],
NoC, applications, where many IPs (Intellectual
Property) such as processor cores, memories, DSP
processors and peripheral devices are placed
together, on a single die. These modules
communicate, most often, by means of a shared
resource, the on-chip network. The increasing
complexity of the individual devices, the
increasing demand for higher bandwidth on the
network lines and an operating frequency hitting
new limits with almost every new design, place the
communication and/or computation resources
arbitration being the performance bottleneck of the
NoC system.

Arbiters are a fundamental component in

systems containing shared resources, and a
centralized arbiter is a tightly integrated design for
its input requests. In this study, we propose a new
centralized arbiter, which may be used in
arbitration of a crossbar switch in NoC routers [2],
computer networks [9], or any shared resources.
Fig. 1 shows the block diagram of an n× n switch
and a crossbar switch fabric implemented with
many transmission gates as switches between input
ports and output ports. Each input port contains n
virtual output queues (VOQs) to avoid
head-of-line blocking. The task of the arbiter is to
decide a set of contention-free connection between
input and output ports by turning ON/OFF those
transmission gates.

Current designs in NoC typically use standard
round-robin token passing schemes for bus
arbitration [1, 2, 9]. In computer network packet
switching, previous researches in round-robin
algorithms have reported results on an iterative
round-robin algorithm (iSLIP) [3] and a dual
round-robin matching (DRRM) algorithm [4]. The
iSLIP authors implement an n× n switch arbiters in
hardware which they call a Programmable Priority
Encoder (PPE) [6]. Furthermore, Chao et al.
describe a design of a round-robin arbiter for a
packet switch [5]. Chao et al. refer to their
hardware design as a Ping Pong Arbiter (PPA). In
general, the goal of a switch arbiter in a packet
switch is to provide control signals to the crossbar
switch fabric as shown in Fig. 1.
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Fig. 1. An n×n switch: block diagram, crossbar
switch fabric and its switch arbiters.



Using the same idea of Ping Pong, another
arbiter design, called switch arbiter (SA), was
proposed in [7]. An SA is constructed by a tree
structure composed of 4×4 SA nodes. An SA node
consists of a D flip-flop, four priority encoders, a
4-bit ring counter, five 4-input OR gates, and four
2-input AND gates. As a PPA, the SA is not fair
for nonuniformly distributed requests. SA is the
fastest among known arbiters, but it is more
complex in structure. Zhengy and Yang proposed
two arbiters, PRRA and IPRRA [8], which are
based on a binary search algorithm and have less
area but slower speed.

Here, we propose a new arbiter design with fair
round-robin arbitration scheme. To balance area
and time complexities, we have derived a new
arbitration state diagram and the optimal
arbitration Boolean functions for the new arbiter,
and have proved that the arbitration Boolean
functions derived are optimal (simplest). The
execution time delay complexity of our arbiter is
approximately O(log4n), and the area complexity
of our arbiter is O(n) of 2-input logic gates.
Practically, our arbiter is the fastest arbiter
compared with all previous arbiters we knew, and
is area efficient.

This paper is organized as follows: Section 2
describes the design of our new arbiter. Section 3
shows the proof of optimal Boolean logic
functions of the new arbiter. Section 4 gives
experimental and comparison results. Finally,
conclusions will be made in Section 5.

2. Design of the New Arbiter

2.1. Derivation and Formulation of the
Function of Our New Arbiter

Based on the round-robin (or fair) scheme, we
first design and derive the function of our new
arbiter in the following: Given a set of binary
inputs (requests) ri, 0  i  n-1, under a set of
internal states formed with an n-bit binary value ti

(i.e., a set of tokens), 0  i  n-1, compute a set of
binary outputs (grants) gi, 0  i  n-1, for each
request. During each arbitration (i.e., a state), only
one of tokens will be equal to 1 (one-hot coding).
Assume tj is equal to 1 (when all ti’s are equal to 0,
let j be 0), then each grant gi can be computed as
follows:

1, if exists an i = {min{(j+b) mod n | r(j+b) mod n =1,
0  b  n-1}} mod n

When all ti’s are euqal to 0, from the formula
above we have that r0 always has the highest
priority and it forms the linear arbitration. When
only one of ti’s is equal to 1 (which means that ri

has the only authority of using the resource), it
needs the following additional functionality of
updating ti’s after the operation specified in (1): if
gi = 1 then ti  0 and t(i+1) mod n  1. Let linear
arbitration be a special case of the round-robin
arbitration, then the two arbitration schemes can be
combined into one scheme, we call it the
integrated round-robin arbitration, which is applied
in our arbiter.

2.2. The Design of the State Diagram of the
New Arbiter

According to our new arbitration function
derived above, we shall derive and design the new
arbiter’s state diagram. Our objective is to design a
new arbiter with minimal computing time and less
area. We use the combination of all ti’s as the
system state of our new arbiter to derive its state
diagram. During arbitrating, only one of ti’s will be
set to 1, so the initial state is started from that only
t0 is equal to 1 and other ti’s are equal to 0,
meanwhile all combinations of input ri’s are
considered to derive each of its next states. Take n
= 4 as an example, the initial state t0t1t2t3 is 1000,
and when input r0r1r2r3 is 0110, then one of its
outputs g1 is set to 1 and other outputs gi’s are set
to 0, which represent that r1 obtains the grant and
can use the resource. And its next state t0t1t2t3 is
0010, which represents that r2 will alternately have
the authority of using the shared resource next
time during the turnaround. Also, at the initial state
consider another input: r0r1r2r3 = 1101, then one of
its output g0 = 1, and other outputs gi’s are set to 0,
which represent that r0 obtains the grant and can
use the resource. Again, its next state t0t1t2t3 is
0100, which represents that r1 will alternately have
the using authority next time. And so forth, the
state diagram of the new arbiter for n = 4 can be
obtained as shown in Fig. 2.

As for n being any value, the state diagram of
our new arbiter can be obtained with the same
principle above.

Theorem 1: The arbiter’s state diagram in Fig. 2
is correct.

Prove: The state value (unsigned binary value)
of every state in Fig. 2 uses one-hot coding, and
each next state’s value depends just on its outputs
0, otherwise
gi’s, and only one of gi’s will be 1 (granted),
assume gi = 1, which only makes t(i+1) mod n to be

gi=



1, and other ti’s still 0. Therefore, state coding still
in one-hot coding. For example, when at state
0100 and r0r1r2r3 = 0010, then its output g2 is set to
1 and its next state t0t1t2t3 is 0001. This shows that
the only using authority has been rotated fairly
from user request r1 (t1) to user request r3 (t3),
which meets the functional definition of our new
arbiter defined in Subsection 2.1. Therefore, the
state diagram in Fig. 2 is correct, O.E.I.
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Fig. 2. The state diagram of our new arbiter for
n = 4.

2.3. Design of the Optimal n×n Arbiter

According to the derived state diagram of Fig. 2,
we shall use the following principles to
systematically design the new arbiter: (a) use the
systematic and theoretical methods to design the
arbiter hardware for increasing its execution speed
and for reducing its hardware area, (b) realize the
hardware with combinational circuits as far as we
can for area reduction and speed improvement, (c)
use simple D-FFs to store the state value.

Observing the state diagram of Fig. 2 and using
D-FFs to store ti’s, we find that each time whether
ti is set to 1 is determined by g (i-1) mode n = 1, and
the values of gi’s are determined by the values of rj

and tj, 0  j  n-1. The arbiter's design is based on
the principle of fairness to get the optimal Boolean
logic functions. Therefore, the only authority of
using the resources in the arbiter will be rotated
among n users fairly; every user has the equal
opportunity to get the only using authority. But at
the same time if more than one of users’ tj’s are
equal to 1, the grant outputs of our arbiter will be
set arbitrarily, in order to achieve the optimal (i.e.,
simplest) design of the arbiter.

We first derive the optimal 22 arbiters output

Boolean functions, gi, where i = 0 or 1. Then, we
further generalize them to deduce the optimal
Boolean logic functions for an nn arbiter.

The 22 arbiter’s optimal output g0 set to 1 is
determined by when r0 = 1 under the following
two different situations: a). t0 is 1; this means that
only r0 has the using authority, or b). r1 is 0; this
means that r1 does not have the request of using
the resource. So its optimal Boolean function is g0

= t0r0 + r0r1’. Additionally, applying the truth table
and Karnaugh map approach we also get the same
optimal Boolean function as shown in Fig. 3.

Through similar analysis and design, we can
obtain the optimal Boolean functions for each
output of the new nn arbiter as follows:

Fig. 3. The derived truth table, Karnaugh map, and
optimal Boolean functions of our new 22 arbiter.

g0 = t0r0 + r0r1’… rn-1’ + t2r2’… rn-1’r0 +… +
tn-2rn-2’rn-1’r0 + tn-1rn-1’r0

g1 = t1r1 + r1r2’… rn-1’r0’ + t3r3’… rn-1’r0’r1 +…
+tn-1rn-1’r0’r1 + t0r0’r1

…
gi = tiri + rir0’r1’… ri-1’ri+1’ri+2’...rn-1’ +

ti+2riri+2’… rn-1’ r0’r1’… ri-1’ + … +
tn-1rirn-1’r0’r1’… ri-1’ + t0rir0’ r1’… ri-1’ + ...
+ ti-1riri-1’

…
gn-1 = tn-1rn-1 + rn-1r0’… rn-2’ + t1r1’… rn-3’rn-2’rn-1

+ … + tiri’ri+1’… rn-2’rn-1 +… +
tn-3rn-3’rn-2’rn-1 + tn-2rn-2’rn-1

In the following, we shall prove the Boolean
functions above for the nn arbiter are optimal (or
simplest). Before doing this proof, the
corresponding circuit structure of this new nn
arbiter are first derived and designed based on the
above optimal Boolean functions.

Using the above-mentioned simplest (optimal)
Boolean functions of our new nn arbiter and its
state diagram in Fig. 2 as well as the revising
method for ti’s at each arbitration: If gi is 1, then ti

is revised as 0, and t(i+1) mod n is revised as 1 before
arbitrating next time, we designed the circuit
structure of our new nn arbiter as shown in Fig.
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3. Proof of Optimal Boolean Logic
Functions of the New Arbiter

3.1. Derivation and Formulation of the
Function of Our New Arbiter

In order to prove the above-mentioned Boolean
logic functions of the nn arbiter is optimal
(simplest), some basic definitions are set up as
follows, then the definition of an optimal Boolean
logic function is given. Finally, we finish the proof
with these definitions.

Definition 1: A product term is a set of
minterms.

In definition 1, we can see that some minterms
make up a product term.

Definition 2: The intersecting of two product
terms: If all minterms of a product term are all
totally included by another product term, we say
that the two product terms are intersecting. It can
be represented in a mathematical manner: If
product term p1  product term p2 (or p2  p1) 
p1  p2  , all other situations we think that this
two product terms do not intersect, namely p1  p2

=  (it means that their intersection is an empty
set).

If a product term includes the total minterms of
another product term, or inversely, then the two
product terms are regarded as intersecting. When
they cover each other only partially, then they still
are not intersecting.

Definition 3: The union of two product terms:
the union of two product terms is the union of all
minterms of the two product terms.

It is our object here to prove that the new output
Boolean functions of the nn arbiter are optimum.
The basic condition for an optimal (simplest)
Boolean function is that the union of its product
terms must includes all its minterms. Secondly,

each pair of two product terms in the Boolean
function does not intersect each other. And finally,
each product term has at least one unique minterm.
Therefore, we have the optimal Boolean function
definition as follows.

Definition 4: (Optimal (Simplest) Boolean logic
function definition) Let pi and pj be two product
terms of a Boolean logic function P, that is, P is
the set of all minterms in the Boolean function.
Then, 4 conditions that make Boolean function P
being optimal (simplest) are listed as follows:

1. pi = P, 0  i  n-1, it means all minterms of
the Boolean function P are included (i.e., it is a
complete cover).

2. pi  pj = . Each product in the function does
not fully include other product terms (i.e., all are
different products).

3. Each of the product can no longer be
simplified (i.e., all are the prime implicants).

4. For every pi in P,  a minterm m  pi, and m
 pj, i  j, for 0 i, j  n-1, it means that each
product term contains at least an unique minterm
(i.e., all are essential implicants)

3.2. Proof of the Optimal Boolean Function
of the n×n Arbiter

Theorem 2: The Boolean functions of the new
nn arbiter in Section 2.3 all are optimal (simplest)
Boolean functions.

Prove: The derived Boolean functions will
satisfy all four conditions of definition 4 and are
optimum, but due to space limit, here we omit the
detailed proof.

4. Experimental Results

In this section, the design results of our arbiters
with the Synopsys' synthesis/design tools Design
Vision (2007.03-sp3) and TSMC 0.18m standard
component library technology are presented.
Pre-layout simulation of it after synthesis is done
by using the ModelSim (SE PLUS 6.0d) tool.

Fig. 5 shows the comparison curves of the
numbers of the equivalent 2-input NAND gates
used in our arbiters and other arbiters in PPE [6],
PPA [5], SA [7], PRRA [8], and IPRRA [8],
respectively. This figure shows that the area size of
our arbiter increases linearly with the number of
inputs; and the area results of ours are less than
those of PPE and SA designs, but more than those
of PRRA and IPRRA.

Fig. 6 shows the comparison curves of the
execution time delays of our arbiters and other



arbiters in PPE, PPA, SA, PRRA and IPRRA,
respectively. Other arbiters’ results in Fig. 5 and 6
are all referred to from [8]. Comparing with other
arbiters, our arbiter not only has a definitely fair
mechanism, but also its execution time delay
grows with the trend of log4n, which means that
the growing of the execution time delay is less as
the number of inputs becomes larger. In the
example of case 6464, the execution time delays
of the arbiters in PPE, PPA, SA, PRRA, and
IPRRA are larger than that of our arbiter by 3
times , 2.7 times , 1.3 times , 2.7 times and 2.2
times, respectively; Our arbiter is the fastest one
among all arbiters that we can find now. In
addition, the growth of our arbiter’s execution time
delays is relatively slow compared to those of
other arbiters.

Table 1 shows the compared results of the
execution time delays for our arbiter designs and
other arbiters of different sizes (n or N)
respectively.

Table 2 shows the area compared results in
term of the numbers of equivalent two-input
NAND gates used for our arbiters and other
arbiters of different sizes (n or N) respectively.
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Table 1. The execution time delay comparisons
of our arbiters and other arbiters.
N = 4 N = 8 N = 16 N = 32 N = 64

PPE 1.67ns 2.73 ns 3.8 ns 5.07 ns 6.31 ns

PPA 1.7ns 2.53 ns 3.66 ns 4.54 ns 5.67 ns

SA 1.36 ns 1.51 ns 1.79 ns 2.26 ns 2.72 ns

PRRA 1.47 ns 2.52 ns 3.58 ns 4.63 ns 5.68 ns

IPRRA 1.29 ns 1.89 ns 2.68 ns 3.68 ns 4.56 ns

Ours 0.58 ns 0.80 ns 1.20 ns 1.67 ns 2.10 ns

Table 2. The area compared results of our arbiters
and other arbiters in term of the quantity of

NAND-2 gates used

N = 4 N = 8 N = 16 N = 32 N = 64

PPE 53 150 349 812 1826

PPA 63 143 313 644 1316

SA 89 292 641 1318 2372

PRRA 31 72 155 320 651

IPRRA 31 82 173 356 723

Ours 48 145 349 661 1445

However, the area of our arbiter is larger than
those of PPA, IPRRA and PRRA. Here, the
readers will have a major question: Why is the area
of our optimal (simplest) Boolean function arbiter
larger than that of some other arbiters? After
in-depth research and analysis we have found the



most likely reasons are: Because the non-optimal
individual Boolean functions of other arbiters may
include many of non-optimal product terms which
can be shared among those functions and then the
product terms sharing among the arbiters’ outputs
makes their circuit areas less. The optimal Boolean
functions in our arbiter are designed with respect
to the individual function, as a whole, they are not
necessarily the simplest design for all Boolean
functions of the arbiter.

Our individually optimal Boolean functions
may have less the same product terms to be shared
among the functions, which results in the overall
area of our arbiter difficult to small, although, the
area of ours is not very large. Our arbiter’s
individually optimal Boolean functions do not
have bad affection for the execution speed of the
arbiter, and inversely, they may reduce arbiter’s
execution delay much. This is reasonable from
theory, and it is also seen by the fact in Fig. 6 that
our arbiter is fastest comparing with the known
arbiters. The execution time delay complexity of
our arbiter is approximately O(log4n), which is the
same as that of SA [7], and the area complexity of
our arbiter is O(n) of logic gates, which is the same
as that of IPRRA and PRRA.

Today SoC, NoC, CMP, multi-core designs and
tera-bit scale network switches demand the
ultra-high speed and the requirement of the small
circuit size is less important [1, 2, 9], which just is
the same direction as our new fast arbiter.

5. Conclusions

In this paper, we proposed a new fast arbiter
design. To balance the gate delay, wire delay, and
circuit complexity, a new arbitration state diagram
and the optimal arbitration Boolean functions are
derived in the design. We proved that the
arbitration Boolean functions derived in the design
are optimal (simplest), and its arbitration is fair.
This fairness is not guaranteed in the design of
PPA [5] and SA [7]. The execution time delay
complexity of our arbiter is approximately
O(log4n), which is the same as that of SA, and the
area complexity of our arbiter is O(n) of 2-input
logic gates, which is the same as that of SA,
IPRRA, and PRRA. Practically, our arbiter is
faster than SA, the existing fastest arbiter, and has
smaller area. Compared with SA, our arbiter has
22.8% of execution time improvement and 39.1%
of area reduction. Since of our small arbiter’s the
high-performance, it is extremely useful for the
realizations of ultra-high-speed switches, MPSoC
arbitration, and NoC routers. This new arbiter

design is being applied for a patent of ROC
(application No.: 0971xxxxx).
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