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ABSTRACT-To render the transparent effect of a scene
fast and in real time, hardware algorithm with additional
transparent fragment storage for order-independent
transparent fragments are required in graphics processing.
As the scene complexity and demand for resolution are
constantly increasing, the storage consumption and also its
access overhead hurdle system efficiency. This paper
proposes the T-buffer storage system design as a solution,
which has the following design goals: To lower the demand
for transparent fragment storage, we use memory only for
pixel locations consisting of transparent fragments. All those
fragments with the same pixel location are further grouped
in memory for easy management and subsequent use. And to
retrieve transparent fragments in computation fast, indexing
mechanism is designed in our storage system. We compare
the proposed design with two famous works, the R-buffer
and the M-buffer with WF hardware oriented algorithm, in
terms of storage size and access counts. Experimental
results show that T-buffer uses 29% less storage than R-
buffer and 67% less than M-buffer. Nevertheless, T-buffer
needs to be accessed 52% less frequent than R-buffer,
although 27% more frequent than M-buffer.

Keywords: Graphics Hardware, Rendering Hardware,
Graphics Processing, Transparency Rendering

1. INTRODUCTION
Transparency effect in computer graphics has recently

gained much attention, due to increasing rendering quality
demands. The underlying technique is alpha blending:
combining a translucent foreground with a background. And
all translucent fragments at the same scene coordinate must
be rendered in a strict depth order, the so-called order-
dependent transparency.

Mammen describes a depth sorting algorithm based on
the concept of Virtual Pixel Maps [1]; Snyder and Lengyel

present an application algorithm to identify and sort the
mutual-occluding parts of objects [2]. These sorting
algorithms are very time-consuming. Therefore, order-
independent transparency, rendering transparent objects
without depth sorting, becomes an important issue for high
performance rendering systems. There are several different
kinds of order-independent transparency algorithms. Some
are single-pass rendering algorithms that sample the alpha
value and interpret it as how much it covers the pixel to
produce dithering-like transparent effect in images [3] [4].
However, since they are probability-measure algorithms,
they also have chance to produce artificial results. Other
order-independent transparency algorithms use multi-pass
rendering method that process transparent fragments several
times to render them in correct depth order [5]. These multi-
pass rendering algorithms are some kinds of fragment-level
depth sorting technique; therefore, in general cases, they
have the same defect as sorting algorithms have, that is, time
consuming.

For the reason of solving time-consuming problem, most
order-independent transparency algorithms modified the
traditional GPU architecture to achieve fast rendering. Z3

hardware technique is one of these modified hardware
architecture which only renders a fixed number of
transparency layers correctly [6]. R-buffer (RB) architecture
[7] implemented A-buffer software algorithm [8] into
hardware by adding an extra storage system to store
transparent fragments in their arrival order. WF (Weight
Factor) hardware oriented algorithm [9] precomputes the
contribution factor of each fragment to the final color of a
pixel and sequentially stores transparent fragments based on
their x-y coordinate into an additional organized storage
system. As the scene complexity arises, the number of
transparent fragments and the storage space for transparent
fragments increase significantly. How to store these
transparent fragments for lowering the demand for memory



becomes more and more important. Furthermore, current
fragment storage supporting techniques for order-
independent transparency [9] [7] still have some defects to
be improved such as large storage requirement and high
execution time during rendering.

Our objective is to design a dense and extensible
transparent fragment storage system which places order-
independent-arrival transparent fragments in an organized
way. Desired features in this design category include:
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But the correct final color should be
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 How to efficiently store all transparent fragments,
using as less storage as possible

 How to efficiently retrieve in this storage all those
fragments mapped to the same screen coordinates

 How to avoid storage overflow, such that both
fragment storage and retrieve do not have to suffer
from lengthened outside memory latency

2. BACKGROUND
2.1 Transparency and Alpha Blending

Translucent objects can be rendered by specifying the
degree of transparency with a color. The value to represent
the degree of transparency is defined as an alpha (α) value,
which ranges from 0.0 (completely transparent) to 1.0
(completely opaque). Each fragment has its alpha value with
its RGB color components. To obtain the final color of a
pixel, the translucent fragments belonging to the pixel (i.e.,
fragments have the same x-y coordinate) are typically
assumed to be rendered from back to front in visibility order,
or depth order. Normally, the alpha blending equation (1) [10]
is used, as shown below:

bfff ccc )1(   Eq. (1)

where c is the final color of a pixel, fc and f are the

color and the alpha value of foreground transparent fragment,
and bc is the color of background fragment.

2.2 Transparency Rendering Problem
The blending equation (1) is order-dependent, which

means that transparent fragments require to be processed in
their depth order, not in their arrival order. Thus, if we render
transparent fragments in arbitrary order, it will produce an
artificial result. For example, in Figure 1, fragment T4 and T6

come before fragment T7, if we blend T4 and T6 with opaque
fragment O3 first, the blend T7 later, according to Eq. (1), the
final color c will be

Thus, the incorrect result is produced due to the incorrect
rendering order.

O1T2O3T4 T5T6

Viewer

T7 O1T2O3T4 T5T6

Viewer

T7

Figure1. Example of fragment blending processing

Since fragments are generated in arbitrary order at
rasterization, not in depth order, several algorithms are
proposed for correct transparent rendering. These algorithms
can be classified as sorting based algorithms and order-
independent transparency algorithms. Sorting based
algorithms require the primitives (polygons) to be sorted
from back to front with respect to the viewpoint. These
sorting algorithms can further be classified into application
sorting [1][2], hardware assistant sorting [5], and hardware
sorting [9][11] algorithms based on the method they use to
sort the primitives. However, for application sorting
algorithms, it is difficult to do depth sorting since objects in a
scene may intersect each other and intersected parts need to
be divided into several polygons. Even for those hardware
assistant sorting algorithms, it is very time-consuming.
Therefore, it comes out order-independent transparency.

2.3 Order-independent transparency
Since our research focuses on hardware storage support

for order-independent transparency, we will introduce more
details of R-buffer hardware architecture [7] and WF
hardware oriented algorithm [9], which are more related to
our system design.

2.3.1 R-buffer hardware architecture
The R-buffer is a FIFO (first-in-first-out) memory which

stores transparent fragments in the sequence that they arrive.



The information of each transparent fragment —the location
(x, y), the depth value (z), the color value (RGB) with alpha
value(A or α)— needs to be stored in the R-buffer. Pixel
state memory stores each pixel’s current state. The second z-
buffer stores the depth value of the furthest visible
transparent fragments per pixel. The memory size of the R-
buffer is proportional to the number of transparent fragments
after early z test. The memory size of the second z-buffer is
equivalent to the original z-buffer. In pixel state memory,
each pixel needs three bits to record its current value; thus,
the memory size of the pixel state memory is equal to three
multiplied by the screen size. To sum up the memory
requirement of R-buffer architecture, we list the R-buffer
memory requirement equation as follow:

Memorytotal = MR-buffer + M2nd-z-buffer + Mstate-memory

2.3.2 Hardware oriented algorithm based on weight factors
computations

The organized memory scheme of WF algorithm suggests
that transparent fragments belonging to the same pixel are
stored sequentially and connectedly in the M-buffer. M-
buffer is organized in sections of Davg words, where Davg is
the average number of fragments per pixel. Each pixel has it
corresponding storage section, with capacity for Davg

fragments; that is, for a system with W×H pixels, W×H
sections would be required and a pixel i in a system has a
corresponding section i in M-buffer. To extend the storage
capabilities, a pointer memory is added so that more than one
section can be dynamically assigned to a given pixel. The
information stored per section of a pointer memory indicates
that whether one section is sufficient (by storing a NULL
pointer) or whether the following-coming fragments are
stored in another section (by storing the section index). For
example, if there are F transparent fragments belonging to a
pixel i, where F is larger than Davg, the first Davg fragments
are stored in section i of M-buffer, and the following F- Davg

fragments are stored in another section j (j ≧ W×H). The
section i of a pointer memory stores the section j index. If
section j is still insufficient to store F- Davg fragments (i.e., F-
Davg > Davg), the rest F-2×Davg fragments are stored to another
section k (k>j), and so on.

3. DESIGN
3.1 Statistics and Observation

Figure 2(a) shows a frame image in DOOM3. We
analysis the number of transparent fragments of each pixel in
this frame and obtain the result in Figure 2(b). In the gray-
level image, the black color indicates that the number of
transparent fragments of a pixel is 0, while white color
indicates that the number of transparent fragments of a pixel
is 7, that is, the maximum number of transparent fragments of
a pixel in the frame. The transparent fragment numbers of a
pixel between 0 and 7 and their corresponding colors are

shown at right side of Figure 2(b). We find that not all pixels
in a frame have transparent fragments. However, in M-buffer
with WF proposal, each pixel is assigned the same size of
memory space, no matter whether the pixel has transparent
fragments or not. Therefore, if we use a transparent storage
support proposed in M-buffer, it needs a large memory space
and parts of them are unused resulting in unnecessary
memory cost.

3.2 T-buffer Storage System
The objective of our transparent fragment storage system

is to reduce the memory requirement and memory access of
transparent fragments for order-independent transparency.
The overview of our proposed transparent fragment storage
system is shown in Figure 3.
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After rasterization stage, the polygons are segmented into
several fragments in arbitrary order. Then, opaque fragments
continue the pixel processing procedure while transparent
fragments are stored into our transparent fragment storage
system. The storage scheme is to store transparent fragments
in an organized way based on their (x, y) coordinate.
Transparent fragments belonging to a same pixel location are
stored together.

Figure 2. (a) A test frame; (b) Number of
transparent fragments per pixel expressed by

grayscale image

(a) (b)

Figure 3. Design diagram of T-buffer and



3.2.1 SSA(Start-Section Address) Table

Start-section address table (SSA Table) has W×H entries,
where W×H is defined as the display resolution. Each pixel p
has a corresponding entry ep in SSA Table that stores the
address of start section within T-buffer for pixel p. If a pixel
does not have any transparent fragments, a nullified address
is stored in the corresponding entry in SSA Table. T-buffer is
a storage space for transparent fragments.

3.2.2 T-buffer

T-buffer is organized in sections and each section has the
capability for storing LMax transparent fragments. Fragments
belonging to the same pixel location are grouped together
and stored within one section in T-buffer. There might be
more than LMax transparent fragments belonging to the same
pixel; thus, more than one section should be assigned to a
pixel to extend the capability for storing variable number of
fragments.

3.2.3 NSA(Next-Section Address) Table

If the number of transparent fragments is more than the
number that one section is capable of storing, the excess
fragments will be stored in another section. Then, the address
of the section is recorded as the next-section address in NSA
Table. The number of entries in NSA Table is equivalent to
the number of sections in T-buffer and there is a one-to-one
correspondence between entries in NSA table and sections in
T-buffer. However, if one section is sufficient to store

transparent fragments of a pixel, there is no need to assign
another section, and thus, the NULL pointer is stored instead
of the section address.

3.3 The Access Process of T-buffer Storage System

Figure 4 shows the process of storing fragments into T-buffer.
Before a transparent fragment with the location (xi,yj) is
stored into T-buffer, the address of start section s(i,j) is read
from the corresponding entry e(i,j) of SSA table. If there is no
start section for a given pixel, the new empty section in T-
buffer is assigned for that pixel, and the address of the new
section is recorded in SSA table as the start-section address.
When the section s(i,j) of T-buffer is available, the fragment is
stored into the section s(i,j); if the section s(i,j) is full, the
address of next section ns is read from the entry es of NSA
table, and the fragment is eventually stored into the section ns

of T-buffer.

The process for reading transparent fragments from T-buffer
is shown is Figure 5. For each pixel p(i,j ), the start-section
address is read from its corresponding entry e(i,j) of SSA
Table. If there is no start-section address for a pixel, the
process is continued to read the start-section address for the
next pixel. Otherwise, transparent fragments belonging to p(i,j )

are accessed from the start section s(i,j) of T-buffer and the
address of next section ns can be read simultaneously from
the entry es of NSA Table. Fragments are accessed from the
next section ns of T-buffer until there is no more next
sections for pixel p(i,j ).

Figure 4. Flowchart of the process for storing fragments into T-buffer storage system
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4. EVALUATION RESULTS
We implemented a behavioral simulator of the

architecture with the T-buffer and the storage system in C++,
and modified ATTILA simulator [11] to output fragment
information to a tracefile. The benchmark used in ATTILA
simulator is QUAKE4 [12], a modern graphics application.
The tracefile outputted from ATTILA simulator contains the
coordinates and RGBA color components of fragments in
frames. Our simulator reads the tracefile and evaluates the
memory requirement and access frequency time of
transparent fragment storage system.

We provided statistics of eight test frames, which were
dumped at the interval of 60 frames, as shown in Table 1. In
Table 1, the second column indicates the number of all
fragments in each frame; the third column shows the number
of transparent fragments in each frame; the fourth column
shows the number of transparent fragments per transparent
pixel; the fifth column shows the transparency density, which
is defined as the percentage of transparent pixels in a frame

(i.e. #transparent pixel/display resolution); the last column
shows the distribution of transparent fragment layers per
pixel in each frame.

In order to evaluate T-buffer storage system, we compare
our design with two related works: R-buffer [7] and WF
hardware oriented algorithm [9]. We list the memory
requirements of each method in Table 2. The second column
shows the name and the size of a transparent fragment
storage space in each technique and the second column
shows the name and the size of other storage supports in each
technique. In Table 2, Nf is defined as the number of
transparent fragments, NA is defined as the number of
dynamic allocated sections in WF algorithm, and NS is
defined as the number of sections of T-buffer; Sf is defined as
the size of a fragment data (XYZ,RGBA), SA is defined as
the size of an address; MWF is defined as the memory size per
section within M-buffer in WF algorithm, and MT-buffer is
defined as the memory size per section within T-buffer; W×H
are defined as the display resolution. The simulation result of
memory requirement of each technique is shown in Figure 6.

Table 2. Memory requirements of each of
transparent storage systems
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Table 1. Statistics of test frames
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Figure 5. Flowchart of the process for reading fragments from T-buffer storage system
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We find that our T-buffer has the lowest memory
requirement than two related works in average.

Notice that in frame480, the memory requirements of T-
buffer with LMax=3 are larger than those of R-buffer
technique. This result is occurred by the weakly utilization of
a section, which has the capability for storing three
transparent fragments but only stores fewer than three
fragments. In frame480, the number of transparent fragments
per transparent pixel is 1.22, which is lower than that in other
frames, and about 34% of sections in T-buffer are weakly
utilized. Therefore, in frame480, it results in unnecessary
memory cost and larger memory requirement of T-buffer
with LMax=3 than of R-buffer.

Furthermore, we analyzed the memory access frequency
for order-independent transparency of each technique.
Suppose Ni pixels have i transparent fragments, where i
=0,1,2,3,…..nmax, nmax is the maximum number of transparent
fragments that a pixel have in the frame. It infers that the
number of pixels which have at least one transparent

fragment is equal to 


max

1

n

i
iN , and the total number of
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In addition, after a fragment accessed from R-buffer, its
depth value needs to be compared with the depth value
stored in second z-buffer, and thus, the access frequency of
second z-buffer, denoted as f2nd-zbuffer, is equal to that of R-
buffer. Moreover, each transparent fragment is eventually
blended with the background fragment stored in frame
buffer, and thus, the access frequency of frame buffer,

denoted as fframe-buffer, is equal to  


max

1
)(

n

i
i iN . The total

memory access frequency of storage system in R-buffer
architecture is equal to fR-buffer + f2nd-zbuffer+ fframe-buffer. It
implies that the more transparent fragments in a frame or
the more transparent fragments per pixel, the more memory
access frequency of R-buffer architecture.

In WF algorithms, assume that the pointer memory can be
accessed simultaneously with M-buffer, and does not wait for
being accessed after M-buffer access. Therefore, the access
frequency of the pointer memory will not affect the time
requirement of memory access and can be ignored. Since
transparent fragments with the same x-y coordinate are stored
sequentially and connectedly, we can access these transparent
fragments at one pass from M-buffer and blend these
fragments based on weight factor computation proposed in
[9]. Thus, the access frequency of M-buffer is equal

to  


max

1

n

i
i iN .

In our design, the access frequency of T-buffer is the
same as the access frequency of M-buffer in WF algorithms.
However, in our approach, SSA Table needs to be accessed
before accessing T-buffer in order to find the start section in
T-buffer. Thus, SSA Table cannot be accessed
simultaneously with T-buffer and the access frequency of
SSA Table should be considered. Figure 7 shows the
memory access frequency of transparent storage system of
each technique. As we expect, the memory access frequency
of R-buffer proposal is higher than WF proposal and our
approach; WF proposal has the lowest access frequency; the
access frequency of our approach is just a little higher than
WF proposal and much lower than R-buffer proposal.

Figure 6. Memory requirement comparison;
WF(num) and T-Buffer(num) : the number in
parens. is defined as the parameter LMax



5. CONCLUSIONS
In this paper, we proposed a dense and flexible T-buffer

storage system for order-independent transparency. For
QUAKE4 benchmark, our transparent fragment storage
system, in comparison with R-buffer architecture, reduces
29% memory requirement in average, and reduces 52%
memory access frequency. Even ignoring long external
memory latency when overflow occurs, in comparison with
M-buffer, although the memory access frequency of our
storage system is 27% higher than M-buffer, it reduces 67%
memory requirement in average.

T-buffer design has the following advantages over the M-
buffer:
 Sections in T-buffer are allocated to screen

coordinates flexibly. Any section can be freely
allocated to any screen (x,y), with the help of the SSA
table. This reduces the memory pressure for
transparent fragment storage.

 Furthermore, sections in T-buffer can be allocated to
other overflow sections, with the help of the NSA
table. This overflow handling can recursively go on,
until all T-buffer sections are used up. Transparent
fragment overflow to outside memory can hence be
reduced to the minimum.

 With above two advantages, storage efficiency of the
T-buffer is expected to be very high. So a much
smaller T-buffer may perform comparably with a full-
size M-buffer.

 Better yet, T-buffer size (both section count and
section capacity are design parameters) can be
trimmed to best fit any given application domain.
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