
Performance Improvement in Web Services Discovery for Mobile Networks

Li-Der Chou, Po-Chia Tseng and Jyun-Yan Yang
Department of Computer Science and Information Engineering, National Central University

No. 300, Jhongda Rd., Jhongli City, Taoyuan County 320, Taiwan (R.O.C.)
E-mail: cld@csie.ncu.edu.tw

Abstract- Service-Oriented Architecture (SOA)
provides a scalable and interoperable paradigm for
organizing distributed resources. In general, the SOA is
implemented by Web services, and discovery service is the
fundamental process of services engagement in Web
services. However, a centralized architecture for Web
services discovery, such as Universal Description and
Discovery Integration (UDDI), goes through the single
node of failure and scalability problem. Otherwise, the
existing peer-to-peer architectures, such as Gnutella-
based or Distributed Hash Table-based, were suffered
from larger delay due to multi hops delivery in mobile
networks especially. In this paper, an improving Web
services discovery in mobile networks is proposed, which
is a decentralized and adaptive service discovery with
enhancement of matching capability. The architecture
adopts a distributed index system with support of Pastry
overlay networks for services discovery. The keyword
query for semantic search in peer-to-peer network is
supported in the proposed architecture as well.
Furthermore, the routing procedure and leaf set of Pastry
is adopted to reduce delay in mobile networks. The
simulation show that our proposed solution is scalable
and improved the performance up to 67.85% compare to
Chord-based solutions in mobile networks.
Keywords: Web services discovery, Peer-to-Peer, Mobile
Networks, Delay.

1. Introduction
In the Web services architecture (WSA), there are four

steps in service engagement: “Parties become known to
each other”, “Agree some semantics and Web Services
Description (WSD)”, “Input WSD and Semantics to
agent”, and “Interact”. “Parties become known to each
other” is also called Web services discovery and required
as a primitive functionality for service requesters to locate
and match services. The definition of “discovery” is “the
act of locating a machine-processable description of a
Web service that may have been previously unknown and
that meets certain functional criteria” given by WS
Glossary.

The Web service discovery can be classified as
centralized and decentralized. Centralized architecture,
such as Universal Description and Discovery Integration
(UDDI), has only one centralized registry or index to
collect the address of service endpoints, and centralized
architecture is appropriate in networks where the locations
of nodes do not change frequently [3]. On the contrary,
decentralized architecture is composing of many broker
agents distributed in Internet, and adaptable in mobile

networks in which proximity limits the need to propagate
requests [5].

We elaborate a Pastry-based Web services discovery
adapts to larger scale networks and declines average delay
in mobile networks [6][7]. For the generic services lookup
and advertisement functions of the architecture are
implemented in a simulator environment. The architecture
adopts a distributed index system with support of Pastry
overlay networks for services discovery. The keyword
query for semantic search in peer-to-peer network is
supported in the proposed architecture as well.
Furthermore, the routing procedure and leaf set of Pastry
is adopted to reduce delay in mobile networks. The
simulation show that our proposed solution is scalable and
improved the performance up to 67.85% compare to
Chord-based solutions in mobile networks.

The rest of this paper is organized as follows. In section
2, related work to Web services discovery is discussed.
Section 3 proposes assumptions and the architecture of
Web services discovery. Simulations and discussions are
conducted in section 4. Finally, Section 5 gives the
conclusions.

2. Related Work

In this section, decentralized P2P-based Web services
discovery will be discussed. The P2P solutions are
addressed and compared as follow.

The Web Services Peer-to-peer Discovery Service
(WSPDS) [1] is a decentralized design for the Web
Services discovery. WSPDS depicts an unstructured peer-
to-peer network of WSPDS servants. The servants of
WSPDS collaborate to resolve discovery queries raised by
their peers. Each servant is composed of two engines,
communication engine and local query engine. The
communication engine provides the interface to user and
also represents the servant in the peer-to-peer network of
servants. Local query engine receives queries from the
communication engine, queries the local site for matching
services, and sends responses to communication engine.

The SPiDeR built a super-peers overlay on top of Chord
to select Web services efficiently [2][8][9]. Chord is a
lookup service that implements a Distributed Hah Table
(DHT). It uses a m-bit identifier ring, which is [0, 2m-1)
for routing and locating objects and peers. Both objects
and peers are assigned m-bit keys through a uniform hash
function, such as SHA-1. An object is stored at the peer
following it on the ring, which is called its successor.

SPiDeR allows distributed Web service discovery over
a P2P system based on Chord. It provides several

This research was sponsored in part by National Science Council under grants NSC 95-2627-E-008-002 and NSC 96-2628-E-
008-004

techniques to increase the accuracy of service discovery
including functional matching (what a service does),
behavioral matching (how a service performs), semantic
matching (the underlying semantics of a service) and
ontological matching (how a service relates to other
services). Each of these provides a different metric to
measure the relevance among different services, and the
goal of SPiDeR is to achieve above matching mechanisms.
However, the issues of performance are not discussed in
SPiDeR.

WSDL

The pService Web services discovery system is similar
to other P2P discovery systems which use keywords as
indexing keys to complete resources lookup [3][4]. That
means metadata in service descriptions should be
extracted as keywords to index services. To support
complex search and semantic query, Web Service
Description Language (WSDL) is schemed as service
description language. In the research, the most important
description is hashed into the Chord overlay, and other
service descriptions are hashed into Skip Graph.

The message routing algorithm is based on the Chord.
Thus, the number of average hops for Web service
discovery inherits from Chord. It shows that the number
of average hops is logN in the N-node network.

3. System Architecture

Performance Improvement in Web Services Discovery
(PIWSD) for mobile networks, there are three components
proposed to realize the peer-to-peer Web services
discovery, which are service advertisement function,
service lookup function, and routing algorithm,
respectively.

3.1. Service Advertisement

This function is embedded in brokers. It defines the
procedure of how provider agents register their services
into given discovery service agents, and so called “service
advertisement”. In order to maintain the interoperability, it
is necessary to formalize the description of services, such
as WSDL proposed by W3C. Besides, we use a common
Semantic Markup for Web Services (OWL-S) [10] to
advertise the services from service requester to provider.

The WSDL contains the information about “how to use
the service”, and the OWL-S contains the information
about “what the service is”. The PIWSD extract keywords
for a service from its OWL-S file, and use the routing
algorithm to route the keywords stored in the
corresponding nodes. The procedure of service
advertisement differs from the original Web Services
Architecture (WSA), so we would describe the process in
Figure 1. There are three components in the service
advertisement:

1) Provider Agent: the agent is capable of and
empowered to perform the actions associated with
a service on behalf of its owner that is providing
the Web service.

2) Discovery Service: it is a service that enables
broker agents to extract keywords in WSDL file
and also play a role as a Pastry node to spread
WSDL files into Pastry network.

3) Pastry Node: this node efficiently routes the
message to the other nodes with a unique numeric
identifier nodeId.

3.2. Service Lookup

This function is to let requester agent gets service
endpoints from discovery services, and these service
endpoints meet the criteria requested by requester agent.
Also, this function would call the routing algorithm to
locate where the keyword is. In the service lookup, there
are three components including requester agent, discovery
service and pastry node shown as Figure 2. Requester
agent is a software agent that wishes to interact with a
provider agent in order to request that a task be performed
on behalf of its owner. Discovery service and pastry node
are defined well that mentioned at section 3.1.

While a service requester wants to invoke a service, the
requester agent will send the keyword list of requested
service to the broker agent. Then the broker agent will
extract keywords from the criteria file and deliver
keywords to the pastry node in order to search the services
related to those keywords. Thus, the pastry node will wrap
the keywords as a lookup message and route the lookup
message to the corresponding pastry node until the pastry
node who keeps the service information related those
keywords are founded. The target pastry node will return
the WSDL file to the requester agent.

3.3. Routing algorithm

The function is use to locate where the keyword is,
whenever a message with key D arrives at a node with
nodeId A. This algorithm is based on Pastry’s routing

Discovery Service

DigestKeyword
Pastry Network

Provider
Agent

Pastry
Node

Pastry NodeBroker
Agent

WSDL
Figure 1. Scenario of Service Advertisement

Discovery Service

Pastry Network

Keyword 1

. . .
Keyword N

. . .

Requester AgentLookup Message Pastry Node Keywords ListBroker Agent

Symbol Description
Figure 2. Scenario of Service Lookup

algorithm, which can find a given keyword within
⎡log2bN⎤ steps for N nodes pastry networks, b is a
configuration parameter with typical value 16.

Number of nodes

103 104 105

N
um

be
r o

f a
ve

ra
ge

 h
op

s

0

2

4

6

8

10
Chord-based Web Services Discovery
Performance Improvement in Web Services Discovery

Figure 3. Number of Average Hops Between 103
to 105 Nodes

When Pastry node A receives a lookup message has a
keyword D, the node checks whether the D falls within the
range of nodeIds covered by its leaf set. If so, the message
is forwarded directly to the destination node, namely the
node in the leaf set whose nodeId is closest to the key
(possibly the present node).

If the D is not covered by the leaf set, then the routing
table is used and the message is forwarded to a node that
shares a common prefix with the D by at least one more
digit. In certain cases, it is possible that the appropriate
entry in the routing table is empty or the associated node
is not reachable, in which case the message is forwarded
to a node that shares a prefix nodeId with the D at least as
long as the local node, and is numerically closer to the D
than the present node’s id.

Such a node must be in the leaf set unless the message
has already arrived at the node with numerically closest
nodeId. And, unless ⎣|L|/2⎦ adjacent nodes in the leaf set
have failed simultaneously, at least one of those nodes
must be live.

0

500

1000

1500

2000

2500

4. Simulations and Discussions

In this section, experiments have been conducted in
order to evaluate the effectiveness and efficiency of
Pastry-based Web Service discovery (PIWSD). These
experiments were performed in a P2P simulation system
called PeerSim. There are agents that would generate the
traffic of lookup message, and the peer-to-peer network
would responsible for messages routing. The hash
function is SHA-1 and the length of nodeId is 160 bits in
our simulations.

For the comparison of previous work, we also
implement a Chord-based discovery to compare the
system performance. In the simulation result, it reveals
that our approach is cost lower than the Chord-based
approached in numbers of hop counts. It is approximately
reduced the number of hops to 50%.

This experiment on average hops and delay aims to
compare this approach to previous research based on
Chord. There are 1024 nodes in this experiment. And the
traffic generator will generate the traffic every 100
millisecond. There is no turbulence in this simulation. The
total simulation time is 3 ms and the related
parameters to Pastry overlay are: the base is 2 and size of
leaf set is 32. And the end-to-end delay of transport layer
is random distribution between 500 milliseconds to 900
milliseconds.

510×

According to the simulation result, we can see that
average service discovery delay of PIWSD is 67.8% of
Chord-based Web service discovery in Figure 3. This is
due to the complexity of routing algorithm between
Chord-based and PIWSD. Although the complexity of
routing table of PIWSD is more complex than Chord-

based solutions. The improvement of average number of
hops still causes the improvement of average delay.

The goal of experiment on capacity distribution aims to
examine the capacity distribution on PIWSD and Chord-
based Web Services Discovery. The distribution will
reveal that the capacity usage for storing the number of
keys. Given a N total keys needed to be stored, the number
of keys per node stored is depend on N. If the number of
keys per node needed to be stored is fewer, the cost of
capacity is less.

In Figure 4, it shows that the counts of the number of
keys per node stored in Performance Improvement in Web
Services Discovery (PIWSD). Also, is distributed by hash
function in the routing table, whose nodeID is in base 4. In
Pastry-based routing table, the size of routing table is
approximately ⎡ ⎤)14(log −4 ×N . So, the counts of the
number of keys per node in PIWSD will more than Chord-
based. The result shows that the average number of keys
per node in PIWSD is 32.0725, and 13.6243 in Chord-
based. It means our proposed PIWSD costs numbers of

Number of keys per node

Performance Improvement in Web Services Discovery
C

ou
nt

24 26 28 30 32 34 36 38 40 42

Figure 4. The Counts of Number of Keys Per
Node in PIWSD. The Total Number of Key is 104

keys more than Chord-based up to 18.4482 keys. Also, the
scalability is also concerned.

5. Conclusion and Future Work

 The P2P overlay is built on top of Pastry in order to
distribute service endpoints between peers. And three
necessary components of Web service discovery in P2P
networks are defined as follow: service advertisement,
service lookup and routing algorithm. Compare to Chord-
based solutions, the experimental result real that the
proposed PIWSD improve the delay up to 67.8%. Due to
decreased hops of look up messages, the delay is reduced
compare to Chord-based and the hops while searching a
given key is bounded in log N, where N is the number of
keys. Also, the effect on load distribution is conducted to
show that our proposed PIWSD will avoid the single node
of failure problem. Besides, in a dynamic environment
with node join or leave, the experiment is conducted to
show the cost of a node join and leave. For consideration
of cost for capacity per node, the experiment on capacity
distribution reveals that our proposed PIWSD cost more
capacity to store routing information than Chord-based.

In the future, the implementation of the proposed
PIWSD is taken into consideration to various applications,
such as mobile social networks or mobile Web services
composition. Also, we can deploy the proposed
functionality to provide public use in the Internet..

References
[1] F. B. Kashani, C. C. Chen and C. Shahabi, “WSPDS:

Web Services Peer-to-peer Discovery Service,”
Proceedings of International Symposium on Web
Services and Applications, Nevada, USA, pp. 733-743,
Jun. 2004.

[2] O. D. Sahin, C. E. Gerede, D. Agrawal, A. E. Abbadi,
O. H. Ibarra and J. W. Su, “SPiDeR: P2P-Based Web

Service Discovery,” Proceedings of International
Conference on Service Oriented Computing,
Amsterdam, The Netherlands , pp. 157-169, Oct. 2005.

[3] W.F. Lv and J.J. Yu, “pService: Peer-to-Peer based
Web Services Discovery and Matching,” Proceedings
of ICSNC 2007, French Riviera, France, pp. 54-54,
Aug. 2007.

[4] G. Zhou, J. J. Yu, R. Chen and H. Zhang, “Scalable
Web Service Discovery on P2P Overlay Network,”
Proceedings of IEEE International Conference on
Services Computing, Utah, USA, pp. 122-129, Jul.
2007.

[5] U. Srivastava1, K. Munagala, J. Widom and R.
Motwani, “Query Optimization over Web Services,”
Proceedings of the 32nd international conference on
VLDB, Seoul, Korea, vol. 32, Sep. 2006.

[6] S. Kona, A. Bansal, G. Gupta and T. D. Hite,
“Semantics-based Efficient Web Service Discovery
and Composition,” Proceedings of ISWC 2004,
Hiroshima, Japan, Nov. 2004.

[7] D. Wu, T. Tian and K. W. Ng, “An Analytical Study
on Optimizing the Lookup Performance of Distributed
Hash Table Systems under Churn,” Transaction on
Concurrency and Computation, vol. 19, pp.543-569,
Jan. 2007.

[8] E. Ayorak and A. B. Bener, “Super Peer Web Service
Discovery Architecture,” Proceedings of ICDE 2007,
pp. 1360-1364, Apr. 2007.

[9] T. Yu, Y. Zhang and K. J. Lin, “Efficient Algorithms
for Web Services Selection with End-to-End QoS
Constraints,” ACM Transactions on Web, vol. 1, iss. 1,
May 2007.

[10] N. Srinivasan, M. Paolucci and K. Sycaral, “CODE: A
Development Environment for OWL-S Web services,”
Proceedings of ISWC 2004, Hiroshima, Japan, Nov.
2004.

