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Abstract

Interconnection networks have been widely dis-

cussed in recent days, and usually represented as

undirected graphs. One of the most important prop-

erties of graphs is the connectivity, which is defined

as the minimum number of vertices removed from a

graph resulting in a disconnected graph or a graph

containing a single isolated vertex. A famous theo-

rem by Menger [4] pointed out the equivalence of the

minimum size of an x, y-cut and the maximum num-

ber of pairwise internally disjoint x, y-paths for some

nonadjacent vertices x, y in a graph. After that, Oh

and Chen [5] extended this concept to introduce the

property called strongly Menger connectivity, which

describes that, with some faulty vertices, the num-

ber of x, y-paths is the minimum remaining degree

of them. In this paper, we focus on a recursively

constructed interconnection network, the bubble-sort

graph. We prove that in an n-dimensional bubble-

sort graph Bn with at most n − 3 faulty vertices, it

is strongly Menger-connected.

1 Introduction

With the rapid development of technology, intercon-

nection networks have been widely discussed in recent

days. As in customary, we view the architecture of

the underlying interconnection networks as graphs.

An undirected graph G = (V,E) is usually used rep-

resenting a network, where V (G) stands for the set

of all processors and E(G) stands for the connecting

links between the processors.

The connectivity is an important property of inter-

connection networks. A subset S of vertices V (G) in

a graph G is a cut set if the induced subgraph G−S is

disconnected. The connectivity of G is defined as the

minimum size of a vertex cut if G is not a complete

graph, and that is defined as the number of vertices

minus one if otherwise. We say that a graph G is

k-connected if k is not larger than its connectivity.

Following the concept of connectivity, a classical

theorem was proposed by Menger stating the rela-

tionship of an x, y-cut and the number of pairwise

internally disjoint x, y-paths for some nonadjacent

vertices x, y in a graph G. The usefulness of this

Menger-connectivity has been stated on some appli-

cations. In 2004, Dekker et al. [3] stressed the re-

lationship between vertex connectivity and network

symmetry, along with a network design and analysis

tool called CAVALIER, to assist with the process of

designing robust networks. In 2006, Peserico et al. [6]

gave a rigorous formalization of the intuitive notion of

“hole” in a graph, and characterizes networks where

connectivity depends on the “big picture” structure

of the network, and not on the local “noise” caused

by faulty or imprecisely positioned vertices and links.

Based on the basic definition of Menger-

connectivity, Oh and Chen gave an enhancement of

it, which was named as the strong Menger connectiv-

ity.

Theorem 1. [4] Let x and y be two distinct vertices

of a graph G and (x, y) /∈ E(G). The minimum size

of an x, y-cut equals the maximum number of pairwise

internally disjoint x, y-paths.

Definition 1. [5] A k-regular graph G is strongly

Menger-connected if for any subgraph G − F of

G with at most k − 2 vertices removed, each

pair of vertices u and v in G − F are connected

by min{degG−F (u), degG−F (v)} vertex-disjoint fault-

free paths in G−F , where degG−F (u) and degG−F (v)

are the degree of u and v in G − F , respectively.

In order to be consistent with Definition 1,

we say that a graph G possess the strongly
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Menger-connected property with respect to a ver-

tex set F if, after deleting F from G, there are

min{degG−F (u), degG−F (v)} vertex-disjoint fault-

free paths connecting u and v, for each pair of ver-

tices u and v in G−F . We also call a graph “strongly

Menger-connected”, and omit the description of the

remaining structure G−F of the graph, if there is no

ambiguity.

Among all well-known topologies, the bubble-sort

graphs, which belong to the class of Cayley graphs

generated by a transposition tree, have been attrac-

tive alternative to the famous hypercubes. They have

some good topological properties such as highly sym-

metry and recursive structure. The n-dimensional

bubble-sort graph Bn has n! vertices, and is vertex

transitive. The connectivity of Bn is n − 1 and the

diameter is n(n−1)
2 . The formal definition of bubble-

sort graphs is stated below, and the example of the

bubble-sort graphs of dimension 2, 3, and 4 are shown

in Fig. 1.

Definition 2. [1] The n-dimensional bubble-sort

graph Bn has vertex set that consists of all n! per-

mutations on {1, 2, ..., n}. A permutation x on

{1, 2, ..., n} is denoted as x = x1x2...xn. A vertex

x is adjacent to x(i) = x1...xi−1xi+1xixi+2...xn for

all 1 ≤ i ≤ n − 1.

In this paper, we extend the connectivity result of

Bn further, which has been proved that the connec-

tivity of an n-dimensional bubble-sort graph Bn is

n−1. We shall study the strongly Menger-connected

property of Bn with at most n − 3 vertices deleted.

That is, an n-dimensional bubble-sort graph Bn with

at most n − 3 faulty vertices is strongly Menger-

connected.

2 Preliminaries

In the next section, we are going to prove that the

n-dimensional bubble-sort graphs Bn are strongly

Menger-connected if there are at most n−3 faulty ver-

tices. Before proving this main result, we need a crit-

ical lemma, which implies that every n-dimensional

bubble-sort graph with no more than 2n − 5 vertex

faults, still contains a large connected component.

A recent research paper discussed what happens

when the number of faults in the Cayley graph gen-

erated by a transposition tree is linear in the degree.

Note that the set of bubble-sort graphs is a subset of
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Figure 1: The bubble-sort graphs B2, B3, and B4.

the Cayley graphs generated by a transposition tree,

that is, the bubble-sort graphs are special cases of

Cayley graph. The disconnection status of removing

some vertices is shown in the next theorem.

Theorem 2. [2] Let Γn(S) be a Cayley graph gener-

ated by a transposition tree G(S). If T is a set of ver-

tices with |T | ≤ k(n−1)− k(k+1)
2 , where 1 ≤ k ≤ n−2,

then Γn(S)−T has one large (connected) component,

and the remaining small components have at most

k − 1 vertices in total.

If the number k equals 2, we can rewrite this theo-

rem with respect to the terminologies of bubble-sort

graphs as the next lemma.

Lemma 1. Let Bn be an n-dimensional bubble-sort

graph, and F be a set of vertices in Bn with |F | ≤

2n − 5. Either the induced subgraph Bn − F is con-

nected, or Bn − F has two components one of which

is an isolated vertex.

Proof. This lemma follows trivially from Theorem

2 when k = 2. 2

By replacing a faulty vertex by a faulty edge, a

similar result is shown below.

Lemma 2. Let Bn be an n-dimensional bubble-sort

graph, ef be an edge in Bn, and Fv be a set of vertices
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in Bn with |Fv| ≤ 2n−6. Either the induced subgraph

Bn − Fv − {ef} is connected, or Bn − Fv − {ef} has

two components one of which is an isolated vertex.

Proof. Since |Fv| ≤ 2n − 6, the induced sub-

graph Bn − Fv is either connected or with two com-

ponents one of which is an isolated vertex, according

to Lemma 1 (2n− 6 < 2n− 5). Now we consider the

two situations step by step, and check the result after

deleting the faulty edge ef in graph Bn − Fv.

For the first situation, suppose Bn − Fv has two

connected components, and one of which is a single

isolated vertex. As we know, deleting a vertex from

a graph generates less number of edges than that of

deleting an edge from a graph. So deleting one end of

edge ef from graph Bn −Fv will result in a subgraph

of less number of edges than just deleting edge ef . Let

ef = (u, v). Arbitrarily choose one end of ef , without

loss of generality the vertex u, we get the result |Fv ∪

{u}| ≤ 2n − 5. By Lemma 1, the induced subgraph

Bn−Fv −{u} also contain one connected component

and one isolated vertex. So does the graph Bn−Fv −

{ef}.

For the second situation, suppose Bn − Fv is con-

nected. If Bn − Fv − {ef} is connected, the proof

is completed. Otherwise, let Cu, Cv be two com-

ponents of Bn − Fv − {ef}, and ef = (u, v) where

u ∈ Cu, v ∈ Cv. Without loss of generality, assume

|V (Cu)| ≤ |V (Cv)|. Since |Fv ∪ {v}| ≤ 2n − 5, ei-

ther the subgraph Bn − Fv − {v} is connected, or it

contains one connected component and one isolated

vertex, according to Lemma 1. Because the num-

ber of edges in Bn − Fv − {v} is less than that of

Bn − Fv − {ef}, either Bn − Fv − {ef} is connected

or Bn −Fv −{ef} has two components, one of which

is a single isolated vertex. 2

So far, the preparation for our main theorem has

been set up. In the next section, the strong Menger

connectivity of bubble-sort graphs will be retrieved

consequently.

3 Strong Menger Connectivity

on the Bubble-sort Graphs

Theorem 3. Let Bn be an n-dimensional bubble-

sort graph, and let F be a set of faulty vertices with

|F | ≤ n − 3. Each pair of vertices u and v in Bn −

F are connected by min{degBn−F (u), degBn−F (v)}

vertex-disjoint fault-free paths, where degBn−F (u)

and degBn−F (v) are the remaining degrees of u and

v in Bn − F , respectively.

Proof. Let u and v be two fault-free vertices

in Bn − F , where F is a set of faulty vertices

with |F | ≤ n − 3. Firstly, assume without loss

of generality that degBn−F (u) ≤ degBn−F (v), then

min{degBn−F (u), degBn−F (v)} = degBn−F (u). In

this proof, we will show that u is connected to v

if the number of vertices deleted is smaller than

degBn−F (u) − 1 in Bn − F . By Theorem 1, this im-

plies that each pair of vertices u and v in Bn −F are

connected by min{degBn−F (u), degBn−F (v)} vertex-

disjoint fault-free paths, where |F | ≤ n − 3.

There are two situations we must consider: either

vertices u and v are nonadjacent or they are adjacent.

Considering the first situation, vertices u and v are

not adjacent. For the sake of contradiction, suppose

that u and v are separated by deleting a set of vertices

Vf , where |Vf | ≤ degBn−F (u)− 1. As a consequence,

|Vf | ≤ n − 2 because that degBn−F (u) ≤ deg(u) ≤

n − 1. Summing up the cardinality of these two sets

F and Vf we get |F |+ |Vf | ≤ 2n−5. Let S = F ∪Vf .

By Lemma 1, it implies that in subgraph Bn − S,

(i) either there is only one connected component, or

(ii) there are two components, one of which contains

only one isolated vertex. If Bn − S is connected, it

contradicts to the assumption that u and v are dis-

connected. Otherwise, if Bn −S has two components

and one of which contains only one vertex x. Since

we assume that u and v are separated, one of u and

v is the vertex x, say u = x. Thus, the set Vf must

be the neighborhood of u and |Vf | = degBn−F (u),

which is also a contradiction. (Remind that actually

|Vf | ≤ degBn−F (u) − 1.) Then, u is connected to v

when the number of vertices deleted is smaller than

degBn−F (u) − 1 in Bn − F .

Considering the second situation, vertices u and

v are adjacent. We need to show that u is con-

nected to v if the number of vertices deleted is smaller

than degBn−F (u) − 2 in Bn − F − {(u, v)}. Suppose

on the contrary that in Bn − F − {(u, v)}, u and v

are separated by deleting a set of vertices Vf , where

|Vf | ≤ degBn−F (u) − 2. Since degBn−F (u) ≤ n − 1,

we get |Vf | ≤ n − 3. Then the union set S of F and

Vf has cardinality |S| = |F | + |Vf | ≤ 2n − 4. In this

circumstance, Lemma 2 implies either that (i) Bn −

S−{(u, v)} is connected or that (ii) Bn−S−{(u, v)}

has two components one of which is an isolated ver-

tex. For the first situation, that Bn − S − {(u, v)} is
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connected is a contradiction to the assumption that

u and v are separated in Bn − F − {(u, v)}. For the

second situation, the single isolated vertex must be u

or v, and we without loss of generality let u be such

vertex. In Bn −F − {(u, v)}, in order the make u an

isolated vertex, the number of vertices deleted must

be greater or equal to degBn−F (u)− 1 = n− 2. How-

ever, |Vf | ≤ n−3, which is a contradiction. So u and

v are connected when the number of vertices deleted

is smaller than degBn−F (u)− 2 in Bn −F −{(u, v)}.

The proof is complete. 2

As a short conclusion, we have proved that in an n-

dimensional bubble-sort graph Bn with a set of faulty

vertices F where |F | ≤ n − 3, the number of vertex-

disjoint fault-free paths between each pair of vertices

u and v is the minimum remaining degree of them.

In other words, bubble-sort graphs are proved to be

strongly Menger connected.
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