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Abstract
As services of WWW popularize and evolve, the

capability of servers is highly concerned for conforming
to modern and future requirements. The cluster-based
web system is one of the solutions to meet the above
requirements. Recently, in this cluster-based web system,
content-aware request distribution policies become an
important issue to effectively dispatch requests from
clients to servers.

In this research, we propose a new dispatching
policy named LARD/FR which improves from the
well-known LARD/R policy. LARD/R policy allows a set
of the back-end servers (server set) to serve the same
target web object to increase the cache-hit ratio of

back-end servers. By using a frequency-based
mechanism, LARD/FR achieves higher cache hit rates of
servers than LARD/R. We have implemented the
proposed distribution policy on our LVS-CAD platform
and practical experiments show it outperforms some
other content-aware request distribution policies.

Keywords: Web Cluster, Content-aware Request
Distribution.

1. Introduction

Due to the rapid growth of Internet activities,
servers must be capable to handle heavy demand with
the constraint of costs. There should be a scalable way to
construct a set of cost-effective servers and service
should be provided in a condition of 24x7 availability.
Moreover, such a system should be manageable for
administrators. Cluster-based web system is a solution to
meet the above requirements. It consists of a front-end
server and multiple back-end servers. A front-end server
is also called web-switch that is responsible for
distributing requests to the back-end servers. Back-end
servers receive the packets from front-end server and
actually handle those requests from clients.

When it comes to the issue of load balance in the
cluster-based web system, there are two different

platforms for this purpose. One is called content-aware
platform [1] employing a layer-7 web switch, the other is
called content-blind platform [1] employing a layer-4
web switch. Packet distribution of a layer-4 switch
depends on the information of TCP/IP. In the other sides,
packet distribution of a layer-7 switch depends on the
information of HTTP content.

Some web clusters operates in content-blind
platforms which employ a layer-4 web switch. However,
it does not meet the requirements while the cluster needs
to provide different quality of services or to dispatch
requests based on request contents (i.e. URI). In contrast,
a content-aware web cluster does. In such a cluster
system, a layer-7 web switch distributes requests
according to the request contents. Those contents can be
important information for reaching better load balance
among back-end servers. This difference from a layer-4
cluster allows system resources to be used more
effectively.

There are some content-aware distribution policies
which achieve load balance and high cache hit rates of
servers, such as LARD [2], LARD/R [2], CAP [3],
WARD [4], CWARD [5]. Nevertheless, when it comes to
these issues, the above policies do not focus on the
influence of access frequency of each web file. We
believe that the frequency-based mechanism could
utilize the whole system resources of a web cluster more
effectively. In this research, we have proposed a new
content-aware request distribution policy named
LARD/FR and implemented it in the LVS-CAD web
cluster [6]. This policy bases on the LARD/R policy
while adopting a frequency-based mechanism to
determine whether a back-end server should be added
into a server set to serve specific requests which occur
frequently.

The experimental results from practical
implementation on Linux show that the proposed
LARD/FR policy outperforms the well-known Weighted
Round-Robin (WRR), LARD, and LARD/R policies.

2. Background and related work



This section introduces the LVS-CAD that uses TCP
Rebuilding mechanism and fast handshaking mechanism
to enable content-aware request dispatching. Finally, we
introduce some content-based request distribution
policies.

2.1. LVS-CAD web cluster

In our previous work [6], we have implemented a
content-aware dispatching platform called LVS-CAD
based on Linux Virtual Server (LVS) [7], which is a set
of independent Linux-based servers acting as a single
server to serve requests from clients.

In this platform, we apply TCP Rebuilding
mechanism on each back-end server and fast
handshaking mechanism on the front-end server. In the
LVS-CAD platform, the front-end server can use not
only content-aware dispatching policies, but also various
content-blind dispatching policies of LVS. The
IPVS-CAD module is modified from IPVS module in
LVS system to apply fast handshaking mechanism. The
fast handshaking mechanism can perform three-way
handshaking with clients at IP layer instead of TCP layer
so that it is more efficient than the ordinary three-way
handshaking.

2.2. Content-based request distribution policies

There are several existent content-based request
distribution policies such as locality-aware request
distribution (LARD) [2], workload-aware request
distribution (WARD) [4], content-based workload-aware
request distribution (CWARD) [5], and the
content-aware dispatching policy (CAP) [3].

The Locality-Aware Request Distribution (LARD)
[2] is a content-based request distribution method
which aims at simultaneously achieving load balancing
and high cache hit rates in back-end servers while
improving the performance of cluster-based web system.

LARD has two variant strategies to accomplish the
goals: basic LARD and LARD with Replication
(LARD/R) [2].The basic LARD always assigns one
back-end server to serve the target data. In the beginning,
while the front-end server gets the request, it chooses the
least-loaded back-end server from all the back-end
servers and then maps the request to this back-end server.
If the target of the subsequent request has already been
mapped to one of the back-end servers, the front-end
server would forward the request to the back-end server
which has served the target previously. In addiction, if
the back-end server which serves the target is overloaded,
the front-end server will selected another least-loaded
back-end server to serve this request and the following
identical requests will also be sent to the new selected
back-end server.

Figure 1 illustrates the operation of LARD with
the assumption of two back-end servers and three types
of target web objects A, B, and C. The first back-end
server has served the target A previously and the second
back-end server has served the target B and C previously.
Both back-end servers are not overload. The front-end
server routes the requests for target A to the first
back-end server which serves target A, whereas it routes
the requests for targets B and C to the second back-end
server which serves target B and C.
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Figure 1. Locality-aware request distribution

The basic LARD only assigns a single back-end
server to serve the target web object. This may result in
the overload of some servers that serve frequently
accessed web objects. In order to avoid the problem, the
variant strategy, LARD with Replication (LARD/R), was
developed. LARD/R allows a set of the back-end servers
to form a server set to serve the same target web object.
The front-end server maps the request to the back-end
server which is the least-loaded one in the target server
set.

Workload-Aware Request Distribution (WARD)
tries to takes workload into account in dispatching
requests. WARD identifies a small set of files called core
which is requested most frequently, and the core file can
be served by all back-end servers. The rest of files called
part are equally partitioned and served by different
back-end servers.
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Figure 2. Workload-aware request distribution

As shown in Figure 2, if a client’s request belongs
to the core file (e.g. target A), any server can serve this
request. However, if the request belongs to the part files
(e.g. target B and C), it would be dispatched to the
back-end server which is responsible for serving this
requested file. If the subsequent request can not be
served by the current server, TCP handoff is needed to



handoff the TCP connection to the proper server for
handling the request. In Figure 3, we assume the target B
is served by the back-end server 2 and the target C is
served by the back-end server 1. When the back-end
server 2 receives a target C request, it will handoff the
TCP connection to the back-end server 1 which is
responsible for serving the target C.

For a server cluster, performance would be poor if
there are too many TCP handoffs. WARD can minimize
the overhead by serving each request for core files
locally on each cluster server. WARD also tries to
minimize the overhead by maximizing usage of the
servers’ RAM to cache core files and a portion of
partitioned files.

The goal of Content-based Workload-aware Request
Distribution (CWARD) is to achieve higher cache hit
rates in back-end servers and utilize system resource
more effectively. CWARD adopts WARD like strategy
and pre-fetches a small set of most frequently accessed
files into servers’ RAM to increase the performance of
the whole web cluster. The method of pre-fetching files
could decrease times of data transferring between RAM
and disk when back-end servers handle requests.

The main goal of Client-Aware Policy (CAP) is to
improve load sharing in web cluster providing multiple
classes of services. CAP classifies requests into four
classes, namely normal (N), CPU bound (CB), disk
bound (DB), and disk and CPU bound (DCB) services.
Then, round-robin policy is used to dispatch requests in
each class to balance the load for each class of services
in back-end servers. Therefore, this policy can equally
distribute workload of each class among back-end
servers.

Figure 3 illustrates an example of CAP policy. The
front-end server dispatches requests to the back-end
servers according to the four classes with the
round-robin policy. The processing order is shown in
each server from right to left.
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Figure 3. Client-aware policy

3. Proposed LARD with frequency-based
replication policy

In this section, we present the design and
implementation of LARD/FR policy. The conception of

the policy is that more frequent the target data accesses,
more servers work for it. The access frequency can be
used to define hot web files as web files accessed
frequently and cold web files as web files accessed
infrequently. Keeping those hot file in RAM of back-end
servers is important to optimize use of the whole web
system.

For categorizing those hot files and cold files, the
front-end server has to calculate the access frequency of
each web file. Nevertheless, over complicated
algorithms cause the overhead of the front-end server to
slow the web system down.

To calculate the access frequency, we can set a timer
to measure access time of each web file during a
constant time, but the method wastes much power of
front-end server on scanning all web files for calculating
access frequency of each web file. Therefore, we replace
access time of each web file with access time of identical
requests. Access frequency of an identical request is
calculated by analyzing how many identical requests
have been received in the past period of time when the
front-end server receives the request. By this way, the
front-end server could easily know the access frequency
of the identical request.

3.1. Design and implementation

The most important issue is to determine whether the
requested web file has been frequently accessed in the
past period of time. We devise the following equation in
Figure 4 to determine whether the web file is frequently
accessed.
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Figure 4. Illustration of LARD/FR threshold
equation

In this equation, TQ means the time span to calculate
the access frequency and the Ci is the time span between
two identical requests’ arrival time. R is the requested
web file of a request and the ServerSet(R) is the number
of back-end server which serves the web file R.

The scheme works by setting N to a constant before
front-end server begins to run. Then, the front-end server
set a variable to zero and use it for counting the number
of times that identical requests occurs. When the variable
reaches N, the front-end server checks the equation. If
the equation is true, we can know that (N+1) identical
requests have arrived within the time span
TQ/|ServerSet(R)|. Therefore, more back-end server will
serve a web file when the web file is more frequently
been accessed.



An example of calculating the access frequency of a
web file for a period of time is shown in Figure 5. Each
node represents an arrival of a request. Ti is defined as a
request’s arrival time and Ci is the time span between Ti
and Ti+1. TQ is the time quantum used to limit the time
range for summing up requests’accessed times. We set N
as the access threshold that determines whether this
requested web file is frequently accessed and needs to
add another back-end server into the server set for
serving this request. When a request arrives, the
front-end server will check whether the equation is true.
If it is true, the front-end server will add another
least-loaded back-end server to the server set of the
request which means that this request has been received
more than (N+1) times within the past period of time
TQ/|ServerSet(R)|. If many identical requests have
arrived in the span of time TQ/|ServerSet(R)|, it means
the requested file is a hot file (i.e. frequently accessed
web file). Then, the variables used to calculate the access
frequency of the request will be reset, otherwise the
equation will always be true and the front-end server will
insert a back-end server into the server set of this request
when a following identical request arrives. In Figure 5,
we set N to 2. When the request T3 has arrived, the
equation becomes true which means the accessed web
file is a frequently accessed file. The front-end server
then adds one least-loaded back-end server to the
request’s server set and resets the related variables for
calculating the access frequency.
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Figure 5. Illustration of LARD/FR policy with the
condition of frequently accessed web file

Another example is illustrated in Figure 6. When the
request T3 has arrived, the equation is not true and the
time quantum TQ/|ServerSet(R)| has expired. In this
condition, it means the front-end server resets the
variables for calculating the access frequency again,
otherwise the equation will always be false.

In Figure 6, when the request T3 has arrived, the
equation is false and the time quantum TQ/|ServerSet(R)|
has expired. This condition means the front-end server
resets the variables for calculating the access frequency
again, otherwise the equation will always be false.
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Figure 6. Illustration of LARD/FR policy with the
condition of not frequently accessed web file

In our implementation of LARD/FR, we have to
calculate the access frequency of each web file. As
shown in the previous section, several Ci are summed up
to determine if the Equation shown in Figure 4 is true. In
our practical implementation, we can just subtract T(n+1)

from T1 to get the summation of Ci. Therefore, we do not
record every time span of Ci. The front-end server only
records the T1 as the start time to calculate the access
frequency when each request arrives.

fetch request r
odst current connected back-end server
// record the file’s accessed number
increase the r’s target accessed number by one
if (|serverset[r.target]| = 0) //have not been served before

dst, serverset[r.target] least-loaded server
set the r’s starttime to now

else
dst least-loaded server in serverset[r.target]
if (time() - r’s starttime <= TQ/|serverset[r.target]|) and (r’s

accessed number >= N)
// frequently accessed web object
dst , serverset[r.target] least-loaded server
// reset variables
reset the r’s accessed number to zero and starttime to now

if (time() - r’s starttime > TQ/|serverset[r.target]|)
// reset variables
reset the r’s accessed number to zero and starttime to now
if (|serverset[r.target]| > 1)

mdst most-loaded server inserverset[r.target]
remove mdst from serverset[r.target]

// consider the multi-handoff cost
if (odst != dst) && (odst ∩ serverset[r.target])

if (odst.activeconns - dst.activeconns <= P)
dst odst

send r to dst

Figure 7. Pseudo code of LARD/FR



Figure 7 presents the pseudo code of LARD/FR. If
the web file is the first time to be accessed, the front-end
server would dispatch the request to the least-loaded
back-end server and records the arrival time as the start
time. When a web file has been accessed more than N
times within a time quantum TQ/|ServerSet(R)|, the
front-end server will insert a least-loaded back-end
server to the server set.

In order to obtain the best performance, we also try
to reduce the multi-handoff in our LARD/FR policy
when it chooses one back-end server for serving the
request within a persistent connection. The P is used to
determine whether the front-end server has to handoff
the request to a new back-end server.

In addition to add a back-end server into a server
set, to remove a back-end server from a server set is also
necessary. We simply remove the most-loaded back-end
server from a server set if the request’s server set
contains more than one back-end server and time
quantum TQ/|ServerSet(R)| has expired, which means
this web file is not a frequently accessed file and the
number of the back-end servers in the server set of this
request should be reduced as well.

4. Experimental evaluation

In this section, we present performance evaluation
of our proposed LARD/FR policy in Linux kernel 2.6.

In our experiments, web cluster includes eight
back-end servers and one front-end server. Besides, ten
computers are used as clients and each client runs httperf
[8] benchmark to generate requests for testing the web
cluster. All computers are connected by a ZyXEL
Dimension GS-1124 switch. The hardware and software
environment are shown in Table 1.

Table 1. Hardware and software environment

Item Front-end Back-end Client

Processor Intel P4 3.4G Intel P4 3.4G Intel P4 2.4G

Intel P3 800MHz

Memory DDR 512 MB DDR 256 MB DDR 256 MB

NIC

(Mbps)

Intel Pro
100/1000

Intel Pro
100/1000

Reltek RTL8139

Intel Pro 100/1000

D-Link DGE- 530T

OS / kernel Gentoo Linux/
2.6.18

Gentoo Linux/
2.6.18

Gentoo Linux/
2.6.18

IPVS 1.0.4 / 1.21 X X

Web
Server

X Apache 2.0.40
Apache 2.0.58

X

Benchmark X X httperf

Number of
PCs

1 8 10

We adopt trace log named WorldCup98 trace log [9]
and used only six the requests on the day July 12, 1998
from AM 09:00 to PM 03:00. In this span of time, there
were 1,974,360 requests accessed and totally 10,562
files accessed on clusters. The average file size is 161
Kbytes and the maximal file size is 2,824 Kbytes.

In the experiment of Figure 8, we compare the
throughput of LARD/FR under different setting of TQ
(time quantum) and N values with that of LARD, and
LARD/R policies. There are ten clients generating
requests under persistent connection, and each
connection contains ten requests. As mentioned in
Section 3, we have to set the TQ and N values in the
Equation in Section 3.1. In this experiment, we set the N
variable to 10. If a web file been accessed more than 10
times within TQ seconds, it is a frequently accessed web
file. Then, we adjust the TQ variable to various values.
Figure 8 shows that our LARD/FR outperforms LARD
and LARD/R policies. The reason that LARD/FR policy
performs better than LARD/R policy is because the
LARD/FR policy uses frequency-based mechanism to
achieve high cache rates of servers.

Figure 8. Performance of LARD/FR in variance
parameter

Next we present the scalabilities of various request
dispatching policies on cluster platforms. Figure 9 our
proposed LARD/FR policy can obtain best throughput
and outperforms LARD/R policy and WRR policy.

Finally, we want to know the maximal throughput
the LARD/FR in LVS-CAD and Weighted Round-Robin
(WRR) in LVS can achieve when the web clusters are
under heavy load. Therefore, we adjust the request
sending rate of httperf benchmark to send requests. The
results are shown in Figures 10 and 11.

Experimental results demonstrate that the
content-aware LARD/FR policy can achieve much
higher throughput than the content-blind WRR policy. In
our experiments, the throughput of LARD/FR policy can
achieve up to 19239.9 requests per second, whereas the
WRR policy can achieve up to only 5719 requests per



second. As a result, when the web cluster is under heavy
load, the LARD/FR policy can handle almost four times
of the requests per second than that of the WRR policy.
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policies and platforms
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Figure 10. Maximal throughput of LARD/FR policy
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Figure 11. Maximal throughput of WRR policy

5. Conclusions

We have designed and implemented the
frequency-based LARD/FR algorithm which improves
the well-known content-aware LARD/R policy. In
LARD/FR policy, frequently accessed web files will be
served by more back-end servers. Our experimental
results show that our proposed LARD/FR policy can get
better throughput than the well-known WRR, LARD and
LARD/R policies. Even when the web cluster is under
heavy load condition, the proposed content-aware
LARD/FR policy can achieve almost four times more
throughput than the content-blind WRR policy.
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