
 1

Three Methods of Control Flow Obfuscation on Java Software

Ming-Hsiu Tsai, Hsiang-Yang Chen, Ting-Wei Hou
Department of Engineering Science,

National Cheng Kung University, Republic of China
 mingshu@nc.es.ncku.edu.tw i14248@mail.hku.edu.tw hou@nc.es.ncku.edu.tw

Abstract-A defense against reverse engineering is
obfuscation, a process that renders software
unintelligible but still functional. Our goal is to let all
known decompilation techniques fail to decompile Java
programs and lower the re-engineering level to
assembly language (bytecode). We design three new
obfuscation methods for protecting Java code. Our new
designed techniques are named as “destroying basic
block obfuscation”, “replacing goto obfuscation” and
“intersecting loop obfuscation”. We use 16 different
available decompliers to examine and compare our
obfuscations. As the result, both the “replacing goto
obfuscation” and the “intersecting loop obfuscation”
could succeed to defeat all the decompilers.

KEYWORD：reverse engineering attacks, obfuscation,
Java, decompiler

1. INTRODUCTION

Since the Java decompiler appeared [1], the threat of

reverse engineering becomes worth-noticing. The Java
language was designed to compile into a platform being
independent bytecode format. Much of the information
contained in the source code remains in the bytecodes,
which means that the decompilation is easier than the
traditional native code. Today, it is not a secret that Java
programs can be easily decompiled and
reverse-engineered from Java bytecode to Java source
code [2].

A defense against reverse engineering is obfuscations.

Obfuscation is a process that it keeps the program’s
semantics but makes the program difficult to decompile.
The design of obfuscations is to prevent from the theft
of intellectual property by making it unable to derive
usable source code from bytecode. Obfuscating
transformations can be applied automatically to a
program by a tool called an obfuscator. Using the
obfuscator to protect intellectual property for Java
commercial software is very important. Obfuscations
have become a critical to commercial software
licensing.

In figure 1-1,the types of obfuscation techniques are

as follows [3] [4]:

Figure 1-1. Types of obfuscations.

Lexical obfuscations modify the lexical structure of

the program. Typically, they do nothing more then
scramble identifiers. All meaningful symbolic
information of a Java program, such as classes, fields,
and method names are replaced with meaningless
information, such as Crema [5] Java obfuscator.

Data obfuscations modify the program data fields.

For example, it is possible to replace an integer variable
in a program with two integers.

Control obfuscations make thieves difficult to

understand the control flow in individual program
functions [6][7]. One example, the opaque predication,
uses conditional instructions whose predication always
evaluates true or false. The branch of such a condition
that is always taken will contain a meaning code, while
the other branch will contain an arbitrary code.

Layout obfuscations involve obscuring the logic

inherent in splitting a program into procedures. One
approach is to perform in -line expansion of a procedure
in all places where the procedure is called.

1.1 Control Flow Obfuscation categories

Our study was about control obfuscations. Figure 1-2
introduces their categories [7].

Figure 1-2. The categories of Control flow

obfuscation.

Control Aggregation obfuscations change the way in

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

318

 2

which program instructions are grouped together.
Inlining and outlining are one of the most effective
ways in which methods and method invocations can be
obscured.

Control ordering obfuscations change the order in

which instructions are executed. For example, loops
can sometimes be made to iterate backwards instead of
forwards.

Control computation obfuscations hide the real

control flow in a program. For example, instructions
that have no effect can be inserted into a program.

1.2 Control Computation Flow Obfuscation

Control computation obfuscations fall into the three
categories in Figure 1-3 [7].

Figure 1-3. Control computation obfuscation

categories.

Smoke and Mirrors obfuscations are to hide the real

control flow behind instructions that are irrelevant.
Inserting dead code into a program is an example.

High-Level language breaking obfuscations introduce

features at the object code level that has no direct
source code equivalent. For example , Java does not
have the goto statement. Inserting goto instructions at
bytecode level can make decompilers unable to find
suitable flow graphs.

Alter control flow obfuscation is the process of taking

a sequence of low-level instructions and forming an
equivalent description at a higher level. It can remove
abstraction from the program. For example , a for-loop
in the C language source code can be changed into an
equivalent loop that uses “if” and “goto” statements.

2. Design methods

Now, most obfuscators on the market adopt lexical

obfuscation. The lexical obfuscated programs still can
be decompiled to high-level language easily. Reverse
engineering attacks for dealing with low-level language
is harder, so software will be protected better. Therefore,
the goal of our approach is to have some new control
flow obfuscation techniques that the decompilers
cannot decompile obfuscated programs. The attacker

will not get the correct Java source code.

We first discuss the notion of the opaque predicate,

which is an important element of many control flow
obfuscations. As figure 2-1 shows, if its outcome is
known false at execution time, an opaque predication is
F. If its outcome is known truth at execution time, an
opaque predication is T.

F T
F T

F T TF

Figure 2-1. The notion of different types of opaque

predicates.
(Solid lines indicate paths that may sometimes be
taken, dashed lines paths that will never be taken.)

We design three kind methods of obfuscations to

protect Java bytecode. Our new techniques are named
as destroying basic block obfuscation, replacing goto
obfuscation and intersecting loop obfuscation. We
describe the three methods in the following sections.

2.1 Destroying Basic Block Obfuscation

A basic block is a sequence of instructions with single
entry point and an exit point. Here we find five types of
basic block in Java bytecode, as shown in Figure 2-2. If
these basic blocks are destroyed, it will make
decompiling unsuccessful.

Figure 2-2. Five types of basic blocks.

The destroying basic block obfuscation must insert

destroyed instructions in front of the last instruction of
every basic block. For example, the basic block
“Load，Load，Load，Array_Store”, inserts destroyed
instructions between the last “Load” and “Array_Store”.
The destroyed instructions are like conditional branch
instructions and goto instructions. Figure 2-3 shows the
destroying basic block obfuscation . The technique must
take care of the goto instructions. The goto instructions
must be located after the basic block and it is not in the
basic block. Only in this way, the decompiler which
using pattern matching technique will fail.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

319

 3

a

b

c

a

b

c
b r e a k

F

d

d

o

p

q

g o t o

T
F

Figure 2-3. The destroying basic block obfuscation.

(Gray blocks are added additional instruction. F is
an opaque predicate.).

2.2 Replacing Goto Obfuscation

The Java language has no goto statement, but the Java

bytecode instruction set does have a goto instruction.
The replacing goto obfuscation is to replace goto
instructions into conditional branch instructions. It
makes control flow complicated and decompiler fails.
Figure 2-4 is the obfuscated process of the replacing
goto obfuscation.

goto i f

obfuscate

 int count = 0 ;
 for (int i = 1; i <= 100; i++)
 count += i ;

 int a = ... ; // var. 'a' must be zero
 int i = 0;
 int j = 1;
 if(a == 0) goto _L2; else goto _L1
_L1:
 i += j;
 j++;
_L2:
 if(j > 100) return i;
 if(true) goto _L1; else goto _L3
_L3:

decompilecompile (javac)

(a)

(b) (c)

(d)

Figure 2-4. The obfuscated process of the replacing

goto obfuscation

Figure 2-5 shows two simple obfuscation examples.

Example 1 uses constant zero value to be a conditional
branch, which always jump to Label1. But this kind of
code would be removed out and returns to a goto
instruction easily by an optimizer. So, example 2 is
better. Of course, the local variable of example 2 must
store zero value. In other words, a determined value of
a conditional branch must not influence the original
flow of a program segment; hence this is a fake

conditional branch. However, this is a real conditional
branch for a decompiler. The compiler just cannot
distinguish its real function.

(1)

goto Label1 è iconst_0
 ifeq Label1

(2)
goto Label1 è iload 1

 ifeq Label1

Figure 2-5. Two examples of Replacing Goto
Obfuscation.

Table 2-1 is a program segment of calculating

Boolean values. The goto instruction (pc=7) can be
replaced into a conditional branch instruction in Table
2-1. If we didn’t add compensated instructions, it will
make stack state consistent, shown as in Table 2-2.

Table 2-1. un-obfuscated program includes goto

instruction.

In Table 2-1, after the goto instruction (pc=7) is
executed, it has an integer item in stack. Before next
instruction iconst_1 (pc=10) being executed, it has not
any item in stack. The one before iconst_1 instruction
(pc=10) is a goto instruction (pc=7); the two
instruction’s states of the stack are not related. So, the
stack’s state has no problem between goto and iconst_1
in Table 2-1.

But, if the goto instruction (pc=7) is replaced by a

conditional branch instruction, it will make stack’s state
inconsistent. In Table 2-2, after ifeq condition branch
instruction being executed (pc=9). It had two running
paths of the program flow. One path was matched
conditional value to jump istore4 (pc=13), that it
produces the state of stack 1. The other path was not
matched conditional value to execute the next
instruction; it produces the state of stack 2. But these
two stack’s states are not consistent between ifeq (pc=9)
and iconst_1 (pc=12).

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

320

 4

Table 2-2. The stack of the replacing goto obfuscation
without compensated instructions.

 So, when it occurs that the stack after executing a

goto instruction is not consistent with the stack before
executing next instruction, compensation instructions
must be added to remain consistent for two stack’s
states.

Table 2-3 Stack includes object reference.

Table 2-3 is a part of the program. The most

important part of instructions includes some object
references in the stack. In Table 2-3 after executing the
goto instruction (pc=74), the stack’s content is “[ref, int,
ref]”. Before executing the next instruction “aload”
(pc=74), the stack content is ”[int, ref]”. After
obfuscating, it means that the compensation instruction
for stack is to pop a ‘[ref]’. In practice, object pointers
cannot decide whether they are the same or not in the
bottom of two stacks. So, our obfuscation can only
process goto instructions that don’t have object pointers
now.

In processing exception instructions there are some

limits. The exception processor is executed only at
exception time. The exception processor is not invoked

in execution sequence instructions, and it cannot use a
goto instruction to jump into the exception processor.
Figure 2-6 shows using a goto instruction to skip the
exception processor. It can avoid starting the exception
processor in an original flow. If a goto instruction is
used to skip the exception processor, this goto
instruction cannot be replaced by a conditional branch
instruction. This is for avoiding verifying failure by
Java verifiers.

.method publ ic tes tExcept ion()V

.limit stack 2

. l imit locals 3
Label1:

iconst_0
is tore_1

Label5:
bipush 100
i load_1
idiv

Label8:
i s tore_2

Label6:
goto Labe l0

Label9:
astore_1

Label3:
aload_1
invokevir tual java/ lang/Throwable/pr intStackTrace()V

Label0:
return

.ca tch java/ lang/Except ion f rom Label1 to Label8 us ing Label9

.end method

public void testException(){
 t ry {
 int j = 0;
 int i = 100 / j ;
 }
 ca tch (Except ion ex) {
 ex .pr in tS tackTrace() ;
 }
}

assemble

Except ion handler

Figure 2-6. The exception processor cannot be

executed at execution sequence instructions.

2.3 Intersecting Loop Obfuscation

Another method is by adding a control flow that Java
high-level language cannot be present in program. It
make decompiler to fail for Java [8].

The intersecting loop obfuscation uses two similar

loops to intersect together (ex. for-loop), as Figure 2-7.
These intersected loops are not permitted in any
high-level language. Therefore, it can use to be an
obfuscation technique.

for(...){
 expr1.

}//for 1

for(...){

 expr2.
} //for 2

S

A

B

T
intersect

Figure 2-7. The diagram of an intersecting loop.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

321

 5

Strategies for avoiding verifying failure by the Java

verifier, the stack states at every instruction must be
consistent, and the stack states at entry point and left
point also must keep consistent in the whole control
flow. Without these conditions, the Java verifier will
verify failure and terminate the program running.
Beside, using a fake conditional branch to skip this
intersected loop can avoid entering it in running time.
And the performance will not be dropped off in the
obfuscated program. Figure 2-8 shows it.

Figure 2-8. The added process of the intersecting loop

obfuscation.

The above study in the intersecting loop obfuscation

is called “single block”’, which inserted an intersect
loop into two adjacent instructions. Although it can
make decompilers fail, the obfuscated codes centralized
will be easily to remove by attackers. We design a more
complicated obfuscation technique, which we call it
“multiple blocks” in the intersecting loop obfuscation.

+complex flow

original flow
1

2

3

A

B

merge

split

split

1

A

2

3

B

Figure 2-9. The added process is the multiple blocks
technique of the intersecting loop obfuscation.

This multiple blocks technique divides obfuscated

codes into several small blocks and breaks them into
continuous blocks of the original program. The
obfuscated codes are hard to remove out from the
obfuscated program by attackers; hence hard to restore
it to the original program. Figure 2-9 shows the added
process of the multiple block technique. This is not a
control flow diagram; it is a located diagram of blocks.

Figure 2-10 shows the detail of multiple blocks of the

intersect loop obfuscation. It uses goto instructions to
divide a control flow into several small blocks. The
reason is that implementation is easy and it can force to
jump. It can avoiding verify failure by the Java verifier.

a l l o u t g o i n g

3
2

1

4

F

T

S
A

B

T

b l o c k 1

b l o c k 2

b l o c k 3

b l o c k A

b l o c k B

b l o c k A

3
2
1

4

o r i g i n a l f l o w

s p l i t

c o m p l e x f l o w

s p l i tS
A

B
T

b l o c k 2

m e r g e

1

FT

b l o c k 1

S
A

b l o c k A

3
2

b l o c k 2

B
T

b l o c k B

4

b l o c k 3

+

goto

goto

g o t o

F

F

goto

g o t o

goto

Figure 2-10. The detail method of multiple blocks in

the intersect loop obfuscation.

In order to reduce the complication of Figure 2-10,

we ignored pointers before splitting blocks. Actually,
the pointers are existent. Except block 1 uses a
conditional branch instruction, other blocks use goto
instruction to jump to the next block for keeping the
original flow. In the final step, every block merges
together.

3. Result

3.1 Decompile test environment

The test environment of this research uses Windows
2000、256 MB DDR RAM and CPU AMD Athlon(tm)
XP 1600+ 1.4 GHz. Tested decompiler environment is
in Sun Java 2 SDK 1.3.1_05.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

322

 6

3.2 Decompile test result

For testing our designed obfuscation techniques in
this paper, we collected decompile software from all
over the world. Decompiles have 20 packages at least
in the world. As Table 3-1 shows, we collected 16
packages of decompiler and tested obfuscations.

We used TicTacToe to be a target program. We

decompiled an obfuscated TicTacToe program, which
was obfuscated by our designed obfuscations, by
different Java decompilers. In Table 3-1, the symbols
were listed as follows:

╳：It cannot produce a java file or a complete source

code.
△： It can produce a java file, but source code cannot

be compiled.
□ ： After obfuscating, both decompilation and

re-compilation were successful, but the program
didn’t execute correctly.

○ ： After obfuscating, both decompilation and
re-compilation were success, and the program
executed correctly.

In Table 3-1, the “un-obfuscation” column listed

results of decompiling an un-obfuscated program. The
“destroy basic block” column listed test results of the
destroying basic block obfuscation . The “replace goto”
column listed test results of the replacing goto
obfuscation, and it shows all decompilers decompile
failure. The “intersect loop” column listed test results of
the intersecting loop obfuscation, and it shows all
decompilers fail, too.

Table 3-1. The test result of decompilation obfuscated

program.

4. Conclusion

The task of making reverse engineering difficult is
not easy. We design three new obfuscation techniques

in this paper. We named them as destroying basic block
obfuscation, replacing goto obfuscation and intersecting
loop obfuscation. Our designed obfuscations are all
control flow obfuscations.

Our obfuscation techniques are different from other

obfuscations in published papers. The advantage of our
obfuscation techniques is focused on attacking the
weaknesses of decompilers. Our designed obfuscations
effectively protect programs to be reverse engineering.
As a result, both the replacing goto obfuscation and the
intersecting loop obfuscation succeed to defeat all the
decompilers.

5. Future work

The replacing goto obfuscation will improve the

implementation techniques . Under the limit that Java
verifier cannot verify failure , all goto instructions can
be replaced by conditional branch instructions.

Besides, for protecting obfuscated programs from

being de-obfuscated to original source code, we must
improve further the patterns for complicated flows to
insert the fake conditional branch instruction that is
hard for decompilers to detect.

Acknowledgements

The project is supported by NSC under project NSC

(93-2213-E-006-105-).

Reference

[1] Hans Peter van Vliet. ”Mocha - The Java

decompiler”,
http://wkweb4.cableinet.co.uk/jinja/mocha.html,
January 1996.

[2] WingSoft Company. “JavaDis - The Java
Decompiler”, March 1997.

[3] Christian Collberg, Clark Thomborson,
“Watermarking, Tamper-Proofing, and Obfuscation
-Tools for Software Protection”, IEEE Transactions
on Software Engineering, vol.28, no.8, August
2002, pp.735-746

[4] Gleb Naumovicb, Nasir Memom, “Preventing Piracy,
Reverse Engineering, and Tampering”, IEEE
Computer Society, July 2003, pp.64-71

[5] Hanpeter van Vliet, “Crema: the Java obfuscator”,
http://www.brouhaha.com/~eric/computers/mocha.
html, 1996

[6] Christian Collberg, Clark Thomborson, Douglas
Low, “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs”, In Proceedings of the
25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, San Diego,
California, United States, 1998, pp.184-196

[7] Douglas Low, “Java Control Flow Obfuscation”,
Master’s Thesis, Department of Computer Science,
University of Auckland, New Zealand, June 1998

[8] W. W. Peterson, T. Kasami, N. Tokura, “On the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

323

 7

capabilities of while, repeat, and exit instructions”,
Communications of the ACM , Volume 16, Issue 8,
August 1973, pp.503-512

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

324

