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Abstract- In this paper, we aim at using genetic 
algorithms (GAs) for gene selection and propose 
Bayes’ theorem as a discriminant function to 
classify breast cancers for biomarker discovery. 
The GA is used to search all possible gene subsets 
from microarray feature dimensions. To evaluate 
the given feature subsets, a Bayesian discriminant 
function is developed to produce a classifier to 
measure the fitness of each gene subset. And these 
values will be stored to provide feedback for the 
evolution process of GA to find the increasing fit of 
chromosomes in the next generation. Consequently, 
the experimental results show that our method is 
effective to discriminate breast cancer subtypes 
and find many potential biomarkers to help cancer 
diagnosis. 
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1. Introduction 

Breast cancer is one of the most important 
diseases affecting women in the world. 
Traditionally, a thorough evaluation for breast 
cancer and its subtypes include an examination of 
both prognostic and predictive factors. Prognostic 
factors like tumor size, auxiliary lymph node status, 
and tumor grade, and predictive factors like 
estrogen receptor (ER), progesterone receptor (PR), 
and HER2/neu considered in the routine 
examination of breast cancer patients, however, 
cannot ultimately distinguish those patients who 
have identical traditional diagnosis and how they 
may respond to different therapies. Because of this, 
recent researches suggest that the classification of 
tumors based on gene expression patterns on 
microarray data may serve as a medical application 
in the form of diagnosis of the disease as well as a 
prediction of clinical outcomes in response to 
treatments [9][15]. 

The analysis of gene expression profiles, which 
serve as molecular signatures for tumor/cancer 

classification, have become a highly challenging 
area of research in bioinformatics. In general, the 
classification of microarray data may be thought as 
a problem consisting of two tasks: (1) gene 
selection and (2) classification. Gene selection is 
the recognition of informative genes from 
thousands of highly correlated gene expression 
profiles for sample classification. Classification 
requires the construction of a model, which 
processes input patterns representing objects, and 
predicts the class or category associated with the 
objects under consideration. In the past few years, 
algorithms [1][2][3][8][18][20] with rank-based 
gene selection schemes have been applied to 
2-class or 3-class classification problems based on 
gene expression data, and most have achieved 
95%-100% classification accuracy. When these 
methods suggest that genes that classify tumor 
types well might serve as prognosis markers, the 
classification of microarrays for biomarker 
discovery becomes an important topic in 
bioinformatics. In fact, while there are certainly 
more types of cancers, if we expand the tumor 
classification problem to multiple tumor classes 
(more than 5), this problem will become more 
difficult because the dataset will contain more 
classes, but only a small number of samples 
[6][7][17]. Several recent papers [4][16][19] have 
addressed this problem and they concluded that 
many currently used approaches, relying on 
rank-based gene selection methods, may select 
redundant genes with highest scores in gene 
selection process. This implies that informative 
genes that are individually not discriminatory but 
complimentary to each other for discriminant 
analyses may not be selected. As one of the future 
directions discussed in the paper of Li et al. [19], 
the authors suggested designing a feature selection 
method to consider the correlations between 
features in microarray classification problem. 
Therefore, genetic algorithms, one of the 
wrapper-based gene selection methods, were 
applied to microarray classification problems to 
search optimal groups of co-working genes in 
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chromosomes, and evaluated the effectiveness of 
the features selected on the actual classification 
task itself [5][11][12][13][22]. 

Since GAs with these computational models 
already shown their superiority to improve the 
prediction accuracy of classifiers, in this paper, we 
will combine GA and a Bayes classifier for breast 
cancer classification. The advantage to utilize 
Bayes classifiers is because Bayes classifiers only 
require a small amount of training data to estimate 
the parameters (means and variances of the 
variables) necessary for classification. This is why 
we attempt to develop a discriminant function 
based on a covariance matrix to consider the 
interactions between genes and see how these 
relationships may affect classification results. 
Consequently, our approach exhibits an excellent 
performance not only in classification accuracy but 
also at identifying genes that are already known to 
be cancer associated. 

where kμ  and k∑  denote the class mean vector 
and the covariance matrix of class k. In order to 
calculate )'()( 1

kkk ee μμ −∑−− − vv , the main quantity 
of Equation (4), we may define the class density of 
each class has the same common covariance 
matrix, ∑=∑ k [14], and therefore the 
classification rules can be rewritten as 
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And T is the number of all training samples. For 
example, in the training stage, if we want to 
predict the class of a query sample of class k, the 
output of the classification rule should be the 
winning class of k. Otherwise the sample is 
misclassified. In addition, the preceding rule can 
also be used to predict the class label of a novel 
sample, since there exists only one class deserving 
the maximum posterior probability. 

 
2. Methods  
2.1 Bayesian Classifier  

For sample classification, assume that we are 
given a dataset in which D = {( le j ,v ), for j=1…m} 
is a set of m number of samples with well-defined 
class labels for multi-class prediction task. The 
feature vector, ),...,,( 21 neeee =

v , denotes the 
vector of samples describing expression level of n 
number of predictive genes, l∈L ={1,2,..,k…q} is 
the class label associated with ev and q is the 
number of classes. To view our prediction tasks as 
a Bayesian decision problem, our method uses 
Equation (1) to express the posterior probability of 
class k given sample feature vector ev as 
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where )|( kep v is the class conditional densities, 
and  is the class priors. For classification, 
the Bayes rule used to predict the class of a sample 

)(kp

ev by that with highest posterior probability can be 
defined as 

 
2.2. Genetic Algorithms  
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In order to select an optimal subset of features 
from a large feature space to minimize the 
classification errors, we employ the GA approach. 
The genetic algorithms are adopted from Ooi and 
Tan [5], with toolboxes of two selection methods 
including stochastic universal sampling (SUS) and 
roulette wheel selection (RWS). In addition, two 
tuning parameters, Pc: crossover rate and Pm: 
mutation rate, are used to tune one-point (OP) and 
uniform (Uni) crossover operations to evolve the 
population of individuals in the mating pool. The 
format of chromosomes used to carry subsets of 
genes are defined by the string Si, Si = [n g1 g2 … 
gnmax], where n is a randomly assigned value 
ranging from nmin to nmax and g1 g2 … gnmax, are the 
indices of nmax genes corresponding to a dataset. In 
our experiments, every chromosome will be used 
to express a Dn×m dataset which is used by the 
classifier to decide to which of a fixed set of 
classes that sample belongs. In training stage, we 
will try as many chromosomes as possible to 
choose the optimal gene subset by scoring those 
chromosomes using the fitness function of f (Si) = 
(1 – Et) ×100, where Et means the training error 
rate of Leave-One-Out Cross Validation (LOOCV ) 
test. Moreover, the optimal feature set will also be 
examined by independent tests. In order to have an 

Since the feature values of ev are given, and is 
effectively constant. A widely used way to 
represent Equation (2) as a Bayesian decision rule 
for classification can be modified as 
 )(log)|(logmaxarg)( kpkepef k +=
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Note that when the densities )|( kep v  are 
multivariate normal, Equation (3) will take the 
form as 



unbiased estimation of initial gene pools, our 
algorithms will set 100 gene pools to run following 
steps. 
Step 1: For each gene pool, the evolution process 
will go 100 generations and each generation will 
evolve 100 chromosomes in which the size of 
genes will range from nmin=20 to nmax=30. 
Step2: According to the gene indices in each 
chromosome, only the first n genes are picked 
from g1, g2… gnmax to form sample patterns for 
classification. In other words, the dataset is then 
represented by a matrix Dn×m form with rows for 
the n genes and columns for the m samples.  
Step 3: In order to estimate the fitness score for 
each chromosome, the training dataset Dn×P of P 
training samples and the test dataset Dn×m-P of 
n×m-P test samples are fed into the following 
program to evaluate how well those samples can 
be correctly classified. 
1. FOR each chromosome Si 
2. FOR each training sample with class label lj 
3. Build up discriminant model with   

remainingtraining samples for LOOCV tests 
4. IF ( )(efl jj

r
≠ ) 

5. XtError = XtError + 1  // sample misclassified 
6. END FOR 
7. Et = XtError / Total training samples  
8. Fitness[Si]= (1-Et) × 100 
9. END FOR 
10. Findmax (Fitness )  // best chromosome  
Step 4: By calculating the fitness value of 
classification accuracy in a generation, the optimal 
fitness value will be stored to provide feedback on 
the evolution process of GA to find the increasing 
fit of chromosomes in the next generation.  
Step 5: Repeat the process from Step 2 for the 
next generation until the maximal evolutionary 
epoch is reached. 
 
3. Dataset 
The breast cancer gene expression profiles were 

measured with 7937 spotted cDNA sequences 
among the 85 samples with 6 different classes of 
breast tumor that were supplied by Stanford 
Microarray Database. This dataset was first studied 
by Sorlie et al. [21] and can be downloaded from 
http://genome-www5.stanford.edu/. The dataset 
originally contained six subclasses including 
basal-like (14 samples), ERBB2+ (11 samples), 
normal basal-like (13 samples), luminal subtype A 
(32 samples), luminal subtype B (5 samples), and 
luminal subtype C (10 samples). In our 
experiments, the dataset was divided into a training 
set of 57 samples and a test set of 28 samples so 
that the training errors could be calculated by 

LOOCV tests, and so that a model could be built 
with the training data to present the results of 
predicting the label of unseen data. The 
training/test datasets with the ratio of 2:1 include 
gene expression profiles of 10/4 basal-like, 7/4 
ERBB2+, 9/4 normal basal-like, 21/11 luminal 
subtype A, 3/2 luminal subtype B, and 7/3 luminal 
Subtypes c. 
 
3.1 Data Preselection 
Since most genes in a microarray are irrelevant to 

class distinction, in order to select genes with the 
best discrimination ability used by our classifier, 
we follow the criterion established by Dudoit et al.  
[16] to filter out genes that are strongly correlated 
to class distinction using between group to within 
group sum of squares ratios (BSS/WSS) for data 
dimensionality reduction. As indicated by Figure 1 
This figure suggests that only a fraction of genes 
show strong expression differentiation among 
tumor types and would be helpful for subsequent 
classification purpose. In our case, we decided to 
choose 2000 genes with the highest BSS/WSS 
ratio for our experiments. This means the dataset 
finally had 2000 genes × 85 samples remaining in 
the matrix and the BSS/WSS ratio for the dataset 
ranges from 0.48 to 5.23. 
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Figure 1. Genes sorted by BSS/WSS ratio. 

 
4. Experiments and Results 
In Table 1, we have tried many groups of GA 

parameters for possible prediction performances. 
The best prediction accuracy was achieved using 
the Uniform crossover and SUS selection strategy 
of GA. The best predictor set obtained from our 
method exhibits LOOCV accuracy (Ac) of 94.7% 
in comparison with the cross validation success 
rate of 86% by the BSS/WSS/SVM [10]. Even in 
diagnosing blind test samples our method needed 
only 20 predictive genes to produce independent 
test accuracy of 89.3%, whereas BSS/WSS/SVM 
only performed cross validation tests and needed 



hundreds of predictive genes. 
 
Table 1. Accuracy measured in percentage. 
Breast cancer data 
(57 for training, 28 for testing)  

Pc Pm Cross- 
over 

Selec- 
tion Ac Ai G 

1 0.002 Uni SUS 94.7 89.3 20 
0.7 0.005 OP SUS 93 85.7 22 
0.7 0.001 Uni RWS 93 85.7 23 
0.8 0.02 OP RWS 89.5 85.7 21 

 
In Figure 2, we listed the best case of experiments 

and demonstrated the convergence of our method. 
In the running of above program, the chromosome 
with the best fitness, chosen from the simulation to 
arrive at the optimal operation will be based on the 
idea that a classifier must work well on the training 
samples, but also work equally well on previously 
unseen samples. Therefore, the optimal individuals 
of each generation were sorted in ascending order 
by the sum of the error number on both tests. The 
smallest number then determines the chromosome 
that contains predictive genes and the number of 
genes needed in the classification as well as gives 
the classification accuracy obtained by our 
methods. 
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Figure 2. This figure plots the degree 
of training accuracy (top line) and 
testing accuracy (bottom line) 
obtained from the best run out of 100 
individual runs. 

 
5. Predictive Genes  
For the best gene subset found by our method, the 

heatmap of Figure 3 identifies the filtered 20 genes 
to reveal potential tumor subclasses and their 
associated biomarkers. Despite the lack of a 
broader investigation of these genes, below we list 
some informative genes and describe their 

relationships with breast cancers. 
(1). IL15RA is a proinflammatory molecule which 
is associated with tumor progression in head and 
neck cancer. 
(2). WNT2 is one of proto-oncogenes with the 
potential to activate the WNT – β – catenin – TCF 
signaling pathway in primary gastric cancer and 
colorectal cancer. 
(3). MS4A7 is individually a strong prognostic 
factor for predicting tumor recurrence after surgery 
and adjuvant therapies. 
(4). ESR1 is a valuable predictive factor to help 
individualize therapy of breast cancer since its 
gene amplification is frequent in breast tumor 
cells. 
(5). FLT1 expresses more abundant in cancer cases 
with metastases than in cases without metastases. 
(6). GATA-3 is a significant predictor to predict 
the breast cancer subtype, defined as Luminal-A. 
Moreover, it is associated with many breast cancer 
pathologic features, including negative lymph node 
and positive estrogen receptor (ER+) status to 
predict the disease-free survival and overall 
survival for patients. 
(7). ABC1 protein is highly expressed in many 
breast cancers. Recently, it has been reported that 
ABC1 is the human breast cancer resistance 
protein that affects the bioavailability of 
chemotherapeutic drugs and can confer drug 
resistance on cancer cells. 
(8). AMACR is potentially an important tumor 
marker for several cancers and their precursor 
lesions, especially those linked to high-fat diets. 
(9). TERF1 encodes a telomere specific protein 
which functions as an inhibitor of telomerase to 
maintain chromosomal stability. 
(10). PTGES3 is related to progesterone receptor 
complexes that are used to signal the development 
and progression of breast cancer. 
(11). NSEP1 is a member of the Y-box binding 
protein-1 family (YB-1), which has been examined 
its involvement in cancer, and particularly in the 
metastasis of cancerous cells. Moreover, it has also 
been reported to be associated with the intrinsic 
expression of P-gp in human breast cancer. 
(12). PCNA is an immunohistochemical factor to 
investigate its clinical significance in breast cancer 
and it is also an useful prognostic factor to indicate 
the degree of malignancy in breast cancer. 
(13). ZNF 146 is encoded by the OZF gene and its 
overexpreesion has been found in the majority of 
pancreatic cancers. 
 



 
Figure 3. The expression profiles of predictor genes (20 genes) from experimental dataset. 
The x-axis denotes the tumor types. The name and brief descriptions of the predictor genes 
are shown along the y-axis. The intensity of red colored small squares represents the 
degree of up-regulated gene expression and the intensity of green color represents 
down-regulated gene expression as well as the black color represents unchanged 
expression levels. 
 
6、Conclusions 
When there are more types of cancers, and 

potentially even more subtypes, and when the 
breast cancer is still the most significant problem 
in the practical management of the individual 
patient, the finding of new biomarks for a finer 
definition of tumor diversity is necessary. 
In this paper, we propose a genetic algorithm 

adopting Bayesian classifier to solve multi-class 
classification problem on microarray data of breast 
cancers. The experimental results prove the 
effectiveness and superiority of our method to 
improve the prediction accuracy and to reduce the 
number of predictive genes. Furthermore, we not 
only identify many predictors that are already 
known to be important for breast cancers, but also 
find many potential targets for further biomarker 
researches. Finally, we hope that the proposed 
method would be a helpful tool that can be applied 
to analysis of mircroarray data for cancer diagnosis 
in clinical practice. 
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