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Abstract- The gene expression microarray is a 
popular technique to discover significant marker 
genes for different experimental design. However, 
missing value may occur during experimental 
operation or image analysis phase. Effective 
missing value estimation methods have been 
proposed to solve the problem. But, most 
imputation algorithms only consider the 
expression data in selection process. In this paper, 
we proposed a novel method, namely Protein and 
Gene Annotation K Nearest Neighbors (PGAKNN), 
to impute missing value of microarray gene 
expression data by using external biological 
information, like Gene Ontology Semantic 
Similarity and Ontology-based Protein Similarity 
between two genes. The experimental results show 
that PGAKNN provides a higher accuracy of 
missing value estimation on the two real yeast 
cDNA microarray datasets. 

Keywords: Data Mining, Microarray, Gene 
Expression Analysis, Missing Value Imputation. 

1. Introduction 
The cDNA microarray has been widely used in 

numerous studies over a broad range of biological 
disciplines including cancer classification. It 
provides a popular technique to monitor thousands 
of gene expression level simultaneously under 
different conditions [6]. There are several 
applications in microarray analysis such as drug 
discovery, protein sequencing for instance and 
identification of genes relevant to a certain 
diagnosis or therapy [7]. However, microarray 
gene expression data often contain missing values 
due to various reasons, e.g. image corruption, 

hybridization error, and dust or insufficient 1 
resolution. It has been proven that missing values 
may seriously disturb or even prevent the 
subsequent data analysis [1]. 

In microarray gene expression analysis, if we 
ignore or remove the gene expression profile with 
missing values, then analysis result may not be 
completed and may lose some interesting 
information. In the preprocessing phase of 
microarray analysis, many imputation methods 
have been developed to recovery the missing 
values. The concept of imputation of missing 
values is to provide a predicted value for a missing 
value based on some known information. These 
imputation algorithms, such as k-Nearest Neighbor 
(KNN) [14], Local Least Squares (LLS) [9], 
Bayesian approach [11], and Gene Ontology 
k-Nearest Neighbor (GOKNN) [15]. Despite that, 
all of these imputation algorithms have been 
shown good performance in dealing with missing 
values. All of these imputation algorithms, except 
GOKNN, do not consider biological constraints 
related to the microarray experiments. 

In this paper, we proposed a novel method, 
namely Protein and Gene Annotation K-Nearest 
Neighbors (PGAKNN), to impute missing value of 
microarray gene expression data by using external 
biological information, like Gene Ontology 
Semantic Similarity and Ontology-based Protein 
Similarity between two genes. The semantic 
similarities of the genes and proteins are calculated 
by using Gene Ontology (GO) annotations [8]. We 
combine the semantic similarity with the 
expression similarity in the KNN imputation 
algorithm. The results of our imputation algorithm 
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are compared with KNN and GOKNN algorithms 
under different percent values of missing values on 
two real yeast micrroarray datasets. 

Remaining of this paper is organized as follows. 
In Section 2, we give a brief review of related 
work. Our proposed method is shown in details in 
Section 3. Section 4 shows the experimental 
results, and the concluding remarks are made in 
Section 5. 

2. Related Work 
Given a normalized gene expression matrix, 

E=[ei,j]m*n, over a set of m genes and n microarray 
samples. A missing value αg*,s* is detected in the 
position gene g* in sample s*. In this paper, for 
simplicity of algorithm description, we assume that 
the target missing value αg*,s* we want to recovery 
is in the first position of the first gene. 

2.1. The weighted KNN imputation 
The weighted KNN-based method, KNNimpute 

algorithm, imputes missing values by selecting 
genes with expression profiles similar to the gene 
of interest [14]. The steps of KNN imputation are 
as follows. 
Step 1: In order to impute the missing value αg*,s*, 

KNNimpute algorithm chose k genes that are 
most similar to the gene g* and with the values 
in their first positions not missing. In this paper, 
we take the Euclidian distance method as the 
similarity measurement to measure the distance 
between gene g* and other genes. 
Given two expression vectors vx = <ex,1,…, 
ex,n> and vy = <ey,1,…, ey,n> , the Eculidean 
distance between vx and vy can be calculated as 
follows: 
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Step 2: The missing value is estimated as the 

weighted average of the corresponding entries, 
in the first position, in the selected k expression 
vectors. 
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In microarray analysis, the Eculidean distance 
used by KNN is sensitive to outlier values. A 
preprocessing of log-transforming the data may 

significantly reduce their effects on gene similarity 
determination [14]. The empirical results have 
demonstrated by Toyanaska et al. that KNN is 
insensitive to values of k in the range [14]. 

2.2. GO-based imputation 
 
2.2.1. Semantic similarity in Gene Ontology 

Gene Ontology (GO) is a popular ontology 
used in Biology. And it provides a structured 
controlled vocabulary of genes and protein 
biological roles. It consists of three independent 
ontologies: 1) molecular function (MF) describes 
the biochemical activities at the molecular level; 2) 
biological process (BP) is a series of events 
accomplished by one or more ordered assemblies 
of molecular functions and 3) cellular component 
(CC) identifies the location where a gene product 
is active in the cell. These three independent 
ontologies are organized by terms in three directed 
acyclic graphs (DAG). In other words, each term 
can have several parent terms and several child 
terms. Moreover, the terms in the higher and lower 
layer of ontology structure represent the more 
general and specific biomedical concepts, 
respectively. According to the term layer of GO, 
we can measure the functional similarity between 
two annotated genes. 

The Semantic Dissimilarity algorithm was 
proposed by Tuikkala et al. [15] to measure the 
semantic dissimilarity GOSim(gi, gj) between two 
gene gi and gj. It consists of four steps as follows: 
Step 1: finding the sets ids(gi) and ids(gj) of GO 

accession ids (GO ids) for both genes gi and gj 
from GO, respectively. 

Step 2: for each GO id pair (idi, idj) between ids(gi) 
and ids(gj), the set of shared ancestor nodes is 
found from the ontology structure. 

Step 3: for each GO id pair, the minimum value of 
the Information Content [13] of shared ancestor 
nodes is stored in the set P. 

Step 4: calculating the mean of P as the final value 
for semantic dissimilarity of gene gi and gj 
[10]. 
If shared ancestor nodes are not found, then 
GOSim(gi, gj) = 1. And a smaller semantic 
dissimilarity value represents more function 
similarity on the ontology structure between 
two annotated genes. 

 
2.2.2. GOKNN imputation 

The main goal of GO-based imputation method 
is to estimate missing gene expression values 
which are not only close in their expression values 
but also in function. The GO-based imputation 
algorithm, namely GOKNN, was proposed by 



Tuikkala and his coworker [15]. The combined 
distance CombSim(g*, gi) is calculated by 
combining the Euclidean distance dist(gi, gj) and 
the semantic dissimilarity GOSim(gi, gj) between 
gene gi and gj. 
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, where the positive weight parameter ω controls 
how much the semantic dissimilarity value 
contributes to the combined distance between the 
gene g* and gene gi. After all combined similarity 
values are measured with gene g*, the k most 
similar genes to gene g* will be selected to be 
applied to the weighted imputation procedure, 
which is similar to step 2 of KNN imputation in 
Section 2.1.  
 
2.3. Protein-based imputation 

Protein plays an important role in biological 
domain. Most proteins are annotated by a GO term 
[2] [3]. The particular functions of a protein in the 
cell are determined by its amino acid sequence and 
specific structure which it folds. In addition, it is 
likely to be affected by other proteins. We 
calculate the protein similarity [4] [10] between 
two proteins by using information content (IC). 
The GO similarity between two proteins, pi and pj, 
SimPP(pi, pj), is the average similarity of the GO 
terms annotated to them. The similarity 
measurements between two proteins, one protein 
and a set of GO terms, and one GO term and a set 
of GO terms are defined as SimPP(pi, pj), 
SimPT(pi,GOT(pj)), and SimTT(ti,GOT(pj)), 
respectively, as follows: 
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, where IC(ti,ty) is the information content value 
between two GO terms. For more details we refer 
the reader to [4]. 

3. The algorithm of PGAKNN 
The PGAKNN algorithm consists of three 

phases, as shown in Figure 1, 1) Filtering phase, 2) 
Selection phase, and 3) Imputation phase. In 
filtering phase, the gene profiles which are with 
missing values, non-GO-annotated, and 
non-Protein-annotated information will be filtered 
out first. And a non-missing and biological 
informatics dataset is able to be the materials in the 
following phase. There are three sequential steps 
in selection phase: i) Distance-based KNN: using 
distance-based KNN to find s1 size of the most 
similar genes (GS1) to gene g* in expression 
values, ii) GO-based KNN: for all similar genes gi, 
gi∈GS1, calculating the GO-based combined 
similarity CombSim(g*, gi) with the genes g* , and 
then selecting s2 size of the most similar genes 
(GS2), and iii) Protein-based KNN: estimating the 
protein-based similarity with the gene g* for each 
gene in GS2, and keeping s3 size of the most 
similar genes (GS3) as the final gene set. Finally, 
according to the GS3, an imputation for the missing 
value of gene g* in sample s* is then computed as 
the weighted average, likes Equation (2), by 
selecting the top k most similar genes in the 
imputation phase. 

 
Figure 1. The framework of PGAKNN 

4. Experimental Evaluation 

4.1. Datasets 
The two public yeast cDNA microarray 

datasets are used to evaluate the imputation 
accuracies of PGAKNN. They are downloaded 
from the Saccharomyces Genome Database (SGD) 
website (http://sgdlit.princeton.edu/). The first 



dataset, phosphate, is from a phosphate 
accumulation and polyphosphate metabolism study 
in Saccharomyces cerevisiae [12]. The second 
dataset is from a study of temporal gene 
expression during the metabolic shift from 
fermentation to respiration in S.cerevisiae [5]. A 
summary of the characteristics of the two datasets 
is shown in Table 1. 

The GO annotation of genes in the two testing 
datasets is downloaded from the GO website 
(http://www.geneontology.org/). The GO 
annotation of UniProt proteins [2] is collected 
from the GOA (Gene Ontology Annotation) 
database [3]. 

Table 1. The summary of the testing datasets 

 phosphate diauxic 
M  6015 6068 

'M  5785 5875 
'
GOM  5241 5275 
'
proteinM  5490 5256 

N 8 7 
A% 90.0 89.7 

M  is the number of genes in the original data. 'M  is the 
number of genes after the filtering phase. '

GOM  and '
proteinM  

are the number of genes and proteins that have annotations, 
respectively. N is the number of condition in the testing dataset. 
A% is the average percentage of genes with biological 
annotations. 

4.2. Metric for comparisons 
The performance of the missing value 

estimation is evaluated by the Normalized Root 
Mean Squared Error (NRMSE) [9]: 
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, where ypredict and yknown are the vectors whose 
elements are the predict values and the known 
values, respectively, and std[yknown] is the standard 
deviation of the known values.  

Moreover, we also investigate the Improvement 
Rate (IR) of PGAKNN which comparing to 
traditional kNNimpute (KNN) [14] and 
GOkNNimpute (GOKNN) algorithm [15]. 

method PGAKNN

method

NRMSE NRMSEIR
NRMSE

−
=

 (9)
, where method∈{KNN, GOKNN}. NRMSEPGAKNN 
is the NRMSE value of the proposed PGAKNN 
algorithm. 

Table 2 is a summary of parameter setting 
among the following experiments. 

4.3. Experiment 1: the effect of the percent 
of missing values 

In this experiment, we investigate the effect of 
various percent values of missing values, which 
are 1%, 5%, 10%, 15%, and 20%. For example, 
given a non-missing microarray dataset 'M  with 
m genes under n samples, if the percent of missing 
value is 20%, then we randomly select m×n×20% 
elements from the 'M  to be the missing values. 
In Figure 2, the NRMSE values are increasing with 
a high percent of missing values in KNN, GOKNN, 
and PGAKNN. Nevertheless, the NRMSE value of 
PGAKNN algorithm is smaller than the results of 
KNN and GOKNN algorithms. In particular, 
PGAKNN has a more stable trend of NRMSE 
values under various percent values of missing 
values in the phosphate dataset. 

 
(a) 

 

 
(b) 

Figure 2. The effect of the percent of missing 
values on (a) the phosphate dataset and (b) 
the diauxic dataset. 
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Table 2. The summary of parameter setting. 
 parameters experiment  
KNN k=20 1 
GOKNN k=20, 

ω=0.2 
1 

PGAKNN k=20, 
s1=200, 
s2=100, 
s3=50 

1, 2, 3 

 
(a) 

 
(b) 

Figure 3. The improvement rate (IR) of 
NRMSE value for KNN and GOKNN 
comparing to our PGAKNN method under 
various percent of missing values. 

Figure 3 illustrates the improvement rate (IR) 
of NRMSE value for KNN and GOKNN 
comparing to our PGAKNN under various percent 
of missing values. Overall, we can observe the 
accuracy of missing value imputation by 
PGAKNN is better than the other algorithms. 

4.4. Experiment 2: the effect of the selection 
of the neighborhood size k 

Tuikkala et al. [15] suggested that 20 neighbors 

are enough for each of their experimental datasets, 
i.e. k=20. In this experiment, we also investigate 
the effect of the selection of neighborhood size k in 
the imputation phase of our PGAKNN algorithm 
(see Section 3). In the phosphate dataset, we 
observe the range [17, 21] of the neighborhood 
size k is the range with best imputation 
performance. Therefore, in PGAKNN algorithm, 
we also set the k value to be 20. 

 
Figure 4. The effect of the selection of the 
neighborhood size k. 

4.5. Experiment 3: the effect of the selection 
order of GO and Protein-based KNN 

Figure 5 shows the effect of the selection order 
of GO-based KNN and Protein-based KNN under 
various percent of missing values. And the result 
shows it has a better performance by applying 
GO-based KNN before Protein-based KNN in the 
diauxic dataset. 

 
Figure 5. The effect of the selection order. 
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5. Conclusions and Future Work 
In this paper, we proposed a novel method, 

namely Protein and Gene Annotation K Nearest 
Neighbors (PGAKNN), to impute the missing 
values of microarray gene expression data by using 
external biological information, like Gene 
Ontology Semantic Similarity and ontology-based 
Protein Similarity between two genes. First, the 
main concept of PGAKNN is to select a set of 
genes which have similar expression profiles to an 
interesting gene. Then, we apply a sequential 
procedure of the biological feature selection. 
Finally, we can get a set of genes which have 
similar expression profiles and strong biological 
relationships with an interesting gene. So, the 
missing values can be estimated by using the 
weighted average of final top k most similar genes. 

In this study, we used two real yeast 
microarray dataset, the phosphate and the diauxic, 
to evaluate the performance of PGAKNN. There 
are three experiments in the evaluation: 1) the 
effect of the percent of missing values under 
various percent of missing values, 2) the effect of 
the selection of the neighborhood size k, and 3) the 
effect of the selection order of GO-based KNN and 
Protein-based KNN. The experiment 1 shows our 
PGAKNN provides a higher accuracy of missing 
value imputation than the traditional KNN and 
GOKNN. The experiment 2 and 3 demonstrate that 
the k value should be 20 and GO-based KNN 
should be applied before Protein-based KNN, 
respectively. 

In future work, we will integrate more 
biological information to impute missing values in 
microarray datasets.  
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