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Abstract-A multiple vision-based vehicle system for 
security patrolling in an indoor environment is proposed. 
Multiple autonomous vehicles controllable by wireless 
communication and equipped with cameras, as well as 
top-view omni-cameras with fish-eye lenses fixed on the 
ceiling are used as a test bed. First, a method is proposed 
for collecting navigation environment information, 
including vehicle turning points and object monitoring 
points, so that the vehicles can navigate to visit monitored 
objects without collisions with walls. Next, a point 
correspondence technique integrated with an image 
interpolation method is proposed for camera calibration 
by which the top-view cameras can be utilized to learn the 
information that enables vehicles to perform the security 
monitoring task, to locate the vehicles, and to monitor 
vehicle activities in the navigation phase. An optimal 
randomized and load-balanced path planning method is 
proposed as well, which requires shorter time to 
accomplish object monitoring in one session and provides 
higher degrees of patrolling security. Good experimental 
results show feasibility of the proposed methods for the 
application of multiple-vehicle security patrolling. 

Keywords: vision-based autonomous vehicle, security 
patrolling, optimal path planning, vehicle location, top-
view cameras. 

1. Introduction 

Traditional security surveillance systems, mostly 
consisting of cameras, are passive in the sense that it’s the 
camera positions are fixed and the acquired images have 
fixed fields of views. By the ability of dynamic movement, 
a vision-based autonomous vehicle on the contrary is more 
appropriate for security patrolling in indoor environments. 
When a vehicle detects an abnormal state about a 
monitored object, it can send an alert message to the 
security center actively. In this paper, an optimal security 
patrolling system consisting of multiple vision-based 
autonomous vehicles with omni-monitoring from the 
ceiling is proposed.* 

To decrease time taken to complete one session of 
patrolling all monitored objects, multiple vision-based 
autonomous vehicles are used. A good planning of 
patrolling paths for all vehicles is also necessary to yield 
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better patrolling performances. For this purpose, the three 
critical principles of randomization, optimization, and 
load balancing are considered in the proposed path 
planning scheme. Random vehicle patrolling processes 
make thieves have no idea about when an object is not 
monitored by any vehicle. Optimal path planning and load 
balances among all vehicles aim to decrease the total 
patrolling time. Additionally, shortening the time interval 
between two patrollings over a monitored object area is 
also considered to increase the degree of security. 

In order for a vehicle to carry out the patrolling task 
automatically, processes for learning path nodes, locating 
the vehicle position constantly, and performing the 
security monitoring task are also proposed. For vehicle 
calibration which is required in the learning process, many 
techniques [1-7] have been proposed. But most of them 
are based on the assumptions of having pure-colored 
backgrounds, using robust features, or navigating in ideal 
environments. Therefore, top-view omni-cameras with 
fish-eye lens are utilized in this study to widen the 
applicable environment, which is inspired by a technique 
by Lai and Tsai [8]. By the use of a technique of finding 
corresponding points in 2-D image and 3-D global spaces 
as well as an image interpolation method, the correct 
positions of interesting feature points can be obtained 
from the warped images captured by the top-view cameras. 
Besides, a faster point-correspondence technique is 
proposed to obtain corresponding points in image pairs 
that yield better calibration accuracy. The proposed 
techniques are described in the following sections. 

2. Learning Strategies for Navigation by 
Semi-automatic Driving 

The vision-based vehicles and the top-view omni-
cameras used as a test bed in this study are shown in Fig 1. 
A notebook PC is used to integrate the entire security 
patrolling system. Through wireless networks, the images 
captured by the cameras equipped on the vehicles or by 
those fixed on the ceiling can be analyzed by the PC for 
the vehicles to perform corresponding actions according to 
the commands produced by the PC. For the purpose of 
enabling the vehicles to accomplish the patrolling mission 
successfully, data having to be recorded are categorized 
into area-related, camera-related, and object-related ones. 

Area-related data are about the environment where the 
vehicles patrol. At first, the corner points of the walkable 
area are utilized to acquire all rectangular regions, and 



then some turning points in the overlapping or adjacent 
regions are calculated. By the turning points, the vehicles 
can navigate between any two nodes without collisions 
with the walls. As an example, Fig. 2 shows seven 
rectangle regions composing an area and eight turning 
points represented by circular dots. 
 

  
(a) (b) 

Figure 1. Test bed used in this study. (a) The vision-
based vehicles. (b) The top-view omni-
cameras. 

 
Figure 2. Rectangle regions and turning points in 

an area. 

 
Figure 3. Finding all corresponding point pairs. 

 
Figure 4. An example of learning a monitoring 

point.  
Camera-related data are obtained from a camera 

calibration process. For camera calibration, we record 
corresponding points in 2-D images of a calibration target 
(see Fig. 3) and the corresponding 3-D global space, and 
find the actual position in the global space by a bilinear 
interpolation method. Some advantages of the method 
over the traditional projection-based transformation [9] are 
its higher speed and better calibration accuracy, because 
multiplications and angle operations are reduced. The 
calibration target is taken to be the environment floor and 
the intersections of the tiles on the floor are taken as the 
reference points for point correspondence. To acquire 
more corresponding points faster, we calculate quadratic 
curves in the image of the floor, utilizing three points at 
least for each curve by minimum mean-square-error 
(MMSE) curve fitting, and then find the intersections of 
the curves as the desired reference points in the 2-D space. 
One reference point and it corresponding one in 3-D space 
is exactly one corresponding point pair. A result of finding 
all corresponding points from the image of one top-view 
omni-camera is shown in Fig. 3. 

3. Vehicle Navigation and Object Monitoring 

Vehicles are subject to accumulation of mechanic 
errors as shown in Fig. 5, in which the straight path from 
node O to node A is desired, but the vehicle will actually 
move through a curve from node O to node B. So, the 
position and the direction angle of each vehicle must be 
calibrated after moving a fixed distance. Utilizing the top-
view cameras to analyze absolute vehicle positions from 
top-view images, the vehicle odometer can be corrected. 
To reduce noise influence and the calculation time of 
finding out the vehicle position, we only process a region 
in the image, whose center is the odometer value of the 
vehicle and whose width is a pre-selected value, as shown 
in Fig. 4. To calculate the centroid of the vehicle, 
background subtraction, erosion, dilation, and region 
growing are used. This process of finding out the centroid 
of the vehicle is illustrated in Fig. 6. Then, the absolute 
vehicle position is obtained by transforming this centroid 
into the global space. If the number of components is 
larger than one, it is necessary to find out the one which is 
more like a vehicle by the shape or the number of the 
pixels in the component. Furthermore, if no component is 
found according to the odometer value, the state is that 
there is one vehicle which is not under control, for which 
the system will send a message to the control center. 

Object-related data are used to accomplish the 
patrolling task by vehicles. Because the vehicles suffer 
from mechanic errors, the monitoring points where 
monitored objects are in the view of the vehicles are 
learned by vehicle localization using the top-view cameras, 
and then two correct positions are utilized to acquire a 
direction vector toward an object. An example of learning 
a monitoring point is shown in Fig. 4. 

About the direction angle shown in Fig. 5, the correct 
angle is θ1. Because the distance between two continuous 
vehicle localizations is short, the curve path is close to a 



straight line. We can correct the direction angle of the 
vehicle by θ2 obtained by two continuous correct positions. 
A flowchart of localizing and monitoring vehicles is 
shown in Fig. 7. 
 

1θ
2θ

 
Figure 5. The vehicle suffers from mechanic errors. 

 

Figure 6. Finding the actual position of a vehicle. (a) 
A binary image by background 
subtraction. (b) Erosion of (a). (c) Dilation 
of (b). (d) The connected component of (c) 
and the computed centroid (the white 
circle). 

 
In the navigation phase, the vehicles navigate along 

assigned patrolling paths by orderly arriving at the learned 
nodes, including monitoring points and turning points. 
The idea of using such nodes as guidance points comes 
from a learning method proposed by Chen and Tsai [10]. 
By the current node and the goal node, we can obtain the 
direction vector and then the rotation angle θturn. Each 
vehicle turns to the angle θturn and moves forward. When a 
vehicle has moved a certain distance d, it is localized. 
Furthermore, if the vehicle arrives at a goal node which is 
a monitoring point, the direction angle of the vehicle must 
be adjusted as the one θMP obtained in the learning phase 
before performing the security monitoring task. A 
flowchart is shown in Fig. 8. 

4. Planning of Optimal Randomized 
Patrolling Paths for Vehicles 

Path planning is an important topic for security 
patrolling by multiple vehicles. Many methods for this aim 
have been proposed in [11-13]. Besides, load balancing 
among all vehicles also need to be paid attention. Hert and 

Richards [14] proposed a method of using a polygon 
partitioning algorithm to achieve this objective. In this 
study, we use multiple vision-based autonomous vehicles 
to perform security patrolling. By an optimal 
randomization technique proposed in this study, patrolling 
paths with the properties of randomization, optimization, 
and load balancing within all vehicles can be generated. 
The details are described in the following. 
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Figure 7. Flowchart of locating and monitoring 
vehicles. 

 
Figure 8. Flowchart of guidance and object 

monitoring. 
 

Let the total number of vehicles and monitoring points 
(MPs) be nv and nm, respectively. In the proposed method 
for generating random patrolling paths, we divide all MPs 
into nv groups randomly. Assume that the number of 
chosen MPs for the i-th vehicle is ni, so that the numbers 



can be represented as (n1, n2, ..., nnv). Each ni must satisfy 
two conditions as listed in the following. 

Condition 1:  n1 + n2 + ...+ nnv = nm − nv, 
Condition 2: ,  m v m v
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where Tv is an adjustable parameter and i = 1, 2, ..., nv. 
Because nv MPs are patrolled by nv vehicles at the end of 
the t-th session, there is no need to visit the nv MPs again 
in the (t+1)-th session. This is the reason why the value 
“nm - nv” is included in Condition 1. Additionally, the 
purpose of Condition 2 is to achieve load balancing among 
all vehicles. Because we set a threshold parameter T to 
restrict the differences of the patrolling distances, each ni 

dose not have to be equal to the mean m v

v

n n
n

⎡ ⎤−
⎢ ⎥
⎢ ⎥

 or 

m v

v

n n
n

⎢ −
⎢
⎣ ⎦

⎥
⎥ . Therefore, we add the parameter Tv to obtain 

an upper bound “ m v

v

n n
n

⎡ −
⎢
⎢ ⎥

⎤
⎥ +Tv” and a lower bound 

“ m v

v

n n
n

⎥−
⎥

⎣ ⎦

1 2 11

1 2

..., ,... m v nm v m v v

nv

n n n n nn n n n n
n n nC C C −− − − − −− − −

⎢
⎢ - Tv” for all ni. The parameters Tv and T are 

adjustable. If they are smaller, the time taken to determine 
all patrolling paths is larger, but the loads of all vehicles 
will be more balanced. The state of choosing MPs for all 
vehicles can be represented as 
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where the combination value  is the number of picking 
k MPs from n MPs randomly, defined as  
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The total number of random patrolling paths so is 

. 

As long as one group of MPs is determined, we 
calculate next a path passing all of the MPs under the 
constraint that the distance of the path is the shortest. For 
the monitored objects to be patrolled uniformly, each MP 
is just passed one time. That is, the difference between the 
biggest and the smallest times of MPs passed at any 
moment is desired to be one or zero. In this sense, each 
MP will be visited t times at the end of the t-th session of 
security patrolling. And then the system will calculate new 
patrolling paths for the next session. Because it is desired 
to get the shortest distance path by which each assigned 
MP is visited only once, the problem can be solved as a 
traveling salesman problem (TSP). Some methods for 
solving the TSP can be found in [15-17]. To solve the 
problem as a TSP, the information of the distance between 
each pair of MPs is needed. In this study, the floor shape 
of a vehicle patrolling environment is assumed to be 
composed of rectangular regions. There may be two MPs 

which do not belonging to the same region. If two MPs are 
in different regions, the vehicle might not be able to move 
along a straight path between them without hitting 
obstacles. To obtain the distance between every pair of 
MPs, we must judge whether one pair of MPs belong to an 
identical rectangular region. If yes, the distance of this pair 
is the straight distance between them; else, the straight 
path between them must be abandoned and a new path 
with multiple line segments should be planned using some 
turning points obtained in the learning phase. Because the 
between-MP distance is desired to be the shortest, it can 
be figured out that the distance may be computed by 
Dijkstra’s algorithm [18]. 

As an example, a patrolling environment is shown in 
Fig.9, in which M1 through M4 are monitoring points, and 
N1 through N5 are turning points. Furthermore, each black 
edge connects two points which are in an identical 
rectangular region and each blue edge connects two 
monitoring points which are also in the same one. All 
distances between pairs of monitoring points and turning 
points passed by them are recorded in a table, as shown in 
Table 1. 

Figure 9. A patrolling environment. 
 

Then, we transform the graph in Fig.9 into another, as 
shown in Fig.10. With the complete undirected graph and 
all distances, we can find an optimal patrolling path. 
Because the vehicles do not return to the start position as 
assumed in this study, the path is exactly a Hamiltonian 
path with the minimum distance. The result of Fig.10 
starting at M1 is M1→M3→M4→M2. And then integrating 
the information of Table 1 into the path, we get the final 
result as M1→M3→M4→N4→M2. To achieve the optimal 
randomized patrolling paths for all vehicles, we set a 
threshold parameter T to restrict the differences of the 
patrolling distances for the property of load balancing 
among vehicles. If the condition is not satisfied, all 
monitoring points will be chosen and the patrolling paths 
will be calculated again. 

5. Experimental Results 

We show some experimental results of the proposed 
security patrolling system by two ways. The first is the 
result of optimal randomized patrolling paths shown by a 
simulation using programs written in the Borland C++ 
builder. The other is the result of conducting the 
navigation in an actual environment. 

In the simulation, we create a patrolling environment 
whose floor shape is composed of four rectangular regions, 



as shown in Fig. 11, in which Obj. 0 (M0) through Obj.6 
(M6) are monitoring points. For example, the first vehicle 
starts its navigation at M4 and the second vehicle starts at 
M1. Among all monitoring points, M0, M3, M4, and M6 are 
chosen by the first vehicle; M1, M2, and M5 are chosen by 
the second. The obtained optimal paths are 
M4→M6→M3→M0 and M1→M2→M5, respectively. 
According to the record of turning points passed by 
between each pair of monitoring points, obtained in the 
learning phase, the actual paths are 
M4→M6→N3→M3→N1→M0 and M1→M2→N2→N3→M5, 
respectively, as shown by red and green dotted lines in Fig. 
11. Furthermore, the distances of the paths are 1633.22 
and 1081.56. Because the difference of the distances is 
smaller than the threshold 800, set by the user, the two 
paths are accepted. 

 
Table 1. Distances and passing turning points 

between every pair of monitoring points.
 

 M1 M2 M3 M4 

M1  37 13 16.5 

M2 N1→N2→N3 
(M1→M2) 

 25.5 18.5 

M3  
N4→N2 

(M2→M3) 
 5 

M4 N1 

(M1→M4) 
N4 

(M2→M4) 
  

 
 

 
Figure 10. A complete undirected graph. 

 
To show the advantage of the proposed system, we 

compare the times needed for different control factors, as 
shown in Table 2. If the property of randomization is an 
essential condition, the average time in one session taken 
by using one vehicle is nearly double of that taken by 
using two vehicles. This result tells us that a system with 
multiple vehicles is advantageous. Besides, if the number 
of vehicles is the same, an optimal patrolling path will 
take less time than a non-optimal path. 

The real environment for this experiment is an open 
space area in our laboratory. We drive the vehicle to 
twenty random places and record the values of the actual 
positions and the odometer. The total moved distance is 
4818.40 centimeters and the average error rate without 
calibration by the top-view cameras between the actual 
positions and the odometer values is 8.86%. However, the 
average error rates with calibration are only 3.86% and 
2.51 % for two top-view cameras.  

Furthermore, the task of security patrolling includes 
the work of capturing the pictures of some monitored 

objects. By the top-view omni-cameras to locate the 
vehicles periodically in the patrolling session, the vehicles 
can accomplish the mission with the information of the 
positions and the orientations with respect to the objects, 
obtained in the learning phase. As an illustration, we show 
some results of images taken by the vehicles. Some 
monitored objects are seen in the center of the images 
taken in the learning phase, as shown in Fig. 12(a). The 
images, captured by the vehicles in the patrolling session, 
corresponding to the ones in Fig. 12(a) are shown in Fig. 
12(b). 
 

 
Figure 11. Path planning for two vehicles in a 

session. 
 

Table 2. Distances and passing turning points 
between every pair of monitoring points.

 

Nu er mb
of 

Vehicles
Randomization Optimization 

Average 
Time  

(second
/ 

one 
session)

Saved 
Time/ 

Original 
Time 
(%) 

1 O O 39.4 - 

1 O X 31.6 19.8 

2 O O 19.7 50.0 

2 O X 13.5 65.7  

6. Conclusions 

In this study, we utilize multiple vision-based 
autonomous vehicles to develop a security patrolling 
system in an environment whose floor shape is composed 
of rectangular regions. We have proposed several 
techniques and algorithms for the system, including an 
environment-information calculation method to obtain all 
rectangular regions, which form the floor shape of the 
patrolling environment, the turning points, and then all 
between-MP distances and paths; a point correspondence 
technique integrated with an image interpolation method 
for camera calibration; a faster point-correspondence 
technique for camera calibration; a vehicle-pose learning 



method, by which the vehicles are taught where and in 
which direction to perform the security monitoring task; 
an optimal method for randomized and load-balanced path 
planning, in which each MP is just passed once such that 
monitored objects can be patrolled uniformly; a vehicle 
localization and monitoring method, utilizing the top-view 
omni-cameras. The experimental results revealed the 
feasibility of the proposed system. Future researches may 
be directed to path planni cated 
nvironments. 
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