
 
 

 

 

Abstract- A semi-fragile watermarking scheme 
based on vertex geometry is presented for 3D model 
authentication. Watermark is generated from 3D 
model and random number generator by a seed 
number. To embed and extract watermark, it only 
needs the seed number with some simple arithmetic 
operations. Our method is robust to general 3D 
model processes, such as uniform scaling, 
translation, and vertex reordering. The watermark 
embedding has little impact to the original 3D 
models that PSNR values can be up to nineties. 
Thus the proposed method is very suitable for 
precision instruments or medical science models. 
Experiments also demonstrate that the method is 
time and performance satisfactory.  
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1. Introduction  

In recent years the applications involving digital 
3D data, such like 3D games, 3D tourism maps, 3D 
medical imaging, etc., are rapidly increasing in 
number and many efforts to obtain these models by 
direct acquiring or modeling have been deployed. 
One of reasons that make 3D models popular is that 
users can zoom in/out, enlarge and/or translate 
models to study the interested details. Due to the 
fact of easy duplication and modification of digital 
contents, it is necessary to develop a variety of 
watermarking techniques for various protection 
purposes such as ownership claiming and 
authentication. In this study, a watermarking 
scheme is proposed that it not only can ensure the 
integrity of 3D models but can resist common 
processes with little impact on appearance of 
models. 

According to purposes, watermarking can be 
robust or fragile. Robust watermarking schemes are 
mainly for ownership assertion. As the name 
suggested, these methods should be immune from 
malicious or non-malicious attacks. There are 
studies in [1]-[7] focusing on robust watermarking 
for 3D models. [1] claims that the method can resist 
vertex reordering, noise, smoothing, rotation, 

simplification, cropping, and combination of above 
mentioned attacks. [5] reports to resist 
simplification, noise and cropping attacks. [6] 
claims to resist translation, rotation and the three 
attacks mentioned in [5]. These papers presented 
experiments to support their claims without detailed 
explanations on how experiments were simulated. 
Contrary to robustness, fragile watermarking is 
designed to detect any modification on protected 
data. There are applications that rigorous data 
information is very important, such like 3D models 
for auto parts or medical science, which slight 
changes in the appearances may lead to 
unacceptable parts or medical misjudgments. 
Therefore, those models should be watermarked for 
verifying the data integrity. Semi-fragile 
watermarking methods are robust to common 
processes (non-malicious) but sensitive to 
malicious attacks. Sometimes, it is difficult to 
distinguish methods between fragile ones and 
semi-fragile ones since methods may resist one 
common process only but not the others. [8]-[12] 
focus on fragile or semi-fragile watermarking 
studies. In general, for 3D models, uniform scaling, 
rotation, etc., are non-malicious attacks and 
smoothing, simplification, cropping, etc., are 
malicious attacks. 

This paper is organized in the following. In 
Section 2, related works on 3D watermarking are 
discussed. In Section 3, the proposed method will 
be explained. Experiments and analysis are 
provided in Section 4, and, finally, conclusions and 
future works are given.  

 
2. Related Works 

Some robust watermarking methods, such like 
[1], [5]-[7], would perform registration and/or 
resampling before extracting watermarks. 
Registration can recover the original geometric 
information (location and size). By this way, these 
methods are robust to translation, rotation, (uniform 
& non-uniform) scaling, and other geometric 
attacks. Resampling can make models into a fixed 
form. Consequently, theses methods can resist 
simplification, cropping, vertex reordering, and 
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other topological attacks. Although these kinds of 
processes can enhance the algorithms but they 
usually need the information of original models and 
are computation expensive. 

In 1999, Yeo et al. [8] proposed the first fragile 
watermarking scheme for 3D models. They use two 
hash functions and slightly perturbed the positions 
of vertices to embed watermarks. The method has 
two problems: convergence and causality. Since 
then, improved semi-fragile or fragile methods 
were proposed to solve these problems. As in [11], 
mesh parameterization is used to transform vertices 
into 2D plane and then vertex coordinates are 
modified to embed watermark. Their method solves 
the causality but may have loopholes causing 
detection errors. Chou et al. [9] later proposed a 
fragile watermarking method as an improved of [8] 
and [11]. They use multi-function vertex 
embedding to solve causality and adjusting vertex 
so that the impact of embedding watermarks to 
models is limited. 

Unlike still images, video sequences, or audio, 
3D models lack a structural ordering relation 
among vertices. Therefore, most of schemes would 
use some way to order vertices and perform 
embedding process. Following the same ordering, 
the watermark can be extracted later. This ordering 
should be invariant to common models processes. 
One solution to this problem is by transforming 3D 
points into another coordinate system that has a 
structural ordering. In [8], it first evaluates the 
center of gravity of the model then projects all 
points into a 2D image. The method in [11] applies 
cylindrical coordinates to project all vertices to the 
X-axis. In [9], it uses X-coord. of vertices to find 
out all “marked” vertices, then uses Y, Z 
coordinates of those “marked” vertices as 
embedded features. The method in [3] translates 
coordinates of vertices to have gravity of the 3D 
model located in the center of Cartesian space. In [2] 
and [12], they transform all vertices into spherical 
coordinates. 

 
3. Proposed Scheme 

As the goal of protecting the integrity of digital 
content and robust to common processes, a 
semi-fragile watermarking scheme is proposed and 
explained in the following. 

 
3.1. Watermark generating and embedding 

To obtain a structural ordering relation among 
vertices, 3D vertices are projected on XY-plane. 
Consider a 3D model O ={P,C}, where P={pi=(xi, 
yi, zi), i= 1,…,N} is the vertex set, and C is the 
connectivity relationship (face) on O. Watermark 

embedding and generating process are depicted in 
five steps. 

(1). Calculating the XY-plane centroid XYG and 
sorting all points of the 3D model. 
By projecting all points of the model on 

XY-plane, the centroid is obtained from Eq.(1). 
For point pi, the distance Di is calculated by Eq. (2). 
Then, points on the 3D model are rearranged in 
ascending order according to distances Di.  
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(2). Dividing sorted points into H sections. 
Sorted points are divided into H sections for 

different watermarks embedding where H=⎡N/k1⎤. 
Since statistics from points within one section are 
used for embedding/extracting, small k1 makes 
statistics vulnerable to outliers and large k1 makes 
statistics insensitive to small variations. Besides, 
any section with points less than k2 will be merged 
to one of its neighboring section that has fewer 
points. In our experiment, k1 and k2 are chosen as 
100 and 75 heuristically. To be robust to reordering 
attack, points of the same distance are adjusted to 
be in the same section. 

There are two ways to divide points into sections: 
equal section width and equal number of points. 
The former, each section covers the same width, 
may have sections with few or many points, and the 
latter, each section has the same number of points, 
may have sections with very narrow or very wide 
ranges. We adopt the combination of these two 
methods with a weight α as in Eq.(3). To divide 
into H sections, each of these two methods 
produces H-1 thresholds, 

)1(111 ,..., −Htt and
)1(221 ,..., −Htt , 

let ti be the final threshold, then 
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with t0=min{Di} & tH=max{Di}, i=1,2,…, N, point 
pi is in section k (≥ 2) if 

kik tDt ≤<−1
, or k=1 if 

10 tDt i ≤≤ . In our experiment, α =0.5. 

 (3). Watermark generating and embedding for 
each section. 

After all the points are reordered and divided into 
H sections, the watermarks for section k will be 
generated and embedded, k = 1, 2, …, H: 

 With a meaningful number as the seed number, 
such as the owner's ID number, a decimal digit 
sequence of length 3H is generated by random 
number generator. The three digits d1, d2, d3 
positioned at 3k, 3k+1, 3k+2 of the sequence are 



 
 

 

to be composed into 4-digit watermarks for 
section k in the next step. 

 Consider points in section k, we first normalize 
Z-coord. of these points to be zero mean and 
unit variance by Eq.(4)-(6). Further divide the 
section into three subsections by the ratio of 
3:4:3. Upon each subsection, extract 4-digit 
numbers from the 4th to 7th decimal places of 
normalized Z-coord. of every point. For 
example, 3368 is extracted from 1.392336821. 
Let d01, d02, d03 be the thousands place of the 
average of these 4-digit numbers from three 
subsections. The watermarks wk1= d01d1d2d3, 
wk2= d02d1d2d3, wk3= d03d1d2d3 are consequently 
generated for three subsections of the section k. 

 For each point p in the subsection i of section k, 
the 4-digit watermark wki is to be embedded into 
p’s normalized Z-coord.. Embedding is simply 
to replace the 4th to 7th decimal places of 
normalized Z-coord. of p by wki. 

    (4)                                ,
1

0
k

N

i
ik Nz

k

∑
−

=

=μ

(5)        ,  )(
1

0

2
k

N

i
kik Nz

k

∑
−

=

−= μσ

(6)                                   .   
σ
μzz'

k

ki
i

−
=

Take Aardvark as an example, |P|=264,  |C|=500, 
and ⎡N/k1⎤=⎡264/100⎤=3. After merging & 
adjusting, Aardvark is divided into H=2 
sections. Using a random number generator 
with a seed number, a decimal digit sequence of 
size 3H = 6 is generated, say, 346130, where 
346 is for section 1 and 130 is for section 2. As 
for k=1, the normalized Z-coord. of points are 
divided into three subsections. And the average 
of those extracted 4-digit numbers are 4548.7, 
4487.1, and 4439. Thus d01= 4, d02 = 4 and d03 = 
4. With the corresponding three digits d1d2d3 = 
346, the watermarks are wk1= wk2= wk3 =4346. 
Table 1 shows the embedding result where the 
4th to 7th decimal places of normalized Z-coord. 
now is replaced by the watermark. 

(4). Compensation. 
Let iii zzz ′′′,,  be the Z-coord. of point pi original, 

after normalized, and after watermarked. Now 
iz ′′ should be reversed by Eq.(7) to obtain the 

watermarked model whereμk and σk are (4), (5). 
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Unlike z′ , the distribution of z ′′ is neither zero mean 
nor unit variance anymore. Since keeping the 
watermarked ẑ as similar to the original z as 

possible is essential to correctly extract the 
watermarks later, thus, 10% of points from the top 
and bottom in section k are chosen respectively to 
make z ′′ to be zero mean. Let μk,embedded be the 
average of z ′′ in the section k of total Nk points and 
m= ⎣ Nk ⋅10%⎦ the number of points that is 10% of 
points in section k, then for i=1, 2, …, Nk, 
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where δ = (μk,embedded ⋅Nk)/2m. Table 2 is the 
compensation result of Aardvark for section one 
which has 130 points. The shaded cells are 
compensated vertices (m=13). As in the table, the 
average of z ′′ , μk,embedded, is 4.04738 E-5, and, after 
compensation, the average of z ′′′ is -8.54018 E-18. 

(5). Obtaining the watermarked model. 
 Substituting z ′′′ for z ′′ in Eq.(7) to reverse the 

normalization process as in (9), the watermarked 
model is obtained. 

(9)                                             . ˆ kkii zz μσ +∗′′′=  

Table 1. Watermark embedding for Aardvark (k=1) 
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Table 2. The compensation for Aardvark (k=1) 
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3.2. Watermark extracting 
 The extracting process is similar to the 

embedding process. When an authorized user 
receives a watermarked model with information of 
the seed number, he follows the steps 1, 2 in the 
embedding phase to divide points into H sections. 
For each section k, three 4-digit watermarks wk1, wk2, 
wk3 (hypothetic watermarks) are generated as in 
step 3. The extracted watermarks are from the 4th to 
7th decimal places of normalized Z-coord.. Let wi 
and

iŵ be the hypothetic and extracted 4-digit 
watermarks corresponding to point pi. Theoretically, 
these two values should be very similar if the 
watermarked model is not attacked. Therefore, by 
observing the differences of wi and

iŵ we can 
determine whether the model is attacked. Since the 
calculations described above are floating-point 
operations, it is common that the results have small 
errors on decimals and possibly cause differences in 
carrying digits. Thus, if di is the difference of wi 
and

iŵ for point pi, then 

(10)             .|)ˆ|10000|,ˆmin(| iiiii wwwwd −−−=  

Let kd , average of all di, be the extracted result for 
section k. When kd is less than or equal to the 
threshold, we conclude that points in section k are 
authentic. Note that those compensated points are 
ignored in evaluating kd  since they have no 
watermark information anymore. Table 3 shows the 
extracted result for k=1. The first two columns are 
the hypothetic iw and the extracted iŵ ; the last 
column is di. Finally, 1d is 40.3.  
 
 
 
 
 
 
 
 
 
 
 
 
4. Experiments and Discussions 

43 models from simple (Ball, |P|=34 & |C|=64; 
Tree, |P|=56 & |C|=104) to complicated (Horse, 
|P|=19,851 & |C|=39,698; Bunny, |P|=35,947 & 
|C|=69,451) are tested on the proposed scheme. 

 
 

4.1. The perceptual quality and validity  
In table 4, we show original and watermarked 

models, and extracted results of both for Bunny 
(H=290), Horse (H=172), Dog (H=11). For 
perceptual quality, before and after watermarking 
of the model are compared. Apparently there is no 
difference visually. For validity, the extracted 
results kd from un-watermarked models, in blue, 
and watermarked models, in pink, are shown in the 
table. Figures in horizontal axis are number of 
points in section 1, 2, …, H, and vertical axis shows 
the average difference on that section, i.e., 

kd for 
section k. We can easily distinguish whether the 
model is watermarked from the distributions of 
these two lines. 

When extracting watermarks from an 
un-watermarked model, the extracted iŵ , the 4th to 
7th decimal places of normalized Z-coord., is a 
random value among 0000 to 9999. From uniform 
distribution, μ (mean) and σ (standard deviation) 
are about 5000 and 2887. Although the first digit of 
the hypothetic watermark iw is from the average of 
the 4-digit numbers on normalized Z-coord., many 
first digits in iw and iŵ are still different due to a 
very high standard deviation. Thus, we can 
assume id in (10) is approximately distributed 
uniformly in 0 ~ 5000 with μ ≈2500 and σ ≈1444. 
By Central Limit Theorem, kd is approximately 
Gaussian with μ ≈2500 and  σ ≈1444/√Nk. We can 
see that the average differences for those blue lines 
are around 2500 conforming to the analysis. On the 
other hand, when extracting watermarks from a 
watermarked model, most of first digits 
in iw and iŵ are the same. Thus, id is 
approximately distributed uniformly in 0 ~ 500, 
consequently, kd is approximately Gaussian with μ 
≈250 and σ ≈ 289/√Nk. As shown on table 4, the 
average differences for those pink lines are around 
250. To determine the integrity of the model, we 
take [0.5*( wt ˆ + tw)] as the threshold where wt ˆ is two 
standard deviations below the mean of

kd for 
un-watermarked models and tw is two standard 
deviations above the mean of kd for watermarked 
models. Taking Nk to be 100, the threshold is 
[0.5*(2211.2+307.8)] = [1259.5] = 1260. 
Whenever kd is not greater than 1260, we conclude 
that points on section k are authentic such like 
points on section one of Aardvark (table 3). 

Table 3. Aardvark extracted result for section one 
Hypothetic Extracted Differences 

wi iŵ  |
iŵ - wi| 0000-|

iŵ - wi| di 

4346 2386 1960 8040  
   4346 6433 2087 7913  

… … … … … 
4346 4396 50 9950 50 
4346 4394 48 9952 48 
4346 4347 1 9999 1 

… … … … … 

4346 6420 2074 7926  
4346 6419 2073 7927  

Extracted result 
1d = 40.3 



 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2. Attacks simulations 
A series of non-malicious attacks are applied on 

watermarked Aardvark (H=2) uniformly scaled by 
2, & uniformly scaled by 1.5 then translated by 1 
unit. As the extracted results summarized in table 5, 
the proposed scheme is not affected by translation 
and uniform scaling due to the normalization 
process in embedding and extracting phases.  

Partially enlarged attack is also applied on 
watermarked Aardvark where table 6 shows the (a) 
original, (b) attacked model such that its nose is 
enlarged 1.2 times (27 points are involved), and 
their corresponding extracted results. As in (b), 
both 21 & dd yield unacceptable results (>1260) 
since these 27 points are scattered in both sections. 
We can conclude that the model is attacked even 
though it is hard to notice from its appearance. 

 
 

 

 
 
Resampling attack (attack a) is simulated on Dog 

(H=11). The simulation is done by merging two 
points (no.127 & no.128) into one (no.128) which 

causes little difference in appearance. Extracted 
results are in table 7. As rows indicated attack a 
shown, results on sections 3~6 (shaded cells) are 
detected as having been affected while other 
sections are not affected. Although only one point 
is merged, it causes different partition in H sections 
and consequently neighboring sections may also be 
influenced. Finally, the reordering attack (attack b) 
is applied on Dog. The simulation is done by 
switching two points (no.10 & no.20) and their 
corresponding face information. Notice that 
although the ordering of points has been switched, 
the model is not modified. Therefore, our algorithm 
should confirm that the model is authentic. In table 
7, the rows indicated attack b exhibit this fact. 

 
 
 
4.3. Quality measurements  

To measure the impact of watermarking on 
models, we adopt two formulas from [3] and [13]. 
Authors in [3] used PSNR, Eq. (11), to evaluate the 
transparency of 3D watermarked models. 
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where N is total number of points in the model, 

nI and nI ′ are geometric information on point n 
before and after watermarked. Table 8 lists PSNR 
values of our method and the method in [3]. As it is 
shown, the PSNR values are very satisfying for our 
method. 

Authors in [13] use MSE, Eq. (12), to measure 
the quality of the watermarked models.  
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where N is total number of points for the model, 

iv and iv′ are geometric information on point i 
before and after watermarked. Table 9 shows MSE 
values. Although we do not have Screwdriver, 
comparing those values, there is an impressive 
difference in those values. From both tables, our 

Table 4. Before & after watermarked 
before after Extracted results:  before(blue) & after(pink) 

  

bunny 分290段權重0.5嵌入前後每段的平均差距
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Table 5. Extracted results for Aardvark undergoes
uniform scaling β & translation γ  

Extracted results, i.e., 
kd , for Aardvark 

 ( β , γ ) 
(section) k No.of pts (0,0) (2,0) (1.5,1) 

1 130 40.8942 40.8942 40.8942 
2 134 340.5648 340.5648 340.5648 

Table 6. Extracted result on partially enlargement 
 (a) No attack (b)  Nose enlarged 

 

  
k=1 40.8942 2335.7905 
k=2 340.5648 2409.8598 

Table 7. Extracted results: Dog on  
resampling (Attack a) and reordering (Attack b) 

(section) k 1 2 3 4 5 6 

Noattack 99.5 293.2 599.9 597.5 402.2 349 

Attack a 99.5 293.2 1964 2385 2629 2546

Attack b 99.5 293.2 599.9 597.5 402.2 349 

(section) k 7 8 9 10 11 

No attack 21.6 187 33.2 505.6 308.2 

Attack a 21.6 187 33.2 505.6 308.2 

Attack b 21.6 187 33.2 505.6 308.2 

 



 
 

 

method has little impact on the appearances of 
models; therefore, the method is very suitable for 
rigorous instrument models which both integrity 
and precision are very important. 

Time consumption is summarized in table 10 
when testing environment is Pentium 4 CPU, 
3.20GHz, and 512 MB memory. As illustrated, the 
proposed method is time efficient that even the 
complicated model Bunny of 35,947 vertices & 290 
sections takes about 4.5 & 3.5 seconds to complete 
the embedding and extracting. 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 

5. Conclusions and Future Works 
This paper proposed a semi-fragile 

watermarking method for 3D models to verify the 
integrity of models. Our scheme is robust to 
uniform scaling, translation, and also robust to 
vertex reordering attack. The method can detect 
malicious attacks like partially enlarging, 
resampling. The receiver only needs the seed 
number to verify the integrity of 3 D model. 
Because watermarks are embedded in the 
normalized Z coord. of the 4th to7th decimal places, 
the impact on a model is very small, so this method 
is suitable for rigorous equipment or medical 3D 
model. 

Our method can find local modification region, 
however, it could not indicate which points have 
been attacked exactly. In addition, instead of 
projecting all points on XY-plane, PCA is a good 
choice to achieve the same goal with rotation 
invariance. In the future, we would like to enhance 
the method according to the abovementioned. 
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Table 9.  MSE values 
Models Horse Bunny Dog Aardvark Screwdriver

Our method 4.22E-10 1.56E-09 2.50E-10 3.03E-10 N/A 
Method [12] N/A N/A 4.98E-03 N/A 3.51E-05 

Table 10.  Time consumption (in millisecond) 
Models 
(N,H) 

Horse 
(19851,172) 

Bunny 
(35947,290) 

Dog 
(1871,11) 

Aardvark 
(264,2) 

Embed  2453 4438 219 31 
Extract  1860 3594 172 16 

 

Table 8.  PSNR values 
Models Horse Bunny Dog Aardvark 

Our method 88.3738 83.7608 91.5727 90.7543 
Method in [8] 38.87 39.78 N/A N/A 


