

Abstract- A semi-fragile watermarking scheme
based on vertex geometry is presented for 3D model
authentication. Watermark is generated from 3D
model and random number generator by a seed
number. To embed and extract watermark, it only
needs the seed number with some simple arithmetic
operations. Our method is robust to general 3D
model processes, such as uniform scaling,
translation, and vertex reordering. The watermark
embedding has little impact to the original 3D
models that PSNR values can be up to nineties.
Thus the proposed method is very suitable for
precision instruments or medical science models.
Experiments also demonstrate that the method is
time and performance satisfactory.

Keywords: Semi-fragile, Watermark, 3D model

1. Introduction

In recent years the applications involving digital
3D data, such like 3D games, 3D tourism maps, 3D
medical imaging, etc., are rapidly increasing in
number and many efforts to obtain these models by
direct acquiring or modeling have been deployed.
One of reasons that make 3D models popular is that
users can zoom in/out, enlarge and/or translate
models to study the interested details. Due to the
fact of easy duplication and modification of digital
contents, it is necessary to develop a variety of
watermarking techniques for various protection
purposes such as ownership claiming and
authentication. In this study, a watermarking
scheme is proposed that it not only can ensure the
integrity of 3D models but can resist common
processes with little impact on appearance of
models.

According to purposes, watermarking can be
robust or fragile. Robust watermarking schemes are
mainly for ownership assertion. As the name
suggested, these methods should be immune from
malicious or non-malicious attacks. There are
studies in [1]-[7] focusing on robust watermarking
for 3D models. [1] claims that the method can resist
vertex reordering, noise, smoothing, rotation,

simplification, cropping, and combination of above
mentioned attacks. [5] reports to resist
simplification, noise and cropping attacks. [6]
claims to resist translation, rotation and the three
attacks mentioned in [5]. These papers presented
experiments to support their claims without detailed
explanations on how experiments were simulated.
Contrary to robustness, fragile watermarking is
designed to detect any modification on protected
data. There are applications that rigorous data
information is very important, such like 3D models
for auto parts or medical science, which slight
changes in the appearances may lead to
unacceptable parts or medical misjudgments.
Therefore, those models should be watermarked for
verifying the data integrity. Semi-fragile
watermarking methods are robust to common
processes (non-malicious) but sensitive to
malicious attacks. Sometimes, it is difficult to
distinguish methods between fragile ones and
semi-fragile ones since methods may resist one
common process only but not the others. [8]-[12]
focus on fragile or semi-fragile watermarking
studies. In general, for 3D models, uniform scaling,
rotation, etc., are non-malicious attacks and
smoothing, simplification, cropping, etc., are
malicious attacks.

This paper is organized in the following. In
Section 2, related works on 3D watermarking are
discussed. In Section 3, the proposed method will
be explained. Experiments and analysis are
provided in Section 4, and, finally, conclusions and
future works are given.

2. Related Works

Some robust watermarking methods, such like
[1], [5]-[7], would perform registration and/or
resampling before extracting watermarks.
Registration can recover the original geometric
information (location and size). By this way, these
methods are robust to translation, rotation, (uniform
& non-uniform) scaling, and other geometric
attacks. Resampling can make models into a fixed
form. Consequently, theses methods can resist
simplification, cropping, vertex reordering, and

Shwu-Huey Yen,Yu-Ying Chen, and Hwei-Jen Lin
PRIA Lab., CSIE Department, Tamkang University

105390@mail.tku.edu.tw, 695410331@s95.tku.edu.tw, hjlin@cs.tku.edu.tw

A Content-Based Semi-Fragile Mesh Watermarking Scheme

other topological attacks. Although these kinds of
processes can enhance the algorithms but they
usually need the information of original models and
are computation expensive.

In 1999, Yeo et al. [8] proposed the first fragile
watermarking scheme for 3D models. They use two
hash functions and slightly perturbed the positions
of vertices to embed watermarks. The method has
two problems: convergence and causality. Since
then, improved semi-fragile or fragile methods
were proposed to solve these problems. As in [11],
mesh parameterization is used to transform vertices
into 2D plane and then vertex coordinates are
modified to embed watermark. Their method solves
the causality but may have loopholes causing
detection errors. Chou et al. [9] later proposed a
fragile watermarking method as an improved of [8]
and [11]. They use multi-function vertex
embedding to solve causality and adjusting vertex
so that the impact of embedding watermarks to
models is limited.

Unlike still images, video sequences, or audio,
3D models lack a structural ordering relation
among vertices. Therefore, most of schemes would
use some way to order vertices and perform
embedding process. Following the same ordering,
the watermark can be extracted later. This ordering
should be invariant to common models processes.
One solution to this problem is by transforming 3D
points into another coordinate system that has a
structural ordering. In [8], it first evaluates the
center of gravity of the model then projects all
points into a 2D image. The method in [11] applies
cylindrical coordinates to project all vertices to the
X-axis. In [9], it uses X-coord. of vertices to find
out all “marked” vertices, then uses Y, Z
coordinates of those “marked” vertices as
embedded features. The method in [3] translates
coordinates of vertices to have gravity of the 3D
model located in the center of Cartesian space. In [2]
and [12], they transform all vertices into spherical
coordinates.

3. Proposed Scheme

As the goal of protecting the integrity of digital
content and robust to common processes, a
semi-fragile watermarking scheme is proposed and
explained in the following.

3.1. Watermark generating and embedding

To obtain a structural ordering relation among
vertices, 3D vertices are projected on XY-plane.
Consider a 3D model O ={P,C}, where P={pi=(xi,
yi, zi), i= 1,…,N} is the vertex set, and C is the
connectivity relationship (face) on O. Watermark

embedding and generating process are depicted in
five steps.

(1). Calculating the XY-plane centroid XYG and
sorting all points of the 3D model.
By projecting all points of the model on

XY-plane, the centroid is obtained from Eq.(1).
For point pi, the distance Di is calculated by Eq. (2).
Then, points on the 3D model are rearranged in
ascending order according to distances Di.

(1) 1)(where),(
1
∑
=

==
N

i
iXY p

N
z,y,xyxG

(2))()(22 yyxxD iii −+−=

(2). Dividing sorted points into H sections.
Sorted points are divided into H sections for

different watermarks embedding where H=⎡N/k1⎤.
Since statistics from points within one section are
used for embedding/extracting, small k1 makes
statistics vulnerable to outliers and large k1 makes
statistics insensitive to small variations. Besides,
any section with points less than k2 will be merged
to one of its neighboring section that has fewer
points. In our experiment, k1 and k2 are chosen as
100 and 75 heuristically. To be robust to reordering
attack, points of the same distance are adjusted to
be in the same section.

There are two ways to divide points into sections:
equal section width and equal number of points.
The former, each section covers the same width,
may have sections with few or many points, and the
latter, each section has the same number of points,
may have sections with very narrow or very wide
ranges. We adopt the combination of these two
methods with a weight α as in Eq.(3). To divide
into H sections, each of these two methods
produces H-1 thresholds,

)1(111 ,..., −Htt and
)1(221 ,..., −Htt ,

let ti be the final threshold, then

 (3) 1-1 ,)]1([)(21 Hittt iii ≤≤−∗+∗= αα

with t0=min{Di} & tH=max{Di}, i=1,2,…, N, point
pi is in section k (≥ 2) if

kik tDt ≤<−1
, or k=1 if

10 tDt i ≤≤ . In our experiment, α =0.5.

 (3). Watermark generating and embedding for
each section.

After all the points are reordered and divided into
H sections, the watermarks for section k will be
generated and embedded, k = 1, 2, …, H:

 With a meaningful number as the seed number,
such as the owner's ID number, a decimal digit
sequence of length 3H is generated by random
number generator. The three digits d1, d2, d3
positioned at 3k, 3k+1, 3k+2 of the sequence are

to be composed into 4-digit watermarks for
section k in the next step.

 Consider points in section k, we first normalize
Z-coord. of these points to be zero mean and
unit variance by Eq.(4)-(6). Further divide the
section into three subsections by the ratio of
3:4:3. Upon each subsection, extract 4-digit
numbers from the 4th to 7th decimal places of
normalized Z-coord. of every point. For
example, 3368 is extracted from 1.392336821.
Let d01, d02, d03 be the thousands place of the
average of these 4-digit numbers from three
subsections. The watermarks wk1= d01d1d2d3,
wk2= d02d1d2d3, wk3= d03d1d2d3 are consequently
generated for three subsections of the section k.

 For each point p in the subsection i of section k,
the 4-digit watermark wki is to be embedded into
p’s normalized Z-coord.. Embedding is simply
to replace the 4th to 7th decimal places of
normalized Z-coord. of p by wki.

 (4) ,
1

0
k

N

i
ik Nz

k

∑
−

=

=μ

(5) ,)(
1

0

2
k

N

i
kik Nz

k

∑
−

=

−= μσ

(6) .
σ
μzz'

k

ki
i

−
=

Take Aardvark as an example, |P|=264, |C|=500,
and ⎡N/k1⎤=⎡264/100⎤=3. After merging &
adjusting, Aardvark is divided into H=2
sections. Using a random number generator
with a seed number, a decimal digit sequence of
size 3H = 6 is generated, say, 346130, where
346 is for section 1 and 130 is for section 2. As
for k=1, the normalized Z-coord. of points are
divided into three subsections. And the average
of those extracted 4-digit numbers are 4548.7,
4487.1, and 4439. Thus d01= 4, d02 = 4 and d03 =
4. With the corresponding three digits d1d2d3 =
346, the watermarks are wk1= wk2= wk3 =4346.
Table 1 shows the embedding result where the
4th to 7th decimal places of normalized Z-coord.
now is replaced by the watermark.

(4). Compensation.
Let iii zzz ′′′,, be the Z-coord. of point pi original,

after normalized, and after watermarked. Now
iz ′′ should be reversed by Eq.(7) to obtain the

watermarked model whereμk and σk are (4), (5).

(7) . ˆ kkii zz μσ +⋅′′=

Unlike z′ , the distribution of z ′′ is neither zero mean
nor unit variance anymore. Since keeping the
watermarked ẑ as similar to the original z as

possible is essential to correctly extract the
watermarks later, thus, 10% of points from the top
and bottom in section k are chosen respectively to
make z ′′ to be zero mean. Let μk,embedded be the
average of z ′′ in the section k of total Nk points and
m= ⎣ Nk ⋅10%⎦ the number of points that is 10% of
points in section k, then for i=1, 2, …, Nk,

(8)
,

,

⎩
⎨
⎧

−≤<′′
−>≤−′′

=′′′
mNimz

mNiormiifz
z

ki

ki
i

δ

where δ = (μk,embedded ⋅Nk)/2m. Table 2 is the
compensation result of Aardvark for section one
which has 130 points. The shaded cells are
compensated vertices (m=13). As in the table, the
average of z ′′ , μk,embedded, is 4.04738 E-5, and, after
compensation, the average of z ′′′ is -8.54018 E-18.

(5). Obtaining the watermarked model.
 Substituting z ′′′ for z ′′ in Eq.(7) to reverse the

normalization process as in (9), the watermarked
model is obtained.

(9) . ˆ kkii zz μσ +∗′′′=

Table 1. Watermark embedding for Aardvark (k=1)

-1.0794346-1.079737113-1.0534346-1.053622665-0.2284346-0.228395906

-1.0934346-1.0930300341.08643461.0864041560.19343460.193003867

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1.13943461.1395416881.14343461.1432053660.95943460.959102973

1.71143461.711527886-0.7284346-0.7284315160.70443460.704162146

-1.2734346-1.27325839-1.6294346-1.629717863-0.7314346-0.731558005

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.10543460.105422598-0.7864346-0.786558529-1.3754346-1.375404624

-0.0414346-0.041584630.73843460.7387376951.39243461.392336821

z''z'z''z'z''z'

EmbeddingNormalizationEmbeddingNormalizationEmbeddingNormalization

3th-subsection2th-subsection1th-subsection
3D model – Aardvark watermark embedding

-1.0794346-1.079737113-1.0534346-1.053622665-0.2284346-0.228395906

-1.0934346-1.0930300341.08643461.0864041560.19343460.193003867

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1.13943461.1395416881.14343461.1432053660.95943460.959102973

1.71143461.711527886-0.7284346-0.7284315160.70443460.704162146

-1.2734346-1.27325839-1.6294346-1.629717863-0.7314346-0.731558005

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.10543460.105422598-0.7864346-0.786558529-1.3754346-1.375404624

-0.0414346-0.041584630.73843460.7387376951.39243461.392336821

z''z'z''z'z''z'

EmbeddingNormalizationEmbeddingNormalizationEmbeddingNormalization

3th-subsection2th-subsection1th-subsection
3D model – Aardvark watermark embedding

Table 2. The compensation for Aardvark (k=1)

Average of z’’：0.0000404738 Average of z’’’：-8.54018E-18
-1.079636969-1.0794346-1.0534346-1.0534346-0.2284346-0.2284346

-1.093636969-1.0934346
.
.
.

.

.

.

.

.

.

.

.

.

-0.762636969-0.76243460.86143460.8614346-0.9034346-0.9034346

-1.652636969-1.65243460.86443460.86443460.91243460.9124346

0.7972322310.7974346
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
-0.4984346-0.4984346-0.017636969-0.0174346

-1.1624346-1.16243460.96043460.9604346-0.917636969-0.9174346

-1.0474346-1.0474346-0.9974346-0.99743460.9352322310.9354346

.

.

.

.

.

.
-0.7864346-0.7864346-1.375636969-1.3754346

-0.0414346-0.04143460.73843460.73843461.3922322311.3924346

z'''z''z'''z''z'''z''

3th-subsection2th-subsection1th-subsection

3D model - the compensation result of Aardvark

Average of z’’：0.0000404738 Average of z’’’：-8.54018E-18
-1.079636969-1.0794346-1.0534346-1.0534346-0.2284346-0.2284346

-1.093636969-1.0934346
.
.
.

.

.

.

.

.

.

.

.

.

-0.762636969-0.76243460.86143460.8614346-0.9034346-0.9034346

-1.652636969-1.65243460.86443460.86443460.91243460.9124346

0.7972322310.7974346
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
-0.4984346-0.4984346-0.017636969-0.0174346

-1.1624346-1.16243460.96043460.9604346-0.917636969-0.9174346

-1.0474346-1.0474346-0.9974346-0.99743460.9352322310.9354346

.

.

.

.

.

.
-0.7864346-0.7864346-1.375636969-1.3754346

-0.0414346-0.04143460.73843460.73843461.3922322311.3924346

z'''z''z'''z''z'''z''

3th-subsection2th-subsection1th-subsection

3D model - the compensation result of Aardvark

3.2. Watermark extracting
 The extracting process is similar to the

embedding process. When an authorized user
receives a watermarked model with information of
the seed number, he follows the steps 1, 2 in the
embedding phase to divide points into H sections.
For each section k, three 4-digit watermarks wk1, wk2,
wk3 (hypothetic watermarks) are generated as in
step 3. The extracted watermarks are from the 4th to
7th decimal places of normalized Z-coord.. Let wi
and

iŵ be the hypothetic and extracted 4-digit
watermarks corresponding to point pi. Theoretically,
these two values should be very similar if the
watermarked model is not attacked. Therefore, by
observing the differences of wi and

iŵ we can
determine whether the model is attacked. Since the
calculations described above are floating-point
operations, it is common that the results have small
errors on decimals and possibly cause differences in
carrying digits. Thus, if di is the difference of wi
and

iŵ for point pi, then

(10) .|)ˆ|10000|,ˆmin(| iiiii wwwwd −−−=

Let kd , average of all di, be the extracted result for
section k. When kd is less than or equal to the
threshold, we conclude that points in section k are
authentic. Note that those compensated points are
ignored in evaluating kd since they have no
watermark information anymore. Table 3 shows the
extracted result for k=1. The first two columns are
the hypothetic iw and the extracted iŵ ; the last
column is di. Finally, 1d is 40.3.

4. Experiments and Discussions

43 models from simple (Ball, |P|=34 & |C|=64;
Tree, |P|=56 & |C|=104) to complicated (Horse,
|P|=19,851 & |C|=39,698; Bunny, |P|=35,947 &
|C|=69,451) are tested on the proposed scheme.

4.1. The perceptual quality and validity
In table 4, we show original and watermarked

models, and extracted results of both for Bunny
(H=290), Horse (H=172), Dog (H=11). For
perceptual quality, before and after watermarking
of the model are compared. Apparently there is no
difference visually. For validity, the extracted
results kd from un-watermarked models, in blue,
and watermarked models, in pink, are shown in the
table. Figures in horizontal axis are number of
points in section 1, 2, …, H, and vertical axis shows
the average difference on that section, i.e.,

kd for
section k. We can easily distinguish whether the
model is watermarked from the distributions of
these two lines.

When extracting watermarks from an
un-watermarked model, the extracted iŵ , the 4th to
7th decimal places of normalized Z-coord., is a
random value among 0000 to 9999. From uniform
distribution, μ (mean) and σ (standard deviation)
are about 5000 and 2887. Although the first digit of
the hypothetic watermark iw is from the average of
the 4-digit numbers on normalized Z-coord., many
first digits in iw and iŵ are still different due to a
very high standard deviation. Thus, we can
assume id in (10) is approximately distributed
uniformly in 0 ~ 5000 with μ ≈2500 and σ ≈1444.
By Central Limit Theorem, kd is approximately
Gaussian with μ ≈2500 and σ ≈1444/√Nk. We can
see that the average differences for those blue lines
are around 2500 conforming to the analysis. On the
other hand, when extracting watermarks from a
watermarked model, most of first digits
in iw and iŵ are the same. Thus, id is
approximately distributed uniformly in 0 ~ 500,
consequently, kd is approximately Gaussian with μ
≈250 and σ ≈ 289/√Nk. As shown on table 4, the
average differences for those pink lines are around
250. To determine the integrity of the model, we
take [0.5*(wt ˆ + tw)] as the threshold where wt ˆ is two
standard deviations below the mean of

kd for
un-watermarked models and tw is two standard
deviations above the mean of kd for watermarked
models. Taking Nk to be 100, the threshold is
[0.5*(2211.2+307.8)] = [1259.5] = 1260.
Whenever kd is not greater than 1260, we conclude
that points on section k are authentic such like
points on section one of Aardvark (table 3).

Table 3. Aardvark extracted result for section one
Hypothetic Extracted Differences

wi iŵ |
iŵ - wi| 0000-|

iŵ - wi| di

4346 2386 1960 8040
 4346 6433 2087 7913

… … … … …
4346 4396 50 9950 50
4346 4394 48 9952 48
4346 4347 1 9999 1

… … … … …

4346 6420 2074 7926
4346 6419 2073 7927

Extracted result
1d = 40.3

4.2. Attacks simulations
A series of non-malicious attacks are applied on

watermarked Aardvark (H=2) uniformly scaled by
2, & uniformly scaled by 1.5 then translated by 1
unit. As the extracted results summarized in table 5,
the proposed scheme is not affected by translation
and uniform scaling due to the normalization
process in embedding and extracting phases.

Partially enlarged attack is also applied on
watermarked Aardvark where table 6 shows the (a)
original, (b) attacked model such that its nose is
enlarged 1.2 times (27 points are involved), and
their corresponding extracted results. As in (b),
both 21 & dd yield unacceptable results (>1260)
since these 27 points are scattered in both sections.
We can conclude that the model is attacked even
though it is hard to notice from its appearance.

Resampling attack (attack a) is simulated on Dog

(H=11). The simulation is done by merging two
points (no.127 & no.128) into one (no.128) which

causes little difference in appearance. Extracted
results are in table 7. As rows indicated attack a
shown, results on sections 3~6 (shaded cells) are
detected as having been affected while other
sections are not affected. Although only one point
is merged, it causes different partition in H sections
and consequently neighboring sections may also be
influenced. Finally, the reordering attack (attack b)
is applied on Dog. The simulation is done by
switching two points (no.10 & no.20) and their
corresponding face information. Notice that
although the ordering of points has been switched,
the model is not modified. Therefore, our algorithm
should confirm that the model is authentic. In table
7, the rows indicated attack b exhibit this fact.

4.3. Quality measurements

To measure the impact of watermarking on
models, we adopt two formulas from [3] and [13].
Authors in [3] used PSNR, Eq. (11), to evaluate the
transparency of 3D watermarked models.

(11) ,
)(

maxlog10 2

2

10 ∑ ′−
∗

=

n
nn

n

II
INPSNR

where N is total number of points in the model,

nI and nI ′ are geometric information on point n
before and after watermarked. Table 8 lists PSNR
values of our method and the method in [3]. As it is
shown, the PSNR values are very satisfying for our
method.

Authors in [13] use MSE, Eq. (12), to measure
the quality of the watermarked models.

(12) ,ˆ1
2

1
 v-v

N
MSE

N

i
ii∑

=

=

where N is total number of points for the model,

iv and iv′ are geometric information on point i
before and after watermarked. Table 9 shows MSE
values. Although we do not have Screwdriver,
comparing those values, there is an impressive
difference in those values. From both tables, our

Table 4. Before & after watermarked
before after Extracted results: before(blue) & after(pink)

bunny 分290段權重0.5嵌入前後每段的平均差距

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Bin

Count

117 84 99 102 119 95 106 147 132 154 164 162 127 169 126 96 81 114 84

每段包含點數

平

均

差

距

Embed Average UnEmbed Average

horse 分172段權重0.5嵌入前後每段的平均差距

0

500

1,000

1,500

2,000

2,500

3,000

Bin
Count

118 97 101 123 128 145 123 126 120 118 143 77 96 87 88 96 101

每段包含點數

平

均

差

距

Embed Average UnEmbed Average

dog 分11段 權重0.5 - 每段的平均差距

0

500

1000

1500

2000

2500

3000

Bin

Count

81 99 122 127 128 143 165 169 175 179

每段包含的點數

平

均

差

距

Embed Average UnEmbed Average

Table 5. Extracted results for Aardvark undergoes
uniform scaling β & translation γ

Extracted results, i.e.,
kd , for Aardvark

 (β , γ)
(section) k No.of pts (0,0) (2,0) (1.5,1)

1 130 40.8942 40.8942 40.8942
2 134 340.5648 340.5648 340.5648

Table 6. Extracted result on partially enlargement
 (a) No attack (b) Nose enlarged

k=1 40.8942 2335.7905
k=2 340.5648 2409.8598

Table 7. Extracted results: Dog on
resampling (Attack a) and reordering (Attack b)

(section) k 1 2 3 4 5 6

Noattack 99.5 293.2 599.9 597.5 402.2 349

Attack a 99.5 293.2 1964 2385 2629 2546

Attack b 99.5 293.2 599.9 597.5 402.2 349

(section) k 7 8 9 10 11

No attack 21.6 187 33.2 505.6 308.2

Attack a 21.6 187 33.2 505.6 308.2

Attack b 21.6 187 33.2 505.6 308.2

method has little impact on the appearances of
models; therefore, the method is very suitable for
rigorous instrument models which both integrity
and precision are very important.

Time consumption is summarized in table 10
when testing environment is Pentium 4 CPU,
3.20GHz, and 512 MB memory. As illustrated, the
proposed method is time efficient that even the
complicated model Bunny of 35,947 vertices & 290
sections takes about 4.5 & 3.5 seconds to complete
the embedding and extracting.

5. Conclusions and Future Works
This paper proposed a semi-fragile

watermarking method for 3D models to verify the
integrity of models. Our scheme is robust to
uniform scaling, translation, and also robust to
vertex reordering attack. The method can detect
malicious attacks like partially enlarging,
resampling. The receiver only needs the seed
number to verify the integrity of 3 D model.
Because watermarks are embedded in the
normalized Z coord. of the 4th to7th decimal places,
the impact on a model is very small, so this method
is suitable for rigorous equipment or medical 3D
model.

Our method can find local modification region,
however, it could not indicate which points have
been attacked exactly. In addition, instead of
projecting all points on XY-plane, PCA is a good
choice to achieve the same goal with rotation
invariance. In the future, we would like to enhance
the method according to the abovementioned.

References
[1] E. Praun, H. Hoppe, and A. Finkelstein, “Robust

mesh watermarking,” Proc. of Int’l Conf. on
Computer Graphics and Interactive Techniques, pp.
49-56, 1999.

[2] J.-W. Cho, R. Prost, and H.-Y. Jung, “An Oblivious
Watermarking for 3-D Polygonal Meshes Using
Distribution of Vertex Norms,” IEEE transactions on
signal processing, V.55, No.1, pp. 142-155, Jan.
2007.

[3] J. Shu, Y. Qi, S. Cai, and X. Shen, “A Novel Blind
Robust Digital Watermarking on 3D Meshes,” Proc.
of the 2nd workshop on Digital Media and its
Application in Museum & Heritages, pp. 25-31, Dec.
2007.

[4] B. Oliver, “Geometry-Based Watermarking of 3D
Models,” IEEE Computer Graphics and Applications,
V.19, Issue. 1, pp. 46-55, 1999.

[5] Z.Q. Yu, H.H.S. Ip, and L.F. Kowk, “Robust
Watermarking of 3D Polygonal Models Based on
Vertex Scrambling” Computer Graphics
International, pp. 254-257, July 2003.

[6] Z.Q. Yu, H.H.S. Ip, and L.F. Kwok, “A robust
watermarking scheme for 3D triangular mesh
models,” Pattern Recognition, V.36, Issue 11, pp.
2603-2614, Nov. 2003.

[7] Z. Li, W.-M. Zheng, and Z.-M. Lu, “A Robust
Geometry-Based Watermarking Scheme for 3D
Meshes,” First Int’l Conf. on Innovative Computing,
Information and Control, V.1, pp. 253-256, Aug.
2006.

[8] B.-L. Yeo and M.M. Yeung, “Watermarking 3D
objects for verification,” IEEE Computer Graphics
and Applications, V.19, Issue 1, pp. 36-45, 1999.

[9] C.-M. Chou and D.-C. Tseng, “A public fragile
watermarking scheme for 3D models authentication,”
IEEE Computer-Aided Design, V.38, Issue 11, pp.
1154-1165, Nov. 2006.

[10] H.-T. Wu and Y.-M. Cheung, “A fragile
watermarking scheme for 3D meshes,” ACM Proc. of
the 7th workshop on Multimedia and Security, pp.
117-124, Aug. 2005.

[11] H.-Y.S. Lin, H.-Y.M. Liao, C.-S. Lu, and J.-C. Lin,
“Fragile Watermarking for Authenticating 3-D
Polygonal Meshes,” IEEE Transactions On
Multimedia, V.7, No.6, pp. 997-1006, Dec. 2005.

[12] W. Liu and S.-H Sun, “Rotation, Scaling and
Translation Invariant Blind Digital Watermarking for
3D Mesh Models,” First Int’l Conf. on Innovative
Computing, Information and Control, V.3, pp.
463-466, Aug. 2006.

[13] T. Harte and A.G. Bors, “Watermarking 3D
models,” Proc. of IEEE Int’l Conf. on Image
Processing, V.3, pp. 661-664, Jun. 2002.

Table 9. MSE values
Models Horse Bunny Dog Aardvark Screwdriver

Our method 4.22E-10 1.56E-09 2.50E-10 3.03E-10 N/A
Method [12] N/A N/A 4.98E-03 N/A 3.51E-05

Table 10. Time consumption (in millisecond)
Models
(N,H)

Horse
(19851,172)

Bunny
(35947,290)

Dog
(1871,11)

Aardvark
(264,2)

Embed 2453 4438 219 31
Extract 1860 3594 172 16

Table 8. PSNR values
Models Horse Bunny Dog Aardvark

Our method 88.3738 83.7608 91.5727 90.7543
Method in [8] 38.87 39.78 N/A N/A

