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Abstract-In this article, we propose an improve-
ment over our previous work on real-time driver 
fatigue detection system based on eye tracking and 
dynamic template matching. We utilize the 2D-log 
search and the three-step search algorithms, fast 
search algorithms used in the MPEG encoding 
technique, to improve the search efficiency of the 
original exhaustive search. The experimental 
results show that the 2D-log search and the 
three-step search take only 5.38% and 7.48% of 
the number of search points of the original 
exhaustive search. In addition, their correct rates 
of eye tracking are also slightly improved to be 
96.81% and 97.23%, respectively, as compared to 
96.01% of the original exhaustive search. 
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1. Introduction 

Driver fatigue has been one of the major causes 
of traffic accidents all over the world. In the UK, it 
is estimated that up to 20% of serious road 
accidents have resulted from driver fatigue, while 
in the US, there are around 30% of fatigue-related 
fatal accidents [17]. Therefore, many countries 
have invested lots of funds in building intelligent 
transportation systems to provide secure transpor-
tation, and researchers have begun to pay more 
attentions to the driving safety problem to decrease 
road crashes. 

For improving driving safety, it can be roughly 
categorized into three approaches. One is to study 
the drivers’ mental states relating to driving safety 
by psychologists [14, 15]. Another is to devise 
auxiliary equipments to improve driving safety by 
designing special car seats [2], by monitoring grip 
force change on the steering wheel [1], or by 
analyzing EEG (Electroencephalogram) recordings 

from sensors attached to the human body [18, 21]. 
The other is based on image processing techniques 
[5] to detect driver’s fatigue to enhance driving 
safety. Some of these researchers utilized expen-
sive infrared CCD cameras for easily locating eyes 
[6, 7, 10, 12, 22], while others employed ordinary 
CCD cameras for practical usage [3, 4, 16, 19, 20]. 
However, most of these image-based driver fatigue 
detection algorithms suffer from the illumination 
change problem. Besides, they might not be 
suitable for real-time applications due to their 
complicated computations in nature. 

Recently, we have also proposed a vision-based 
real-time driver fatigue detection system based on 
ordinary CCD cameras to cope with the above 
deficiencies [9]. The system can be divided into 
four parts: face detection, eye detection, eye 
tracking, and fatigue detection. It was tested that 
the average correct rate of eye tracking could reach 
96.01%, and the overall correct rate of driver 
fatigue detection of the system could achieve 
100%. 

However, during the eye tracking phase of our 
previous system, the exhaustive search with the 
conventional mean absolute difference (MAD) 
matching function is used. In this paper, we 
improve the efficiency of the original eye tracking 
method by using 2D-log search [11] and three-step 
search [13], the fast search algorithms used in 
video coding [8], to reduce search computation. 
The experimental results show that in the 2D-log 
and three-step searches for eye tracking, the 
number of search points can be greatly reduced 
than in the original exhaustive search. They are 
5.38% and 7.48%, respectively, of the original 
search. Besides, their correction rates of eye 
tracking are also slightly improved. 

The rest of the paper is organized as follows. In 
Section 2, we briefly review our previous driver 
fatigue detection system. In Section 3, we apply 
fast search algorithms to improve search efficiency 
for eye tracking. The experimental results are 
analyzed in Section 4. Finally, we conclude the 



paper in the last section. 

2. Review of Our Previous System 
In this section, we briefly review our previous 

driver fatigue detection system. For detailed 
information, please refer to [9]. The system 
consists of four components: face detection, eye 
detection, eye tracking, and fatigue detection. 
Figure 1 shows the flow chart of the driver fatigue 
detection system. 
 

 
Figure 1. Flow chart of the driver fatigue 

detection system 

 
At first, an ordinary color CCD camera is 

mounted on the dashboard of a car to capture the 
images of the driver for fatigue detection. The first 
frame is used for initial face detection and eye 
location. If any one of these detection procedures 
fails, then go to the next frame and restart the 
above detection processes. Otherwise, the current 
eye images are used as the dynamic templates for 
eye tracking on subsequent frames, and then the 
fatigue detection process is performed. If eye 
tracking fails, the face detection and eye location 
restart on the current frame. These procedures 
continue until there are no more frames. 
 
2.1. Face Detection 

Digital images usually adopt the RGB color 
space to represent colors. However, any color in 
the RGB space not only displays its hue but also 

contains its brightness. For two colors with the 
same hue but different intensities, they would be 
viewed as two different colors by the human visual 
system. In order to accurately distinguish skin and 
non-skin pixels so that they will not be affected by 
shadows or light changes, the brightness factor 
must be excluded from colors. Since in the HSI 
color model, hue is independent of brightness. This 
model is well suited for distinguishing skin and 
non-skin colors no matter whether the face is 
shadowed or not. Thus, in this paper it is used for 
face detection. 

The RGB color space used for representing 
color frames is first converted into the HSI color 
space for face detection to exclude the brightness 
factor from affecting skin color detection. A 
suitable range of hue values as well as horizontal 
and vertical projections can correctly detect the 
face region. The upper two fifths of the detected 
face region, called the eye region, is used for eye 
location. Figure 2(a) is a driver image. After 
performing face detection, the eye region enclosed 
in a bounding box is shown in Figure 2(b). 
 

  
       (a) Original image          (b) Eye region 

Figure 2. Result of face detection 

 
2.2. Eye Detection 

The original color information of the detected 
eye region is first converted into gray scale. Then, 
the Sobel edge operator is used for edge detection 
in the gray-level eye region, gr, as follows. To 
reduce computation, an approximate edge magni-
tude, mag(x, y), of a pixel (x, y) in gr is computed 
as follows: 

|),(||),(|),( 21 yxSyxSyxmag +=  

where S1(x, y) and S2(x, y) are the Sobel horizontal 
and vertical gradient values of pixel (x, y), respec-
tively, and |z| represents the absolute value of z. 

The edge map, er, of the gray-level eye region 
gr is defined by 
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where black and white stand for the black and 
white pixel values, respectively, and T for some 
threshold. Next, perform horizontal projection on 
the edge map er to find the vertical position of the 



eyes. Then, the left and right eye positions can be 
located by finding the largest connected compo-
nents in er from the center. Finally, the eye 
subimages in the gray-level eye region gr are 
located, which are used as the dynamic eye 
templates for eye tracking. Figures 3(a) and 3(b) 
show the gray-level eye region image and its 
corresponding edge map. After performing eye 
detection, two eye templates enclosed in bounding 
boxes are also shown in Figure 3. 
 

  
          (a) Eye region         (b) Edge map 

Figure 3. Result of eye detection 

2.3. Eye Tracking 
Consider an eye template gt of width w and 

height h, located at the position (a, b) in the 
original frame. The search area of a new frame for 
eye tracking is the eye template position by 
expanding some reasonable number of pixels in 
each of four directions: left, right, up, and down, as 
illustrated in Figure 4. Let dxmax and dymax be the 
maximum displacements of the x-axis and y-axis, 
respectively. Thus, the size of the search area is (w 
+ 2dxmax)×(h + 2dymax), and the number of search 
points for the exhaustive search is equal to (2dxmax 
+ 1)×(2dymax + 1). This search area in the new 
color frame is first converted into a gray-level one, 
gs, for eye tracking. 
 

 
Figure 4. Search area of eye template 

 
The following mean absolute difference (MAD) 

matching function is used for eye template 
matching: 
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where p and q are displacements of the x-axis and 

y-axis, respectively, in which (a − dxmax) ≤ p ≤ (a + 
dxmax) and (b − dymax) ≤ q ≤ (b + dymax). If M(p*, q*) 
is the minimum value within the search area, the 
point (p*, q*) is the most matching position of gt, 
and let fe denote the matched eye image in the 
current color frame for fatigue detection. Then, 
update the position (a, b) of gt to be the new 
position (p*, q*) for tracking on subsequent 
frames. 
 
2.4. Fatigue Detection 

The stable feature of darker eyeball colors is 
used for fatigue detection. The matched fe color 
image is first inverted (negated) and then 
converted into the HSI color space. Since the 
original darker eyeballs become brighter ones in 
the inverted image, pixels with low saturation 
values are regarded as eyeball pixels. Figure 5 
shows the results of eyeball detection for an open 
eye image and a closed eye image. If the driver’s 
eyes close over some consecutive frames, then 
he/she is regarded as dozing off, and a warming 
alarm is triggered to alert the driver. 
 

 
Figure 5. Results of eyeball detection 

 
Table 1 shows the experimental results of the 

driver fatigue detection system on five test videos. 
In these experiments, the driver is regarded as 
dozing off when his/her eyes close over 5 
consecutive frames. In this table, the field n1 
stands for the number of frames, n2 for the number 
of closed eyes, n3 for the number of real dozing, n4 
for the number of detected dozing, n5 for the 
number of correct dozing, n6 for the correct rate of 
fatigue detection, and n7 for the precision rate of 
fatigue detection, where n6 = n5/n3 and n7 = n5/n4. 
It is shown that the system could reach 100.0% 
correct rate of fatigue detection, while the 
precision rate could still achieve 89.3%. 
 

Table 1. Results of fatigue detection 
Video n1 n2 n3 n4 n5 n6 n7 

1 2634 22 3 3 3 100.0% 100.0%
2 1524 18 4 4 4 100.0% 100.0%
3 2717 43 15 18 15 100.0% 83.3%
4 433 6 2 2 2 100.0% 100.0%
5 1399 3 1 1 1 100.0% 100.0%

Total 8707 92 25 28 25 100.0% 89.3%

 



3. Improved Eye Tracking 
In our previous proposal, the exhaustive search 

with the MAD matching function is used for eye 
tracking. In this section, we apply the 2D-log 
search [11] and the three-step search [13], some 
fast search algorithms used in the MPEG encoding, 
to improve search performance. 

As shown in Section 2.3, the exhaustive search 
needs to examine every search point within the 
search area, trying to find the best possible match. 
However, it requires a large amount of computa-
tions. In order to reduce the computational cost, 
several fast algorithms have been proposed at the 
price of slightly impaired performance. In general, 
a fast search algorithm starts with a rough search 
of a set of scattered search points. The distance 
between two nearby search points is called step 
size. At the end of each search step, the most 
promising search point becomes the new center 
point and another search step continues with 
probably a smaller step size. The above procedure 
is repeated until step size is equal to one, and the 
(local) optimum position is reached. 

Note that as pointed out in [8, 11], if the 
matching function is monotonic along any 
direction away from the optimal point, it is 
guaranteed that a well-designed fast search 
algorithm can converge to the global optimal point. 
However, the real image signal is not a simple 
Markov process, and it contains coding and 
measurement noises. Therefore, the monotonic 
matching function assumption is often invalid, and 
consequently fast search algorithms are often 
suboptimal. 
 
3.1. 2D-Log Search 

The 2D-log search scheme was proposed by 
Jain and Jain [11]. It starts from the center point 
(zero displacement) of the search area to find the 
best match of the eye template based on some 
matching function. Figure 6 illustrates an example 
of the 2D-log search procedure, where circles 
represent the search points, and the number 
enclosed in each circle stands for the search step. 
In each search step, five search points in the search 
area with a diamond-shape are searched; they are 
the center point (the best matching point in the last 
step) and the four corner points of the diamond- 
shape with a fixed step size, r, as shown in Figure 
6. Let dmax be the maximum search range in both 
x-axis and y-axis, i.e., dmax = max(dxmax, dymax). The 
initial value of r is set to max(2, 2m-1), where m = 
⎣log 2 dmax⎦. The step size is reduced to one half 
when the best matching point is the center point or 
is the boundary point in the search area. Otherwise, 

the step size remains the same. The search ends 
with step size of one pixel, and nine search points 
(the center point and its eight neighbor points) are 
examined at this last step. Then, the best matching 
point at this final step is regarded as the best 
position of the eye. 
 

 
Figure 6. Illustration of 2D-log search 

 
In the example of Figure 6 with dmax = dx_max = 

dy_max = 8, the 2D-log search requires 5 steps and 
18 search points to reach the final destination with 
displacement (7, 3), where the best matching point 
in each search step is represented with a darker 
circle. In this example, the total computational cost 
for 2D-log search is much smaller than the 
exhaustive search, which requires 172 = 289 search 
points. 
 

 
Figure 7. Illustration of three-step search 

 
3.2. Three-Step Search 

The three-step search was proposed by Koga et 
al. [13]. Figure 7 illustrates an example of the 
three-step search procedure. Like the 2D-log 
search, the process of three-step search also starts 
from the center point of the search area to find the 
best matching position of the eye template. Rather 
than examining five search points at each step as in 



the 2D-log search, it examines nine search points 
within the search area, including the center point 
and the other eight points with a square arrange-
ment away from the center point with a step size, r, 
as shown in Figure 7. The initial value of r is equal 
to or slightly larger than half of the maximum 
search range (r ≥ dmax/2) and is reduced to one half 
after each search step. The search procedure 
continues until step size reduces to one pixel, and 
the best matching point will be regarded as the best 
position of the eye. Similar to Figure 6, in the 
example of Figure 7 with dmax = 8, the three-step 
search requires 3 steps and 25 search points to 
reach the final destination. 
 
4. Experimental Results  

Experiments were performed to test the 
improved eye tracking component of the driver 
fatigue detection system. The same five driver 
videos used for testing our previous system were 
also used to verify this improved one for 
comparison. These videos were captured by a 
SONY PC115 color DV camera with 320×240 true 
color format. The first four videos were taken 
under different illumination conditions with 
different drivers and backgrounds. The fifth video 
was taken when driving around a parking lot at 
nightfall with large illumination change. 

The testing environment was a personal 
computer with a Pentium D 3.20 GHz CPU and 
1024 MB RAM. Table 2 lists the experimental 
results of eye tracking using the MAD matching 
function, with the exhaustive, 2D-log, and 
three-step search algorithms. Note that in these 
experiments, the maximum displacement parame-
ters dxmax and dymax both are set to 10 pixels for the 
search areas in eye tracking. Note also that the data 
of the exhaustive search with the MAD matching 
function were the eye tracking experimental results 
of our previous driver fatigue detection system. 
 

Table 2. Results of eye tracking failure 
Video 
No. 

No. of 
Frames 

Exhaustive 
search 

2D-log 
search 

Three-step
search 

1 2634 8 14 8 
2 1524 6 14 12 
3 2717 46 43 25 
4 433 7 7 5 
5 1399 280 200 191 

Total 8707 347 278 241 
Correct rate for 

Eye tracking 96.01% 96.81% 97.23% 

 
As shown in Table 2, the total number of 

tracking failure in the exhaustive search is 347, 
which is higher than those, 278 and 241, 
respectively, in the 2D-log and three-step search. 

Table 3 gives the numbers of search points 
required to reach the best matching point for each 
eye tracking with three different search algorithms. 
As can be seen from Table 3, the number of search 
points required for the exhaustive search is fixed, 
441, due to dx_max = dy_max = 10. However, the 
average search points of 2D-log and three-steps are 
less than 24 and 33, which are about 5.38% and 
7.48% of exhaustive search. 
 

Table 3. Results of average search points 
Video 
No. 

Exhaustive
search 

2D-log 
search 

Three-step 
search 

1 441 22.90 32.99 
2 441 22.79 32.97 
3 441 23.33 32.99 
4 441 24.90 32.96 
5 441 24.73 32.98 

Average 441 23.73 32.98 
Ratio 100.00% 5.38% 7.48% 

 
A typical eye template in our experiments is of 

size w = 26 and h = 7. Therefore, the number of 
pixels in the template is n = 182, and the number 
pixels in the corresponding search area is m = 1242 
for dmax = 10. Table 4 lists the number of 
operations required for each search algorithm to 
find the optimal matching points with different 
matching function, based on the results of Table 3, 
where the exhaustive, 2D-log, and three-step 
searches are assumed to require 441, 24 (average 
upper bound), and 33 (maximum) search points, 
respectively. It is noted that the 2D-log search 
requires only up to 5.44% of computation of the 
exhaustive search. 
 

Table 4. Operations required for each search 
Operation 

Type 
Exhaustive

search 
2D-log 
search 

Three-step 
search 

Addition 160,083 8,712 11,979 
Absolute 80,262 4,368 6,006 

Total 240,345 13,080 17,985 
Ratio 100.00% 5.44% 7.48% 

 
5. Conclusion 

In this paper, we have presented an improved 
driver fatigue detection system over our previous 
scheme. Rather than using the exhaustive search in 
the previous system, we have applied fast search 
algorithms, such as the 2D-log search and the 
three-step search, in eye tracking to improve 
search efficiency. The experimental results have 
shown that the 2D-log search has the best 
performance. It needs only up to about 5.44% of 
computations required for the original scheme in 
eye tracking, while it can still reach a slight higher 
correct rate of tracking, 96.81%, as compared to 
the original scheme, 96.01%. This result makes 



our improved scheme more suitable to be 
implemented in embedded systems. 
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