
Packet-Level Naïve JPEG2000 Information Hiding Using Redundant
Packet Insertion Technique

Chiang-Lung Liu, Chien-Chung Lee, and Shih-Wei Lin
Department of Electrical and Electronic Engineering

Chung Cheng Institute of Technology
National Defense University

Tahsi, Taoyuan 33509, Taiwan, ROC
E-mail: chianglung.liu@gmail.com

Abstract-Naïve information hiding embeds
information data in cover carrier for practical
applications such as error correction or image
authentication. The positions the information data
resides in are not necessarily kept secret. Direct
insertion of information data into JPEG2000
codestream can effectively reduce the processing
time of information embedding and extraction.
However, it may also result in decoding failure for
a standard JPEG2000 image viewer. In this paper,
we propose a packet-level naïve JPEG2000
information hiding method that uses a redundant
packet insertion technique to solve these problems
simultaneously. Experimental results show that the
full or truncated information-embedded
codestream can be correctly decoded by several
JPEG2000 Part-1 compliant decoders. That is, the
proposed method can meet both the syntax
compliance and scalability requirements.
Moreover, because the proposed information
embedding and extraction processes are
performed in packet level, very few decoding
operations are involved in the proposed method.
That is, the proposed method can meet the
simplicity requirement. Therefore, the proposed
naïve JPEG2000 information hiding method is
very effective and practical for various JPEG2000
applications.

Keywords: JPEG2000, naïve information hiding,
redundant packet insertion, syntax compliant,
scalable.

1. Introduction

Information hiding is a technique that can hide
secret information into cover carriers for various
applications. There have been different kinds of
information hiding methods [1] proposed in the
literature. Among them, digital images may be the

most popular cover carriers because they can be
easily accessed on the Internet. JPEG2000 [2-4] is
the latest standard for still image compression and
provides excellent performance under low-bit-rate
compression. Therefore, JPEG2000 is fast
becoming the solution of choice for modern
multimedia applications. According to the types of
application, JPEG2000 information hiding
techniques can be broadly divided into two
categories: steganography [5-12] and digital
watermarking [13-16].

Steganography is referred to as covered writing
that embeds secret information in
innocuous-looking cover carriers for covert
communication. In this type of application, the
positions of the cover carrier the secret information
resides in should be only shared by the
communication parties. For robust digital
watermarking, the information (called watermark)
is embedded in the protected image to be a proof
of ownership. The embedded watermark should be
robust enough to resist various kinds of image
processing operations. On the other hand, fragile
watermarks are embedded to detect any
modifications to the protect images.

Recently, the information hiding concept has
been adopted by several JPEG2000 related
applications to convey the required information
between the sender and receiver. In these
applications, the positions the information data
resides in are not necessarily kept secret. For
example, error correction codes [17] can be
embedded in the JPEG2000 frame to recover the
corrupted data resulted from the transmission error.
For the application of image authentication, the
encrypted hash code can be embedded into
JPEG2000 codestream for verifying the integrity
of the protected image [18]. We call this kind of
applications the naïve information hiding.
Intuitively, most of the steganographic methods
can be used for naïve information hiding. However,
because the methods used for secret

communication aim at hiding the existence of
secret information, the payload provided by these
methods is quite limited. Moreover, to avoid being
detected by steganalytical detectors, most of
JPEG2000 steganography embeds the secret
information in discrete wavelet transform (DWT)
domain. It means that the information extractor
should reverse most of the encoding processes to
retrieve the embedded information. It may not be
practical for naïve information hiding of time
demand such as error correction of video stream.
One of the solutions to solve this problem is to
directly embed the information data into the
JPEG2000 codesteam. However, direct insertion of
information data in a JPEG2000 codestream may
break the format of the codestream and result in
decoding failure for standard JPEG2000 image
viewer. It means that the information data
embedded JPEG2000 codestream should be still
decoded by JPEG2000 Part-1 compliant decoder.
In this paper, this is referred to as syntax
compliance requirement. In practical applications,
JPEG2000 codestreams may be truncated to meet
lower-bit-rate requirement. That is, the information
data embedded in JPEG2000 codestream should
survive the truncation operation. This is an
important JPEG2000 feature and is referred to as
scalability requirement in this paper. According to
the description provided above, we conclude that a
naïve JPEG2000 information hiding method
should possess the following properties:
(1) Syntax compliance: the information embedded

codestream should be correctly decoded by any
JPEG2000 Part-1 compliant decoder without
causing decoding failure.

(2) Scalability: the information embedded
codestream can be directly truncated for
lower-bit-rate applications.

(3) Simplicity: the information hiding method
should be simple and effective so that the
embedded information can be easily accessed
by the communication party.
In this paper, we propose a naïve JPEG2000

information hiding method to meet these
requirements simultaneously. The proposed
method uses a redundant packet insertion (RPI)
technique to elegantly insert information data into
the JPEG2000 codestream. More specifically, the
information data are packed as several redundant
packets which are further embedded right behind
the selected packet(s). Because these redundant
packets will be skipped in the decoding process,
the information embedded codestream can be
correctly decoded by a JPEG2000 Part-1
compliant decoder. That is, the proposed method
can meet the syntax compliance requirement. It

should be noted that, to our knowledge, the
proposed RPI technique is the first packet-level
information hiding technique that can achieve this
purpose. To meet the scalability requirement, the
redundant packets can be inserted in the significant
part of the codestream to avoid being truncated
even in a very low-bit-rate application. In Section
3, we will show that the proposed RPI technique is
simple enough to meet the simplicity requirement.

To completely describe the proposed naïve
information hiding method, the rest of this paper is
organized as follows. In Section 2, we briefly
introduce the JPEG2000 coding scheme. The
internal structure of JPEG2000 codestream is then
concisely described. In Section 3, the proposed
information embedding and extraction processes is
first detailed, followed by an example of the
proposed RPI technique. Several experimental
results are demonstrated in Section 4 to show the
effectiveness of the proposed method. Section 5
concludes this work.

2. Overview of the JPEG2000 coding

scheme
JPEG2000 refers to all parts of the standard.

Part 1 (the core coding system) is now published
as an International Standard. Parts 2 - 12, except
Part 7, are complete or nearly complete. In this
paper, we focus on the introduction of the first part
of the standard. The overview of the JPEG2000
coding scheme in this section is restricted to
application of the proposed RPI technique,
especially the format of JPEG2000 codestream.
Interested readers may refer to [2-4] for details of
JPEG2000.

JPEG2000 is a wavelet-based image coding
standard. In JPEG2000, an image can be
partitioned into smaller rectangular regions called
tiles. Each tile is encoded independently as
through they were entirely distinct images and can
be divided into several color components. Each
tile-component can be further decomposed into
different resolution-levels using a 2-dimension
DWT. Applying the DWT continuously on each
lowest frequency sub-band (usually referred to as
LL sub-band) generates a series of sub-bands
belonging to different transform levels.

After wavelet decomposition, each sub-band is
divided into rectangular blocks called precincts.
Each precinct is further divided into smaller blocks
called code-blocks. Each code-block is
individually quantized and entropy-encoded to
generate a bit-stream which consists of a number
of bit-plane coding passes. All the data assembled
during a coding pass in a tile forms a layer which

represents an image quality increment. Within the
precinct, all the spatially consistent code-blocks
are grouped together into a packet.

A JPEG2000 codestream is composed of a main
header and a set of packets. Figure 1 shows the
structure of a JPEG2000 codestream. The main
header stores the information for decoding the
codestream. Packets are the fundamental building
blocks in JPEG2000 codestream. A packet
comprises a packet header and the compressed
bit-stream from code-blocks belonging to a
specific component, resolution level, precinct, and
layer. The order in which packets appear in the
codestream is called the progression order.
JPEG2000 supports progression in four
dimensions: layer (L), resolution level (R),
precinct (P), and component (C). That is, the
packets in the codestream are arranged according
to the selected progression order so that the image
quality can be constructed in the same order.
JPEG2000 supports five progression orders: LRCP,
RLCP, RPCL, PCRL, and CPRL.

JPEG2000 codestream

Main header

Packet 1 Packet 2 Packet n

Packet header Packet body
Figure 1. Structure of JPEG2000
codestream

3. The proposed method

The proposed naïve information hiding method
is performed in the packet level and comprises
information embedding and extraction stages.

3.1. Information embedding

The proposed naïve information hiding method
embeds information data right behind the selected
packet(s) in JPEG2000 codestream. However,
direct insertion of the information data in a
JPEG2000 codestream may break the format of the
codestream and result in decoding failure. The
proposed method uses the redundant packet
insertion (RPI) technique to solve this problem. In
this section, we first introduce the concept of the
RPI. Detailed description of the proposed
information embedding process is then followed.

JPEG2000 uses the first bit of the packet header
to indicate whether the packet contains data or not.
If the first bit of the packet header is 1, the packet
is non-empty and the other bits of the packet

represent the real data and will be processed in the
decoding process. On the other hand, if the first bit
of the packet header is 0, the packet is an empty
packet. In this case, the packet is considered as a
one-byte packet and will be skipped in the
decoding stage. In this paper, this kind of packets
is specially referred to as zero packets. The
proposed RPI technique uses zero packets to
embed the information data. More specifically, the
information data is first partitioned into 7-bit
information blocks. Each information block is then
stuffed into the 7 least significant bits (LSBs) of a
zero packet. In this paper, we call the zero packets
stuffed with information bits the information
packets, and the zero packets stuffed with 0’s the
empty packets.

For JPEG2000 codestream, a packet can be
identified by four factors: component (C), precinct
(P), resolution level (R), and layer (L). Once a
JPEG2000 codestream is generated, only the layer
factor can be changed without causing a decoding
failure. The proposed RPI technique takes
advantages of this property to insert information
packets and some necessary empty packets right
behind the selected packet(s) as if the codestream
has originally been encoded with such many
layers.

Figure 2 shows the concept of the proposed
information embedding process. The detailed steps
of the proposed information insertion process are
as follows:
Step 1. Select n packets from the codestream to

be attached with information packets.
Step 2. Let NM denote the number of bits of the

information data. Partition the
information data into NI 7-bit information
blocks, i.e.,
NI = ⎡NM / 7⎤. (1)

Step 3. Divide NI information blocks into n
information sections and calculate the
number of information blocks, NS, for
each information section according to the
following formula:
NS = ⎡NI / n⎤, (2)
where ⎡x⎤ rounds x to the nearest integer
towards infinity.

Step 4. Create n×NS zero packets. Replace the 7
LSBs of the first NI zero packets with the
corresponding information block and
leave the 7 LSBs of the other zero packets
empty. That is, we create n information
groups each with NS information packets.

Step 5. Determine the progression order of the
original codestream by decoding the main
header. If the progression order is LRCP,
Step 6 is performed. Otherwise, if the

progression order is RLCP, Step 7 is
performed. Otherwise, Step 8 is
performed.

Step 6. (Redundant packet insertion for
progression order LRCP)

Step 6.1. Perform the following calculations:
q = ⎡NS / (NR × NC × NP)⎤, (3)
r = MOD(NS, NR × NC × NP), (4)
where NR, NC, and NP denote respectively
the number of resolution levels, the
number of components, and the number
of precincts, and MOD(x,y) operation
takes the remainder of x/y.

Step 6.2. If r is 0, attach NS information packets of
ith information group to the end of ith
selected packet and NS empty packets to
the end of each unselected packet, where
1 ≤ i ≤ n. Otherwise, attach NS
information packets of ith information
group and NR×NC×NP–r empty packets to
the end of ith selected packet and
q×NR×NC×NP empty packets to the end of
each unselected packet, where 1 ≤ i ≤ n.

Step 6.3. Modify the number of layer in the main
header with

 qNNNNNN ××××+=′ PCRLLL
, (4)

where NL and L denote the original
and the modified number of layer,
respectively.

N ′

Step 7. (Redundant packet insertion for
progression order RLCP)

Step 7.1. Perform the following calculations:
q = ⎡NS / (NC × NP)⎤, (5)
r = MOD(NS, NC × NP), (6)

where NC and NP denote respectively the
number of components and the number of
precincts, and MOD(x,y) operation takes
the remainder of x/y.

Step 7.2. If r is 0, attach NS information packets of
ith information group to the end of ith
selected packet and NS empty packets to
the end of each unselected packet, where
1 ≤ i ≤ n. Otherwise, attach NS
information packets of ith information
group and NC×NP–r empty packets to the
end of ith selected packet and q×NC×NP
empty packets to the end of each
unselected packet, where 1 ≤ i ≤ n.

Step 7.3. Modify the number of layer in the main
header with

qNNNNN ×××+=′ PCLLL , (7)
where NL and denote the original
and the modified number of layer,
respectively.

LN ′

Step 8. (Redundant packet insertion for
progression orders RPCL, PCRL, and
CPRL)

Step 8.1. Attach NS information packets of ith
information group to the end of ith
selected packet and NS empty packets to
the end of each unselected packet, where
1 ≤ i ≤ n.

Step 8.2. Modify the number of layer in the main
header with

SLLL NNNN ×+=′ , (8)
where NL and LN ′ denote the original
and the modified number of layer,
respectively.

0000 00

Information data

Information packets

Codestream Selected packet

Empty packets

7-bit information block

Unselected packet

Empty packets
Figure 2. Concept of the proposed
information embedding process

3.2. Information extraction

The way to extract the information data is very
simple and straightforward. Figure 3 shows the
concept of the proposed information extraction
process. The information packets are first extracted
from the back of the selected packet(s). Each 7-bit
information block is then extracted from the
corresponding information packet and attached to
the former information block to form the final
information data.

Codestream

Selected packet

0000 00Information packets

Information data

7-bit information block

Unselected packet

Figure 3. Concept of the proposed
information extraction process

3.3. Example of redundant packet insertion

This section presents an example of the
proposed redundant packet insertion technique

using various progression orders. Assume that the
information data is of 1024 bits and the first two
packets are selected to be attached with the
information data. Therefore, the information data
can be partitioned into ⎡1024/7⎤=147 information
blocks which can be further portioned into 2
information sections each with ⎡147/2⎤=74
information blocks. Therefore, there are totally
74×2=148 information blocks that have been
generated to be stuffed into 148 zero packets to
form 148 information packets. The first to 74th
information packets belongs to first information
group and the 75th to last information packets
belongs to the second group.

Assume that an image is encoded with 3 layers
(i.e., NL=3), 2 resolution levels (i.e., NR=2), 1
component (i.e., NC=1), and 2 precincts (i.e., NP=2).
For progression order LRCP, both the 74
information packets can be attached to the end of
the first two packets. The insertion of information
packets will virtually add ⎡74/(2×1×2)⎤=19 layers
to the original codestream. Because
MOD(74,2×1×2)=2 is not 0, additional 2×1×2–2=2
empty packets should be attached to the end of
information packets to make up the required
number of packets of 19 layers. To maintain the
synchronization of the packets, there are totally
19×(2×1×2)=76 empty packets that should be
attached to the end of each unselected packet.
Moreover, the number of layer recorded in the
main header should be changed to
3+3×2×1×2×19=231. Figure 4 shows the structure
of the original codestream and the
information-embedded codestream.

Packet 1
L1R1C1P1

Main header
NL = 3

Packet 2
L1R1C1P2

Packet 3
L1R2C1P1

Original codestream

74
Information packets

2
Empty packets

Packet 1
L1R1C1P1

Main header
NL = 231

Packet 78
L20R1C1P2

Packet 155
L39R2C1P1

Information-embedded
codestream

76
Empty packets

74
Information packets

2
Empty packets

Selected packets Unselected packets

Figure 4. Example of the proposed
redundant packet insertion for progression
order LRCP

4. Experimental results

Various experiments have been performed to

demonstrate the effectiveness of the proposed
naïve information hiding method. A standard
256×256 gray image, Lena, was taken as the
original image and was divided into 1 tile and 1
component. Each component was decomposed into
3-level DWT coefficients through our experiments.
The DWT coefficients were divided into 64×64
code-blocks which was then encoded to form a
JPEG2000 codestream. We also randomly
generated a 1024-bit message as the information
data.

4.1. Syntax compliance test

To show the proposed RPI technique can meet
the syntax compliance requirement, we first
generated five standard JPEG2000 codestreams for
the original image using five different progression
orders respectively. The information data was then
inserted into each codestream using the proposed
RPI technique. It should be noted that there were 4
selected packets in each codestream used to be
attached with information packets. Several
JPEG2000 compliant decoders, including
IrfanView 3.91 [19], JJ2000 [20], PhotoImpact 10
[21], and ACDSee 7.0 [22], were used to decode
the information-embedded codestreams.
Experimental results show that all the
information-embedded codestreams can be
successfully decoded by these image viewers. It
means that the proposed RPI technique can meet
the syntax compliance requirement.

4.2. Scalability test

To show the proposed RPI technique can meet
the scalability requirement, a JPEG2000
codestream was generated with the progression
order LRCP and then inserted with information
data using the proposed PRI technique. The
information-embedded codestream was then
truncated with various lower bit-rates and then
decoded using different JPEG2000 Part-1
compliant decoders. Experimental results show
that all the truncated codestreams can be
successfully decoded. That is, the proposed RPI
technique can meet the scalability requirement.

5. Conclusions

In this paper, we propose a packet-level naïve
JPEG2000 information hiding method which
allows the information data to be directly inserted
into a JPEG2000 codestream. The information data
is first partitioned into 7-bit information blocks
and then stuffed into several zero packets to form
information packets. An RPI technique is also
proposed to elegantly attach the information

packets and some empty packets to the end of the
selected packet(s).

Experimental results show that all the
information-embedded codestream can be
correctly decoded by several JPEG2000 Part-1
compliant decoders. It means that the proposed
method can meet the syntax compliance
requirement. Experimental results also show that
the information-embedded codestream can also be
correctly decoded after truncating some packets.
That is, the proposed method can also meet the
scalability requirement.

It is worth mentioning that the operations of
information embedding and extraction are
performed at packet level. It means that very few
decoding operations are involved in the proposed
method. That is, the proposed method can meet the
simplicity requirement for naïve information
hiding. With these advantages, the proposed naïve
JPEG2000 information hiding method can be used
to embed useful information for practical
JPEG2000 applications.

Acknowledgements

This work was supported partially by the
National Science Council of Republic of China
under grant NSC 97-2221-E-606-017.

References
[1] S. Katzenbeisser and F.A.P. Petitcolas, Information

hiding techniques for steganography and digital
watermarking, Artech House, Boston, 2000.

[2] D.S. Taubman and M.W. Marcellin, JPEG2000 -
Image Compression Fundamentals, Standards and
Practice, Kluwer Academic Publishers, Boston,
2001.

[3] M. Rabbani and R. Joshi, “An overview of the
JPEG 2000 still image compression standard,”
Signal Processing: Image Communication, vol. 17,
no. 1, pp. 3-48, 2002.

[4] Information technology - JPEG 2000 image coding
system, ISO/IEC International Standard 15444-1,
ITU Recommendation T.00, 2000.

[5] H. Noda, J. Spaulding, M.N. Shirazi, and E.
Kawaguch, “Application of bit-plane
decomposition steganography to JPEG2000
encoded images,” Proceedings of the 2002 IEEE
International Conference on Image Processing, vol.
2, pp. II-909 - II-912, Sept. 2002.

[6] H. Noda, J. Spaulding, M.N. Shirazi, and E.
Kawaguchi, “Application of bit-plane
decomposition steganography to JPEG2000
encoded images,” IEEE Signal Processing Letters,
vol. 9, no. 12, pp. 410-413, Dec. 2002.

[7] P.-C. Su and C.-C. J. Kuo, “Steganography in
JPEG2000 compressed images,” IEEE

Transactions on Consumer Electronics, vol. 49, no.
4, pp. 824-832, Nov. 2003.

[8] J. Chen, T.-S. Chen, and C.-Y. Cheng, “A new
scheme of image data hiding based on EBCOT of
JPEG2000 lossy compression,” Proceedings of the
2004 IEEE International Conference on
Networking, Sensing and Control, vol. 2, pp.
990-995, 2004.

[9] H. Noda, T. Furuta, M. Niimi, and E. Kawaguchi,
“Application of BPCS steganography to wavelet
compressed video,” Proceedings of the 2004 IEEE
International Conference on Image Processing, vol.
4, pp. 2147-2150, Oct. 2004.

[10] W. Liu, “Data hiding in JPEG 2000 code streams,”
Proceedings of the 2004 IEEE International
Conference on Image Processing, Vol. 3, Oct. 2004,
pp. 1557 – 1560.

[11] G. Xuan, D. Jiang, H. Ji, Y.Q. Shi, D. Zou, L. Liu,
H. Liu, and W. Bai, “Identity verification system
using data hiding and fingerprint recognition,”
Proceedings of the 2005 IEEE 7th Workshop on
Multimedia Signal Processing, pp. 1-4, Oct. 2005.

[12] Z. Liang, “Wavelet domain steganography for
JPEG2000,” Proceedings of the 2006 IEEE
International Conference on Communications,
Circuits and Systems, vol. 1, pp. 40-43, Jun. 2006.

[13] R. Grosbois and T. Ebrahimi, “Watermarking in the
JPEG 2000 domain,” Proceedings of the 2001
IEEE Fourth Workshop on Multimedia Signal
Processing, pp. 339-344, Oct. 2001.

[14] P.-C. Su, H.-j. M. Wang, and C.-C. J. Kuo, “An
integrated approach to image watermarking and
JPEG-2000 compression,” Journal of VLSI Signal
Processing, vol. 27, pp. 35-53, 2001.

[15] K. Li and X.-P. Zhang, “An image watermarking
method integrating with JPEG-2000 still image
compression standard,” Proceedings of the 2003
IEEE Canadian Conference on Electrical and
Computer Engineering, vol. 3, pp. 2051-2054, May
2003.

[16] A. Makhloufi, A.O. Zaid, R. Bouallegue, and A.
Bouallegue, “Watermark integration to wavelet
image coding scheme,” Proceedings of the Eighth
IEEE International Symposium on Multimedia, , pp.
685-689, Dec. 2006.

[17] M. Kurosaki, K. Munadi, and H. Kiya, “Error
correction using data hiding technique for
JPEG2000 images,” Proceedings of the 2003 IEEE
International Conference on Image Processing, vol.
3, Sept. pp. III-473-III-46, 2003.

[18] R. Grosbois, P. Gerbelot, and T. Ebrahimi,
“Authentication and access control in the JPEG
2000 compressed domain,” Proceedings of the
SPIE 46th Annual Meeting, Applications of Digital
Image Processing XXIV 4472, pp. 95–104, 2001.

[19] IrfanView, http://www.irfanview.com/
[20] JJ2000, http://jj2000.epfl.ch/
[21] PhotoImpact 10, http://www.ulead.com.tw/
[22] ACDSee 7.0, http://www.acdsee.com/.

