
Concurrency Control Access of Dynamic XML Document with

the Locking Method

Jeang-Kuo Chen*, Kuan-Chang Lu

Department of Information Management, Chaoyang University of Technology

jkchen@cyut.edu.tw, s9514637@cyut.edu.tw

ABSTRACT-XML is a popular media in

many commercial transactions. It is necessary to

support XML document access by multiple users

concurrently. The access method of single-user

for XML document is unsuitable in a multi-user

environment. In this paper, we propose three

concurrency control algorithms for searching,

inserting, and modifying relative element data in

a dynamic XML document. With the locking

techniques, the algorithms allow multiple users

to concurrently access the same data without any

error occurrence.

Keywords ︰ Concurrency Control, XML,

Locking, Access Method.

1. Introduction

The XML (eXtensible Markup Language)

[12] is popular in many commercial applications

such as electronic commerce, data exchange,

data warehouse etc [1, 5, 6, 8, 9, 10, 11]. With a

DTD or an XML Schema, an XML document

can be verified to be a valid document or not.

When the quantity of XML documents increases

quickly in a company, it is necessary to manage

XML documents with a database management

system in order to facilitate management and

access of XML documents [4, 7, 9, 14, 15]. A

concurrency control mechanism is required to

maintain multi-user accessing the same data at

the same time. If XML database is accessed by

many transactions without any concurrency

control, some unpredictable problems such as

lost update, dirty read, or incorrect summary [3]

may occur. An example is illustrated as follows.

An XML document is used to record the data of

a bookstore. When two transactions access the

same magazine data at the same time without

any concurrency control, some unexpected

mistakes may happen. Suppose the stock of a

magazine in the bookstore is 10. Transaction A

(TA) will subtract 3 form the stock because 3

magazines are sold. Transaction B (TB) will add

5 to the stock because 5 magazines are stocked.

TA includes three steps (1) reading the stock of

the magazine, (2) subtracting 3 form the stock,

and (3) updating the new stock into database. TB

also includes three steps (1) reading the stock of

the magazine, (2) adding 5 to the stock, and (3)

updating the new stock into database. If TA and

TB execute sequentially (TA then TB, or TB then

TA), the result is correct as shown in Table 1.

However, if TA and TB execute alternately, as

shown in Table 2, the lost update problem occurs

because TA loses the new stock value at the order

6 of Table 2. Form the above example, we can

understand the importance of concurrency

control in a database with multi-user access.

Table 1. Correct result.

mailto:jkchen@cyut.edu.tw
mailto:s9514637@cyut.edu.tw


Table 2. Incorrect result.

This paper proposes three concurrency

control algorithms for searching, inserting, and

modifying elements in an XML document. With

the locking technique, the share lock (s-lock) [2]

is used to lock an element by one transaction

before reading the element. The s-lock is

sharable with other s-locks which means an

element can be s-locked by more then one

transaction that only read the locked element

concurrently. The exclusive lock (x-lock) [2] is

used to lock an element by one transaction

before changing the contents of this element.

The x-lock is exclusive with other s-locks or

x-locks that means an element can be x-locked

only by one transaction at one time. The s-locks

are compatible but x-locks. An x-lock is

incompatible with any other s-lock and x-lock. A

transaction must lock an element before

accessing the element and release (unlock) the

lock as soon as possible after handling the

element. The techniques of breadth-first search

and lock-coupling [2] protocol are used when

traversing an index tree associated with an XML

document to find one or more target elements.

2. Relative Techniques

Derived form SGML [13], an XML document

has two types [12]. The first type is called

well-formed while the second type is called valid.

A correct XML document must be well-formed

if it is verified by a DTD (Document

TypeDefinition) or an XML schema.

Concurrency control offers a reliable

mechanism for database concurrent access under

a multi-user environment. There are three main

methods, locking, time stamp, and optimistic [3]

for concurrency control. We use the first one

because it is the most popular and easy to

implement. An XML document is associated

with an index tree for speed up in database. As

shown in Figure 2. each node in the index tree

includes four pointer fields named Tag_name,

Content, Attribute, and Child[1.. n]. The

Tag_name points to the tag name of an XML

element. The Content points to the position of an

element content. Attribute points to the position

of the string for attribute names and their values.

The child[1.. n] points to each child node of a

parent node. When a transaction traverses the

index tree, the breadth-first search and

lock-coupling [2] techniques can be used to

correctly find the target node for searching, or

updating element data. The lock types used in

this paper are share-lock (s-lock) and

exclusive-lock (x-lock). Only s-locks are

compatible. An x-lock is incompatible with a

s-lock or an x-lock. The compatible condition

between the two lock types is shown in Figure 3.

Figure 2. Node structure.

Figure 3. Compatible condition of two lock

types.

T a g _ n a m e C o n ten t

C h ild [1 .. n ]

A ttr ib u te



Figure 4. The flow chart of search algorithm.

s-lock (Tx) Add Ntemp into Queue

Get the first item Ntemp

form Queue

Tag_name, Contain, or
Attribute of Ntemp

includes all keywords in
KEY?

Add Ntemp into Result

s-lock and add all child
nodesof Ntemp into

Queue

s-unlock(Ntemp )

Start

If Queue
is empty?

End

N

N

Y

Y
Return Result

3. Concurrency Control Algorithms

3.1 Search Algorithm

With the breadth-first search, the search

transaction descends the index tree to find and

return the elements that contain the specific

keywords. An element is s-locked before it is

read and is unlocked immediately after it would

not be used. The simple flow chart of the search

algorithm is shown in Figure 4. Some

parameters and variables used in this flow chart

and algorithm are described as follows. Tx is the

root of the index tree. KEY is a set of search

keywords. Ntemp is a node to be visited currently.

Queue is a queue used to save nodes for the

breadth-first search while Result is a set for

saving returned elements. The detailed search

algorithm is described below.

Algorithm Search(Tx, KEY）
Input : NODE POINTER Tx ;

STRING SET KEY;
Output：a set of nodes;
Begin

NODE POINTER Ntemp;
QUEUE Queue;
NODE POINTER SET Result;

01. s-lock(Tx);
02. Add Tx to Queue;
03. while Queue is not empty, do
04. Ntemp ← get_node(Queue);

05. if Ntemp’s Tag_name, Content, or
Attribute includes all keywords in
KEY, then

06. add Ntemp to Result;
07. end if;
08. for each child[i] of Ntemp, do
09. s-lock(child[i]);
10. add child[i] to Queue;
11. end for;
12. s-unlock(Ntemp);
13. end-while;
14. return(Result);
End Search.

3.2 Insertion Algorithm

Given the index tree, an element, and a path,

the insertion transaction descends the tree along

the path to a parent node and inserts the given

element as a child node into its parent node. The

nodes on the path must be s-locked sequentially

and released immediately after they are

processed. The target node must be converted

form s-locked into x-locked before the insertion

of the given element. The simple flow chart of

the insertion algorithm is shown in Figure 5.

Some parameters and variables used in this flow

chart and algorithm are described as follows. Tx

is the root of the index tree. Ins_Element is an

element to be inserted into an element. Path is a

string composed of tag names and/or attributes.

Queue is a queue used to save nodes for

breadth-first search. Ntemp is a node to be visited

currently. Aes is a tag name taken form Path and

its format is either tag_name or

tag_name[attribute_name=attribute value]. Ntarget

is the destination node to be inserted the given

element. Flag is used as a flag for finding an

error situation. Its initial value is set to ‘0’

whenever a node visiting begins at each level.

Flag is set to ‘1’ when an input tag name

(P_Eelement) in Path at some level l is equal to

one of the tag names for the nodes in the index

tree at the same level l. The detailed insertion



algorithm is described below.

Figure 5. The flow chart of insert

algorithm.

Algorithm Insert(Tx, Ins_Element, Path)
Input:

NODE POINTER Tx;
ELEMENT Ins_Element;
STRING Path;

Begin
QUEUE Queue;
NODE POINTER Ntemp;
STRING Aes; //An element string

abstracted form Path//
NODE POINTER Ntarget;
INTEGER Flag;

01. Flag ← 0; //0: incorrect i/p tag name//
02. Ntarget ← null;
03. s-lock(Tx);
04. add_node (Tx, Queue);
05. add_node (null, Queue); // null is a dummy

node, to
separate nodes at different levels.//

06. while Path is not empty, do
07. Aes ← get_tagname(Path); //Get the first

item form Path//
08. Ntemp ← get_node(Queue);

//Get the first item form Queue//
09. if Ntemp = null, then // level changing //
10. if Flag = 0, then
11. print(“Invalid tag name or path
data”);
12. for each node i in Queue, do
13. s-unlock(i); //unlock the nodes

being locked//
14. end for;
15. return;
16. end if;
17. add_node(null, Queue);
18. Flag ← 0; //reset Flag value//
19. else
20. if Ntemp‧Tag_name = Aes, then
21. Flag ← 1; //1:correct i/p tag name//
22. if path is empty, then
23. if Aes contains no additive

attribute and value, or Aes
contains additive attribute and
value which are equal to those
in Ntemp‧Attribute, then

24. Ntarget ← Ntemp; //find target
node //
25. break;
26. end if;
27. else // path is not empty//
28. if Aes contains no additive

attribute and value, or Aes
contains additive attribute and
value which are equal to those
in Ntemp‧Attribute, then

29. if Ntemp is not a leaf node, then
30. for each child[i] of Ntemp, do
31. s-lock(child[i]);

// lock-coupling//
32. add_node(child[i],

Queue);
33. end for;
34. end if;
35. end if;
36. end if;
37. s-unlock(Ntemp);
38. goto Line08;
39. end if;
40. end while;
41. if Ntarget is not null, then
42. convert(s, x, Ntarget); //convert the

Lock on Ntarget form s-lock to x-lock//
43. add Ins_Element to Ntarget as a child
node;
44. x-unlock(Ntarget);
45. end if;
End insert.



3.3 Modification Algorithm

Given the index tree, an element, and a path,

the modify transaction descends the tree along

the path to a target node and replaces the old

element with the new one. The nodes on the path

must be s-locked sequentially and released

immediately after they are processed. The target

node must be converted form s-locked to

x-locked before the modification. The simple

flow chart of the modification algorithm is

shown in Figure 6. The meanings and functions

of the parameters and variables used in this

algorithm are the same with those in the

insertion algorithm except the Old_Element.

Old_Element is an old element to be replaced by

the new element. The detailed modification

algorithm is described below.

Figure 6. The flow chart of modification

algorithm.

Algorithm Modify(Tx, Old_Element,
New_Element, Path)
Input:

NODE POINTER Tx;
ELEMENT Old_Element;
ELEMENT New_Element;
STRING Path;

Begin
QUEUE Queue;
NODE POINTER Ntemp;
STRING Aes;
NODE POINTER Ntarget;
INTEGER Flag;

01. Flag ← 0;
02. Ntarget ← null;
03. s-lock(Tx);
04. add_node (Tx, Queue);
05. add_node (null, Queue);
06. while Path is not empty, do
07. Aes ← get_tagname(Path);
08. Ntemp ← get_node(Queue);
09. if Ntemp = null, then
10. if Flag = 0, then
11. print(“Invalid tag name or path
data”);
12. for each node i in Queue, do
13. s-unlock(i);
14. end for;
15. return;
16. end if;
17. add_node(null, Queue);
18. Flag ← 0;
19. else
20. if Ntemp‧Tag_name = Aes, then
21. Flag ← 1;
22. if path is empty, then
23. if Aes contains no additive attribute

and value, or Aes contains
additive attribute and value
which are equal to those in
Ntemp‧Attribute, then

24. Ntarget ← Ntemp;
25. break;
26. end if;
27. else
28. if Aes contains no additive attribute

and value, or Aes contains
additive attribute and value
which are equal to those in
Ntemp‧Attribute, then

29. if Ntemp is not a leaf node, then
30. for each child[i] of Ntemp, do
31. s-lock(child[i]);
32. add_node(child[i],
Queue);
33. end for;
34. end if;
35. end if;
36. end if;



37. s-unlock(Ntemp);
38. goto Line08;
39. end if;
40. end while;
41. if Ntarget is not null, then
42. for each child i in Ntarget, do
43. if child i = Old_Element , then
44. convert(s, x, Ntarget);
45. Ntarget← New_Element;
46. x-unlock (Ntarget);
47. return;
47. end if;
48. end for;
49. s-unlock (Ntarget);
51. end if;
End Modify.

4. Conclusion

This paper proposes search, insertion, and

modification algorithms with concurrency

control mechanism for XML document access.

Two lock types, share lock and exclusive lock,

are used to implement concurrency control. With

the breadth-first search, the search transaction

finds level by level some elements which contain

all the input keywords. Only the s-lock is used in

the search algorithm. Given tag names and/or

attributes in a path, the insertion or modification

transaction can find out a suitable node to insert

or replace the given element. Both s-lock and

x-lock are used in the insertion and modification

algorithm. With the three concurrency control

algorithms, the XML document can be accessed

concurrently by many transactions without any

occurrence of unpredictable mistake.

References
[1] M. ARENAS, L. LIBKIN, ”XML data

exchange: Consistency and query answering”

Journal of the ACM (JACM) Vol. 55 Article No. 7,

May 2008.

[2] J.K.CHEN, Y.F.HUANG, Y.H.CHIN,”A Study of

Concurrent Operations on R-Trees” Information

Sciences, Volume 98, Number 1, pp. 263-300,

1997.

[3] R. Elmasri and S. B. Navathc, “Fundamentals of

Database Systems, 4th Education.” Addison

Wesley,

2003.

[4] G. Governatori, B. Stantic , and A. Sattar1,

“Handling of Current Time in Native XML

Databases”, 17th Australasian Database

Conference Vol. 49, pp. 175-182,2006.

[5] A. Heuer, H. Meyer, A. C. Schering, “Managing

Highly Correlated Semi-Structured

Data”Proceedings of the ACM first Ph.D.

workshop in CIKM, pp 101-108 , 2007.

[6] M. Kudo, J. Myllymaki, H. Pirahesh, N. Qi, “A

function-based access control model for XML

databases”, Proceedings of the 14th ACM

international conference on Information and

knowledge management, pp 115 – 122, 2005.

[7] E. J. Lu, R.H. Tsai, and S.H. Chou,” An Empirical

Study of XML/EDI”, Journal of Systems and

Software Volume: 58, Issue: 3, pp. 271-279,

2001.

[8] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun,

and F. D. Ngoc, “Exchanging Intensional XML

data”, ACM Transactions on Database Systems Vol.

30, Issue 1, pp. 1-40, 2005.

[9] S. Natu and J. Mendonca “Digital Asset

Management Using A Native XML Database

Implementation” Proceedings of the 4th

Conference on Information Technology

Curriculum CITC4 '03, pp. 237-241, 2003.

[10] R. Rajugan, E.Chang, T.S. Dillon, L. Feng,”A

layered view model for XML repositories &

XML data warehouses” Computer and

Information Technology, 2005. CIT 2005. The

Fifth International Conference, pp206-213,

2005.

[11] N. Wiwatwattana, H.V. Jagadish, L.V.S.

Lakshmanan, D. Srivastava, ”X^ 3: A Cube

Operator for XML OLAP” Data Engineering,

2007. ICDE 2007. IEEE 23rd International

Conference, pp916-925, 2007

[12] W3C, ExtensibleMarkupLanguage(XML)1.1,

http://www.w3.org/TR/2006/REC-xml11-20060

816/

[13] W3C, Standard Generalized Markup Language,

http://www.w3.org/MarkUp/SGML/

[14] X. Yin and T. B. Pedersen, “Evaluating

XML-Extended OLAP Queries Based on a

Physical lgebra”,7th ACM International

Workshop on Data Warehousing and OLAP,

pp.73-82, 2004.

[15] Boyi Xu, Lihong Jiang, Fanyuan Ma “On the new B to B

E-business Enabling platform: cnXML in China”, ACM

International Conference Proceeding Series; Vol. 113

Proceedings of the 7thinternational conference on

Electroniccommerce,pp.681–684,2005.

http://portal.acm.org/citation.cfm?id=1099554.1099577&coll=ACM&dl=ACM&CFID=81124273&CFTOKEN=47359767
http://portal.acm.org/citation.cfm?id=1099554.1099577&coll=ACM&dl=ACM&CFID=81124273&CFTOKEN=47359767
http://portal.acm.org/citation.cfm?id=1099554.1099577&coll=ACM&dl=ACM&CFID=81124273&CFTOKEN=47359767
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/MarkUp/SGML/

