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Abstract - Shadow detection is a critical issue 
for most applications of video surveillance. In this 
study, we proposed an unsupervised method to 
detect shadow caused by moving objects without 
setting any priori parameters or threshold values. 
The color histograms of moving objects’ image 
patch are collected to learn an accumulated 
distribution in each color domain. The 
accumulating strategy strengthens the impact of 
shadow parts in the image patch but reduces the 
effects of other non-shadow parts. By taking the 
advantage of robust estimation, the most 
significant peak, i.e. the shadows, in the 
accumulated distribution is fitted by a Gaussian 
function. As a result, if a pixel’s feature value is 
within the 2σ range of the Gaussian function,, it 
can thus be determined as shadows.  
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1. Introduction  

Video surveillance technology has witnessed 
increased importance in recent years, especially in 
the post 9/11 era. Numerous video cameras have 
been deployed in a number of major cities 
worldwide. However, conventional video 
surveillance systems need heavy human 
monitoring and attention. The more cameras 
deployed, the more inspection personnel employed. 
In addition, attention of inspection personnel is 
decreased over time, resulting in lower 
effectiveness at recognizing events while 
monitoring real-time surveillance videos. As a 
result, research in the field of intelligent video 
surveillance seems blooming in recent years.  

In order to detect moving objects in the 
surveillance video for further analyses, a 
conventional way is to maintain a background 
model and then subtracting the background from 
the current frame to get the moving foreground 
patch. However, the casting shadows caused by 
moving objects will be also segmented from the 
background, resulting in inaccurate object 
description. Therefore, shadow detection is a 
critical but necessary preprocess in most video 

surveillance applications. 
Numerous studies based on color feature 

transformation have been revealed. Cucchiara et al. 
[1] transformed video frames from RGB space to 
Hue-Saturation-Intensity (HSI) space. Shadows 
show two physical characteristics in HSI domain. 
In the intensity component, the value of the 
shadow pixel is lower than that in background 
model. In the hue and saturation components, the 
value of the shadow pixel shows slightly different 
from that in the background model. Therefore, 
shadows can be detected by using thresholding 
technique to obtain the pixels which are satisfied 
the physical characteristics. Nadimi et al. [2] 
proposed an approach based on a spatio-temporal 
albedo test to account for both the sun and the sky 
illuminations. Bunyak et al. [3] combined the 
features of intensity, chromaticity, and reflectance 
ratio to detect shadow. Zhang [4] proposed a new 
feature called ratio edge which shows strong 
invariance to illumination. In the work of Shan et 
al. [5], they evaluated the performance of 
thresholding-based shadow detection approach on 
different color spaces such as HSI, YCrCb, c1c2c3, 
L*a*b. To sum up, the mentioned approaches are 
all based on transforming the RGB features to 
another color domain or features, which have 
better characteristics to represent shadows. But no 
matter what kind of color spaces or features is 
adopted, users all need to set one or more 
threshold values to rule shadows out. 

On the other hand, Joshi et al. [6] modeled four 
features such as edge magnitude error, edge 
gradient direction error, intensity ratio, and color 
error by probability density functions. The shadow 
can thus be detected by applying Bayesian 
decision without selecting any threshold values. 
However, this approach still needs the user to label 
shadow pixels manually on couple frames to learn 
the probability density functions of shadows.    

Recently, Nicolas et al. [7] proposed an 
approach named Gaussian Mixture Shadow Model 
(GMSM) for shadow detection. The GMSM 
utilities two Gaussian mixture models (GMM) to 
model the static background and casting shadows. 
Afterward, Tanaka et al. [8] used the same idea but 
modeled the distributions of background and 



shadows non-parametrically by Parzon windows. 
It is faster than GMSM but costs more storage 
space. Both of them are based on statistical 
analysis and have better discriminability especially 
when the color of moving object shows similar 
attribute to the shadow pixel. Nevertheless, both 
approaches still need to set some threshold values 
to detect the pixels which are then regarded as 
shadow candidates. 

In summaries, the past studies on shadow 
detection put most attention on color space 
transformation or feature selection, but rarely 
discussed how to choose suitable threshold values 
automatically to rule shadows out. The difficulty is 
that the illuminative effects changes dramatically 
among different environments such as indoor or 
outdoor. Even in the same environment, the 
illumination also shows much different at different 
time. Therefore, a user-defined threshold may 
work well at a specific environment but useless at 
others environments or at different time. 

In this study, we propose an unsupervised 
method to detect shadows without setting any 
priori parameters or threshold values. Thus, our 
proposed method can be applied to different 
environments without manually tuning the 
thresholds of the shadow detection. In this paper, 
we describe the proposed shadow detection 
algorithm in Section 2. Section 3 reveals the 
experimental results and discusses. Section 4 
presents the conclusions and future works. 

 
2. Proposed Method 

Figure 1 illustrates the idea of the proposed 
algorithm. After performing background 
subtraction, the foreground, i.e. moving objects 
with casting shadows are segmented. Each 
connected object of foreground is called an 
observation herein. We then transform the 
observed foreground in the video frames from 
RGB to HSI. Take the intensity component for 
example, the intensity difference between 
background and foreground pixels of an 
observation is computed separately and then forms 
as a histogram to represent the observation. As 
shown in Fig. 1, although the histograms are 
gathered statistically from different observations, 
they have a similar part in the distribution on 
common, i.e. the bins within the blue rectangle. 
Since shadows are caused by blocking the light, 
the shadow pixels show similar decrease in the 
intensity. This physical characteristic shows 
statistical meaning to differ the shadow pixels 
from the object itself. Therefore, our strategy is to 
strengthen the impact of shadow parts in the image 
patch but reduces the effects of other non-shadow 
parts by accumulating the histograms of 
observations. Next, taking the advantage of robust 
estimation, the most significant peak in the 
accumulated histogram, which can be modeled as 
a Gaussian, is then extracted as a shadow function. 
As a result, if a pixel’s intensity feature is located 
within a statistical meaning range (say 2σ) of the 
shadow function, the pixel can be determined as a 
shadow pixel. 
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Figure 1. The concept of the proposed unsupervised algorithm for shadow detection 

 
Figure 2 shows the flowchart of the training 

stage of the proposed algorithm. First, moving 
objects are detected by background subtraction. 
Connected component algorithm is then applied to 

group connected pixels to form a connected object. 
Pixels which located at the connected object in the 
current frame and background are transformed 
from RGB to HSI domain. The differences 



between foreground and background in H, S, and I 
components are then computed, separately. We 
gather the difference values to form a statistical 
feature distribution, the difference histograms. 
Meanwhile, an accumulated distribution which 
integrates previously consecutive feature 
distributions is updated by accumulating the 
current feature distribution. The accumulation is 
referred to use a mathematical way to emphasis the 
statistical impact of shadows and suppress the 
others. Finally, we use a robust estimation 
technique to fit the most significant peak as a 
Gaussian function in the accumulated distribution. 
The fitted Gaussian function is, therefore, the 
shadow function.  

 
Figure 2. The flowchart of the learning stage. 
 
2.1. Preprocessing 

The Gaussian mixture model (GMM)-based 
background subtraction approach presented by 
Stauffer and Grimson [9] is a commonly used tool 
for extracting the moving objects. Basically, it uses 
couples of Gaussian to model the reasonable 
variation of the background pixels. Therefore, a 
pixel will be considered as foreground/moving 
object if the variation is larger than a threshold. In 
our system, each pixel in RGB color space is 
modeled as four Gaussians for foreground 
detection.  

After extracting the foreground, a 
morphological smoothing procedure is adopted to 
remove the noises (small-size foreground regions) 
by taking the morphological opening followed by a 
morphological closing operator with a 3 × 3 
rectangular structural element. In order to 

represent the spatial information of the extracted 
moving object candidates, a bounding box 
containing all the connected foreground pixels is 
recorded. The bounding box can be considered as a 
valid observation if and only if it satisfies the 
following two constrains. First, the size of a valid 
box should be larger than a certain pixels since the 
small-size box usually contain part of a pedestrian. 
Second, the boundary of the bounding box keeps at 
least five pixels away from the boundary of the 
input frame. This constrain ensures the object is 
fully observed in the filed of view.  
 
2.2. Color Space Transformation 
  After extracting the connected moving object 

},...,2,1|{ kixC iobject ==  in a valid bounding 
box, all pixels xi belonged to the object are 
transformed from RGB to HSI domain by using 
the following equations. 
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   ))(),(),((max xBxGxRMAX=             (4) 
   ))(),(),((min xBxGxRMIN=             (5) 
Meanwhile, the pixels on the same position, which 
the object covers on the background image, are 
transformed to HSI domain, too. We then compute 
the difference between foreground and background 
pixels on each component separately as the feature 
for the following probability distribution 
calculation.  
  The shadow pixels show some physical 
characteristics on HSI color space. When the pixel 
is covered by shadows, its intensity decreases but 
the hue and saturation are similar. As a result, the 
differences of the values in hue, saturation, and 
intensity components between the current frame 
and the background are adopted to represent a 
pixel as features, shown in Eq. (6)-(8). 
  )()()( xHxHxH cb −=Δ               (6) 

)()()( xSxSxS cb −=Δ                (7) 

)()()( xIxIxI cb −=Δ                (8) 
where •  stands for computing the absolute 



angle degrees between two hue features and the 
subscript b and c indicate the pixel x on the 
background image and on the current frame, 
respectively.  
 
2.3. Estimation and Accumulation of 
Object’s Feature Distribution  
After computing the differences between the 
background image and the current frame in hue, 
saturation, and intensity domains, the feature 
values in each domain are then normalized linearly 
to form a 256-bin histogram (hue: →]1800[ o  

]2550[ ; saturation: →− ]11[ ]2550[ ; intensity: 
→]10[ ]2550[ ). Notice that only the positive part 

of the difference of intensity is considered. The 
reason is that when a pixel is covered by shadows, 
its intensity is supposed to be darker than it is in 
the background image. Each histogram is then 
converted to a probability distribution by dividing 
the value of each bin by the summations of bin 
values. As a result, each connected object is 
represented by three probability distributions, the 
hue-feature, saturation-feature, and intensity- 
feature distributions, as shown in Fig. 3 (b), (c), 
and (d), respectively. 
  The system also maintains three distributions 
named accumulated distributions corresponding to 
the hue, saturation and intensity features. The 
accumulated distributions are updated by 
accumulating the current observation to the 
previous observations, as shown in Eq. (9).  

αα ))(())(()(ˆ 1 ifihih ⋅= −              (9) 

where )(if , )(ih and )(ˆ ih stand for the feature 
distributions of the current observation, the 
accumulated distribution of the previous 
observations and the current accumulated 
distribution, respectively. The variable i is the 
index of bins. The learning rate α reveals the 
impact of the current observation to the 
accumulated distribution. It is set to 0.01 in this 
study. Figure 3 (e), (f), and (g) show the 
accumulated distributions of hue, saturation and 
intensity feature, respectively.   
  
2.4. Estimation of Shadow Function  
As mentioned above, the most significant peak of 
the accumulated distribution is usually caused by 
shadows. Therefore, we use a parameterized 
function to fit the peak as the shadow function. 
The parameterized function is modeled as a 
Gaussian function, shown in Eq. (10):  
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where H and m are the probability (height) and the 
mean of the peak, respectively. The fitting problem, 
therefore, becomes a minimization problem of 
estimating the variance σ of Gaussian, as shown 
in Eq. (11).    
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However, the non-shadow data, which will 
affect the fitting accuracy, are regarded as outliers. 
We apply a robust estimation technique to get a 
better fitting result. The least-square-estimation 
term in Eq. (11) is modified as Eq. (12) by using 
an influence function ρ. The turkey’s bi-weight 
function is adopted as the influence function, 
which is widely used in the standard robust 
estimation [10]. The turkey’s bi-weight function is 
shown in Eq. (13). The blue lines in Fig. 3 (e), (f) 
and (g) show the estimated shadow functions.  
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  When the shadow function is obtained, a pixel is 
then detected as a shadow pixel if its feature values 
are all within a 2σ range (95% of confidence 
interval) of the estimated Gaussian. Figure 3 (h), (i) 
and (j) show the pixels (colored in red) are within 
the 2σ range constrain and (k) shows the pixels 
which are satisfied to the shadow constrains in all 
feature domains. 
 
3. Experimental Results 

To evaluate the performance of the proposed 
algorithm, two videos captured using Sony 
DCR-PC 110 DV HandyCam camcorder with 320 
× 240 resolution were used. The videos are 
obtained with frame rate at 25 frames/sec. The first 
10-minute video was captured at an outdoor scene 
but under a roof. The light source is from sky 
illuminations and couple fluorescent lamps under 
the roof. The second 2-minute video was captured 
at an outdoor walkway. The light source is from 
the sun and sky illuminations but the weather is 
partially cloudy.  

In order to evaluate the detection rate and false 
alarm rate of shadows, the ground truth was 
labeled manually first. Forty-five and sixteen 
frames were selected as ground truth images from 
video one and video two respectively. Frames in 
each video were selected in approximately equal 
time interval. The reason we did not select them in 



exactly equal time interval is that in these frames 
there was maybe no object showing up or objects 
just partial appeared. The pixels defined as 
foreground in those selected frames were labeled 
in red by using GMM background subtraction 
algorithm. Then we labeled the shadow pixels 
manually in blue from the foreground pixels. 
Figure 4 (a) and (b) shows the labeled ground truth 
of a frame in testing video one and video two, 
respectively. 

  
(a)                 (b) 

Figure 4. The labeled ground truth in the testing 
videos (a) the frame #1197 in the testing video one 
(b) the frame #552 in the testing video two. 
 

Table 1 shows the conditions of detection results. 
For example, a true positive (TP) means the testing 
pixel which is labeled as a shadow pixel and is 
correctly detected as a shadow, a false positive (FP) 
stands for the pixel is not labeled as a shadow 
pixel but is detected as shadows, and so on. 
Accuracy of the shadow detection is then 
evaluated by calculating detection rate (DR = 
TP/(TP+FN)) and false alarm rate (FAR = 
FP/(TP+FP)). Higher DR means the shadows can 
be detected more correctly, while lower FAR 
shows the objects will not be misclassified as 
shadows. A good detection algorithm is to make a 
compromise between DR and FAR since higher 
DR usually results in higher FAR and vice versa. 
  Comparing to previous studies of shadow 
detection, the contribution of this study is to 
propose an unsupervised approach to learn the 
thresholds automatically. As a result, we compared 
the performance of the proposed algorithm to a 
threshold-based method [1]. The threshold-based 
method is by manually setting several thresholds in 
hue, saturation, and intensity domains to rule out 
the shadow pixels. The experimental results are 
shown in Table 2. The third column shows the DR 
and FAR of the proposed algorithm. In the fourth 
column, we manually selected the thresholds 
appropriately by visual inspection from five 
frames of video one, and then used them to detect 
shadows in both videos. It is no doubt that the 
selected thresholds work well on video one but 
quite unacceptable on video two (DR=0.56). 
Similarly, the fifth column means we chose the 
thresholds by visually inspecting video two and 

then applied them to detect shadows on both 
videos. The results show the selected thresholds 
also not suitable on video one (FAR=0.30). 
However, since the proposed algorithm utilizes an 
unsupervised way to learn the shadow distribution, 
it does not need any human assistance on the 
threshold selection and has a good compromise 
between DR and FAR.  
 
Table 1. The conditions of the results of shadow 
detection.  

Is labeled as shadow? 
1 0 

true TP FP Is detected 
as shadow? false FN TN 
(T: true, F: false, P: positive, N: negative) 

 
Table 2. The result of shadow detection by the 
proposed method and by manually selecting 
threshold values.  

  Proposed 
method 

Threshold 
set 1 

Threshold 
set 2 

DR 0.88 0.92 0.92 Video 
one FAR 0.20 0.26 0.30 

DR 0.86 0.56 0.88 Video 
two FAR 0.22 0.10 0.28 

 
4. Conclusion 

This study presents an unsupervised algorithm 
to detect shadows for the applications of video 
surveillance. Our proposed algorithm can 
automatic learn the distribution of the shadow 
without manually setting any threshold values. The 
objects appear in the video are collected as 
observations to train a shadow function. The 
distributions of hue-difference, saturation- 
difference, and intensity-difference are obtained 
from each observation. Then the distributions 
obtained from consecutive observations are then 
accumulated to increase the impact of shadows but 
decrease the others. Therefore, the shadow 
function, which is further applied to detect 
shadows, can be obtained by fitting a Gaussian 
function on the significant peak in the accumulated 
distribution.  
  So far, the proposed algorithm works well in 
indoor scenes and in outdoor scenes under the 
cloudy weather (the shadows are only caused by 
sky illuminations). But when the scene is under a 
strong sun light situation, the shadows show two 
unstable peaks in the accumulated distributions. 
Therefore, a single Gaussian does not afford to 
model the shadows. In addition, since those two 
peaks are quite unstable, using two Gaussians to 
model the shadows does not work out, too. The 



feature work will address on how to deal with the 
outdoor cases under strong sun light. It may be 

conducted by modifying the accumulating 
strategy.   
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Figure 3. The results of the proposed shadow detection algorithm. (a) the current frame, (b) the hue-feature 
distribution, (c) the saturation-feature distribution, (d) the intensity-feature distribution, (e) the accumulated 
hue-feature distribution and its corresponding shadow function, (f) the accumulated saturation-feature 
distribution and its corresponding shadow function, (g) the accumulated intensity-feature distribution and 
its corresponding shadow function, (h) the detected shadow candidates in hue domain, (i) the detected 
shadow candidates in saturation domain, (j) the detected shadow candidates in intensity domain, (k) the 
detected shadows.  
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