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Abstract

The problem of finding the maximum number of edge-
disjoint spanning trees arises from the need for developing
efficient collective communication algorithms in distributed
memory parallel computers. In this paper, we propose a
formula for obtaining the maximum number of edge-disjoint
undirected spanning trees on the wrapped butterfly network.
The result can be applied to design efficient multicast rout-
ing algorithms in wormhole-routed parallel systems.
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1. Introduction

A multiprocessor/communication interconnection net-
work is usually modeled as a graph, in which the vertices
correspond to processors/nodes and the edges correspond
to connections or communication links. Therefore we use
the terms, graphs and networks, interchangeably. Among
various kinds of popular network topologies, butterfly net-
works are very suitable for VLSI implementation and par-
allel computing. Recently, the wrapped butterfly graph has
gained many researchers’ efforts for its nice topological
properties [2, 4, 6, 8, 10–12].

Embedding one network onto another is an interesting
subject because the portability of the guest network onto
the host network would permit executing guest specified al-
gorithms on the host with as little modification as possible.
Embedding various topologies, such as rings, linear arrays,
binary trees, etc., into the butterfly networks has been ad-
dressed in research by [5, 11, 12]. In particular, the prob-
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lem of constructing edge-disjoint spanning trees in a net-
work arises from the need for developing efficient collec-
tive communication algorithms in distributed memory par-
allel computers. Barden et al. [1] presented a brief compar-
ison between two routing schemes, store-and-forward rout-
ing [7] versus wormhole routing [9], and explained how and
why edge-disjoint spanning trees are involved in these ap-
plications. Not only did Touzene et al. [10] investigate how
to embed edge-disjoint directed spanning trees on butterfly
networks, but they also discussed the possible applications
to communication algorithms. Since the proposed spanning
trees are directed, their construction permits an edge (u, v)
to be used in orientation 〈u, v〉 in one spanning tree and
in orientation 〈v, u〉 in a second spanning tree. Such kind
of applications are mainly based on the store-and-forward
routing. Unlike the previous research, we turn our attention
to undirected spanning trees, which can be applied to the
wormhole routing. In [1], a recursive method was presented
to construct bn

2 c edge-disjoint undirected spanning trees on
an n-cube. In this paper, we give a formula for obtaining
the maximum number of edge-disjoint undirected spanning
trees on the wrapped butterfly network.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce graph-theoretic terminologies and the
definition of wrapped butterfly networks. Section 3 is de-
voted to basic properties of the wrapped butterfly network.
In Section 4, we show how to embed the maximum number
of edge-disjoint undirected spanning trees onto the wrapped
butterfly network. Finally, the concluding remarks are pre-
sented in Section 5.

2. Preliminaries

In this paper, we concentrate on loopless undirected
graphs. For the notations and graph-theoretic terminolo-
gies, we follow the ones given by Bondy and Murty [3].
A graph G is a two-tuple (V,E), where V is a nonempty
set and E is a subset of {(u, v) | (u, v) is an unordered



pair of V}. We say that V = V (G) is the vertex set and
E = E(G) is the edge set. Two vertices, u and v, are ad-
jacent if (u, v) ∈ E. The number of vertices in a graph
G, denoted by |V (G)|, is called the order of G; the num-
ber of edges, denoted by |E(G)|, is the size of G. The de-
gree of any vertex u in a graph G, denoted by degG(u),
is the number of edges incident with u. The maximum
and minimum degrees among the vertex set are denoted by
∆(G) and δ(G), respectively. A graph G is k-regular if
∆(G) = δ(G) = k.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G)
and E(H) ⊆ E(G). Let S be a nonempty subset of vertices
of a graph G. The subgraph induced by S is the subgraph of
G with the vertex set S and the edge set consisting of those
edges that join two vertices in S. Analogously, the subgraph
generated by a nonempty set F ⊆ E(G) is the subgraph of
G with the edge set F and the vertex set consisting of those
vertices incident to at least one edge of F . If X is a subset
of edges of graph G, then G−X is the spanning subgraph
of G obtained by deleting the edges of X from E(G). Two
graphs, G1 and G2, are isomorphic if there exists a bijection
µ from V (G1) onto V (G2) such that (u, v) ∈ E(G1) if and
only if (µ(u), µ(v)) ∈ E(G2). This bijection µ is called an
isomorphism.

A path P of length k from vertex x to vertex y in a graph
G is a sequence of distinct vertices 〈v1, v2, . . . , vk+1〉 such
that v1 = x, vk+1 = y, and (vi, vi+1) ∈ E(G) for every
1 ≤ i ≤ k if k ≥ 1. We also write P as 〈x, P, y〉 to em-
phasize its beginning and ending vertices. A path of length
0, consisting of a single vertex x, is denoted by 〈x〉. Let u
and v be vertices in a graph G. We say that u is connected
to v if G contains a path between u and v. The graph G
itself is connected if u is connected to v for every pair u, v
of vertices of G. A subgraph H of graph G is a component
of G if H is a maximal connected subgraph of G. A cycle
is a path with at least three vertices such that the first vertex
is adjacent to the last one. In order to emphasize the ver-
tex order on a cycle, a cycle C of length k is represented
by 〈v1, v2, . . . , vk, v1〉. A tree is a connected graph without
cycles. A spanning tree of a graph G is a spanning sub-
graph of G that is a tree. Let T be a tree rooted at vertex
r. The height of T , denoted by height(T ), is the length of
the longest path among all the paths from root r to any other
vertices of T . The following theorem characterizes a tree.

Theorem 1. [3] Let G be a graph. Then G is a tree if and
only if G is connected and |E(G)| = |V (G)| − 1.

Let Zn = {0, 1, . . . , n − 1} denote the set of integers
modulo n. The n-dimensional k-ary wrapped butterfly net-
work (or butterfly network for short), denoted by BF (k, n),
is a graph with vertex set Zn×Zn

k . Each of the n× kn ver-
tices is labeled by a two-tuple 〈`, a0 . . . an−1〉 with a level
` ∈ Zn and an n-digit radix-k string a0 . . . an−1 ∈ Zn

k . The

edge set of BF (k, n) can be defined in terms of the follow-
ing 2k generators, fi and f−1

i with i ∈ Zk:

fi(〈`, a0 . . . an−1〉)
= 〈(` + 1)mod n, a0 . . . a`−1a

(i)
` a`+1 . . . an−1〉,

and

f−1
i (〈`, a0 . . . an−1〉)

= 〈(`− 1)mod n, a0 . . . a`−2a
(−i)
`−1 a` . . . an−1〉,

where a
(i)
` ≡ a` + i (mod k). By definition, BF (k, n) is

2k-regular. It should be noticed that BF (k, 2) is a multi-
graph. The level of vertex 〈`, a0 . . . an−1〉 is `. An edge
joining a level-` vertex and a level-(` + 1)mod n vertex is
called a level-` edge. Figure 1(a) depicts BF (2, 3), and
Figure 1(b) is an isomorphic structure of BF (2, 3) with the
replication of level-0 vertices to ease visualization.

3. Fundamental properties of BF (k, n)

Suppose that k and n are two integers greater than or
equal to two. For any ` ∈ Zn and i ∈ Zk, we use
BF i

` (k, n) to denote a subgraph of BF (k, n) induced by
{〈h, a0 . . . an−1〉 ∈ V (BF (k, n)) | a` = i}. It is
easy to see that BF i

` (k, n) is isomorphic to BF j
` (k, n) for

any i, j ∈ Zk. Moreover, BF i
`1

(k, n) is isomorphic to
BF i

`2
(k, n) for any `1, `2 ∈ Zn. Obviously, {BF i

` (k, n) |
i ∈ Zk} forms a partition of BF (k, n). With this obser-
vation, Wong [12] proposed a stretching operation to obtain
BF i

` (k, n) from BF (k, n−1) when n ≥ 3. More precisely,
the stretching operation can be described as follows.

Let i ∈ Zk and ` ∈ Zn for n ≥ 2. Furthermore, let Gn

denote the set of all subgraphs of BF (k, n). Suppose that
G ∈ Gn. We define the following subsets of V (BF (k, n +
1)) and E(BF (k, n + 1)):

V1 = {vi
h | 0 ≤ h < `, vh ∈ V (G)},

V2 = {vi
h+1 | ` < h ≤ n− 1, vh ∈ V (G)},

V3 = {vi
` | v` is incident to

a level-(`− 1)mod n edge in G},
V4 = {vi

`+1 | v` is incident to a level-` edge in G},
E1 = {(vi

h, vi
h+1) | 0 ≤ h < `, (vh, uh+1) ∈ E(G)},

E2 = {(vi
h+1, v

i
h+2) | h ≥ `, (vh, uh+1) ∈ E(G)},

and
E3 = {(vi

`, v
i
`+1) | v` is incident to at least one

level-(`− 1)mod n edge and at least one
level-` edge in G}
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Figure 1. (a) The structure of BF (2, 3); (b) BF (2, 3) with level-0 vertices replicated to ease visual-
ization.

where

vh = 〈h, a0 . . . a`−1a` . . . an−1〉,
uh = 〈h, b0 . . . b`−1b` . . . bn−1〉,
vi

h = 〈h, a0 . . . a`−1ia` . . . an−1〉, and
ui

h = 〈h, b0 . . . b`−1ib` . . . bn−1〉.
Then the stretching function γi

` :
⋃

n≥2 Gn →
⋃

n≥3 Gn

is defined by assigning γi
`(G) as the graph with vertex set

V1∪V2∪V3∪V4 and with edge set E1∪E2∪E3. Obviously,
γi

` is well-defined and one-to-one. Furthermore, γi
`(G) ∈

Gn+1 if G ∈ Gn. It is easy to see that γi
`(BF (k, n)) =

BF i
` (k, n + 1). In particular, we have γi

`(P ) is a path in
BF (k, n + 1) if P is a path in BF (k, n).

In the next lemma, we use the following notations:

v` = 〈`, a0 . . . an−1〉 and
vi

` = 〈`, ia0 . . . an−1〉.
Lemma 1. Suppose that G is a connected spanning sub-
graph of BF (k, n) for k ≥ 2 and n ≥ 3. Let

F0 = {v0 ∈ V (G) | v0 is not incident to any

level-(n− 1) edge in G},
F1 = {v0 ∈ V (G) | v0 is not incident to any

level-0 edge in G}.
For i ∈ Zk, let

F i
0 = {vi

0 | v0 ∈ F0},
F i

1 = {vi
1 | v0 ∈ F1}, and

M =
⋃

v0 /∈F0∪F1

{(vi
0, v

i
1)}.

Then F0∩F1 = ∅, F i
0 ∩F i

1 = ∅, F i
0 ∪F i

1 = V (BF i
0(k, n+

1))− V (γi
0(G)), and M ⊆ E(γi

0(G)).

4. Edge-disjoint spanning trees of BF (k, n)

A reasonable upper bound on the number of edge-
disjoint undirected spanning trees in BF (k, n) is⌊

|E(BF (k,n))|
|V (BF (k,n))|−1

⌋
=

⌊
n×kn+1

n×kn−1

⌋
= k. In this section,

we show that BF (k, n) contains exactly k edge-disjoint
undirected spanning trees.

Lemma 2. Suppose n ≥ 2 and k ≥ 2. For every i ∈ Zk,
let si = 〈0, in〉 be a vertex of BF (k, n), and let Gi be a
subgraph of BF (k, n) generated by

⋃n−1
t=0

⋃
(p0,...,pn)∈{(q0,...,qn)∈Zn+1

k |qt=0}

{
(u, fpn(u)) | u = f t

0 ◦ fpn−1 ◦ . . . ◦ fp0(si)
}

.

Then {Gi | i ∈ Zk} is a set of k spanning components
of BF (k, n) such that

⋃k−1
i=0 E(Gi) = E(BF (k, n)), and

E(Gi) ∩ E(Gj) = ∅ whenever i 6= j. Moreover, Ti =
Gi−

{(
f−1
0 (si), si

)}
is a spanning tree of BF (k, n) rooted

at vertex si.

Proof. Assume that i ∈ Zk. It is clear that every ver-
tex of Gi is connected to si. Thus Gi is connected. To
see that Gi is a spanning component of BF (k, n), we
can decompose E(Gi) into the following disjoint subsets.
For any 0 ≤ j ≤ 2n − 2, let Fi,j = {(si, fp(si)) |
p ∈ Zk} if j = 0; Fi,j =

⋃
p∈Zk

{(u, fp(u)) |
u is a level-j vertex incident to an edge in Fi,j−1} if 1 ≤
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Figure 2. Two edge-disjoint undirected span-
ning trees of BF (2, 3), rooted at 〈0, 000〉 and
〈0, 111〉, respectively.

j ≤ n − 1; Fi,j =
⋃

(p0,p1,...,pn)∈X {(u, fpn(u)) |
u = f j−n

0 ◦ fpn−1 ◦ . . . ◦ fp0(si)} if n ≤ j ≤ 2n −
2, where X = {(q0, q1, . . . , qn) ∈ Zn+1

k | qj−n =
0, (qj−n+1, . . . , qn−1) 6= (0, . . . , 0)}. Then we observe
that E(Gi) =

⋃2n−2
j=0 Fi,j and Fi,j ∩ Fi′,j′ = ∅ whenever

i 6= i′ or j 6= j′. Thus, E(Gi) ∩ E(Gi′) = ∅ if i 6= i′.
By counting, we have |E(Gi)| =

∣∣∣⋃2n−2
j=0 Fi,j

∣∣∣ = n × kn.

Since |E(BF (k, n))| = n × kn+1 =
∑k−1

t=0 |E(Gt)|, we
obtain

⋃k−1
t=0 E(Gt) = E(BF (k, n)). Moreover, we have

|V (Gi)| = n × kn. Hence Gi is indeed a spanning com-
ponent of BF (k, n). It is easy to see that V (Ti) = V (Gi).
Therefore, we obtain |V (Ti)| = |V (Gi)| = n × kn and
|E(Ti)| = |E(Gi)| − 1 = n × kn − 1. By Theorem 1, Ti

turns out to be a spanning tree of BF (k, n) rooted at vertex
si. Therefore the proof is completed.

Example 1. In Figure 2, we depict two edge-disjoint span-
ning trees of BF (2, 3), which are rooted at 〈0, 000〉 and
〈0, 111〉, respectively.

Example 2. In Figure 3, we depict three edge-disjoint
spanning trees of BF (3, 3), which are rooted at 〈0, 000〉,
〈0, 111〉, and 〈0, 222〉, respectively.

Since BF (k, n) is vertex-transitive, we have the follow-
ing corollary.

Corollary 1. Suppose that n, k ≥ 2. Let ` ∈ Zn

and a0 . . . an−1 ∈ Zn
k . For any i ∈ Zk, let ri =

〈`, a(i)
0 . . . a

(i)
n−1〉. Then there exist k edge-disjoint spanning

trees of BF (k, n) rooted at r1, . . . , rk, respectively. Fur-
thermore, each of these k edge-disjoint spanning trees has
height 2n− 1.

Theorem 2. Let r be any vertex of BF (k, n) with k, n ≥ 2.
Then BF (k, n) contains k edge-disjoint undirected span-
ning trees rooted at r, with k unused edges incident with r.
One of these k spanning trees has height 2n + 1, and the
other k − 1 spanning trees have height 2n.

Proof. Without loss of generality, we assume that r =
〈0, 0n〉. We partition BF (k, n) into {BF i

0(k, n) | i ∈ Zk}.
For any j ∈ Zk, let Xj = {(〈0, jw〉, fq(〈0, jw〉)) |
w ∈ Zn−1

k \ {0n−1}, q ∈ Zk \ {0}} if j = 0
and Xj = {(〈0, jw〉, fq(〈0, jw〉)) | w ∈ Zn−1

k , q ∈
Zk \ {0}} ∪ {(r, fj(r))} otherwise. Moreover, for any
j ∈ Zk, let Yj =

⋃
t6=j{(〈0, tw〉, 〈1, tw〉) | w ∈

Zn−1
k }} − ⋃

t 6=j{(ft(r), f−1
0 (ft(r)))} if j = 0; Yj =

{(fj(r), f−1
0 (fj(r)))} ∪

⋃
t 6=j{(〈0, tw〉, 〈1, tw〉) | w ∈

Zn−1
k } otherwise.

Suppose that n = 2. We first construct k spanning
components of BF i

0(k, 2) with i ∈ Zk. For every j ∈
Zk, let Γi,j be a subgraph of BF i

0(k, 2) generated by
{(〈0, iw〉, 〈1, iw〉) | w ∈ Zk} ∪ {(〈1, ij〉, 〈0, ij(w)〉) | w ∈
Zk}. Then we set Tp, with p ∈ Zk, to be the subgraph of
BF (k, 2) generated by



k−1⋃

j=0

E
(
Γ(p+j) mod k,j

) ∪Xp − Yp


− {(

f−1
p (r), r

)}
.

Obviously, {T0, . . . , Tk−1} is a set of edge-disjoint undi-
rected spanning trees of BF (k, 2) rooted at r. It is easy to
see that the set of k unused edges is {(f−1

p (r), r) | p ∈ Zk}.
Suppose that n ≥ 3. First of all, we use Lemma 2

to construct k edge-disjoint components G0, . . . , Gk−1 of
BF (k, n − 1) such that Gj − {(f−1

0 (sj), sj)}, where
sj = 〈0, jn−1〉, is a spanning tree of BF (k, n − 1)
rooted at sj . Since BF i

0(k, n) = γi
0(BF (k, n − 1))

with i ∈ Zk, Lemma 1 ensures that V (BF i
0(k, n)) −

V (γi
0(Gj)) = {〈0, ixw〉 | x ∈ Zk − {j}, w ∈

Zn−2
k }. Hence, let Γi,j be a subgraph of BF i

0(k, n)
generated by E(γi

0(Gj)) ∪ {(〈0, iw〉, 〈1, iw〉) | w ∈
Zn−1

k } for j ∈ Zk. Similarly, we set Tp, with
p ∈ Zk, to be the subgraph of BF (k, n) generated by(⋃k−1

j=0 E
(
Γ(p+j) mod k,j

) ∪Xp − Yp

)
− {(

f−1
p (r), r

)}
.

Then {T0, . . . , Tk−1} forms a set of edge-disjoint undi-
rected spanning trees of BF (k, n) rooted at r. Again,
the set of k unused edges is {(f−1

p (r), r) | p ∈ Zk}.
Clearly, we have height(Tp) = 2n + 1 if p = 0 and
height(Tp) = 2n otherwise.

The proof is completed.

Example 3. In Figure 4, we depict two edge-disjoint undi-
rected spanning trees of BF (2, 3) rooted at 〈0, 000〉. In
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Figure 3. Three edge-disjoint undirected spanning trees of BF (3, 3), rooted at 〈0, 000〉, 〈0, 111〉, and
〈0, 222〉, respectively.

Figure 5, we illustrate three edge-disjoint undirected span-
ning trees of BF (3, 3) rooted at 〈0, 000〉.

5. Conclusion

In this paper, we show that every BF (k, n) contains k
edge-disjoint rooted spanning trees whose heights do not
exceed 2n + 1, provided k ≥ 2 and n ≥ 2. Our result
has applications to multicast communication in wormhole-
routed parallel systems.
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Figure 4. Two edge-disjoint undirected spanning trees of BF (2, 3) rooted at 〈0, 000〉.
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