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Abstract

The topological structure of an interconnection network
can be modeled by a grap = (V, E) whereV is the
vertex set andt the edge set of. For a vertex subset
V' C V of graph G, the subgraph of7 induced byV”,
denoted byG[V’], is a graph with vertex se¥”’ and all
the edges of7 with both ends of vertices ifv’. Anm-

purpose of connecting hundreds or thousands of processing
elements, many interconnection network topologies have
been proposed in literature. Graph theory can be used to
analyze the networks and most of the graph definitions we
use are standard [4]. Terms networks and graphs are used
interchangeably in this paper.

Given a graplG = (V, E) whereV is the vertex set and
E the edge set ofs. For a vertex subsét” of graphG,

induced subgraph of a graph is such one which induced bythe subgraph of7 induced byV’, denoted byG[V], is a

m vertices. A maximallyn-induced subgraph of a graph
G, denoted by, 2**(@G), can be defined a¥»**(G) =
{GIV'] | maxy ey, jvj—m |E(GIV'])]}. Letmax,,(G) be
the number of edges in such a maximallyinduced sub-
graphV»**(G). Letm be an integer withn = 22;01 2l
andly > li > -+ > L1, g(m) = S (% +i)2h.
For an n-dimensional hypercub@,,, it is proved by Abdel-
Ghaffar in 2003 thatnax,,(Q,) = g(m) forn > 1 and

0 < m < 2™ In this paper, we investigate in the max-

graph with vertex seV’ and all the edges af with both
ends of vertices ifV’. An m-induced subgraplof a graph
is such one which induced by vertices [16]. Amaximally
m-induced subgraptf a graphG, denoted by, »**(G),

can be defined as

[E(GV])]}-

V(@) = {G[V']|

max
V'CV,|V/|=m

Let max,,(G) be the number of edges in such a maxi-

imally m-induced subgraph of the generalized hypercubes mally m-induced subgrapl’™»*((7). The n-dimensional

GQ,, and show thaimax,,(GQ,) = g(m) forn > 3 and

m

hypercube[3], denoted by(@,,, is an undirected graph

0 < m < 2". The hypercubes, twisted cubes, crossed with 2" vertices, which consists of afl-bit binary strings

cubes, and bius cubes are special cases of generalized g5 its vertices.

hypercubes. Additionally, we provide an algorithm to find a
maximallym-induced subgraph of generalized hypercubes.

Keywords: subgraph, hypercube, generalized hypercube,

maximallym-induced subgraph.

1 Introduction

The topological structure of @nterconnection network
can be modeled bygraph while vertices represeptoces-
sorsand edges represélitiks between processors. For the
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Take)s for an instance, letV; be
the vertex set{000,001,011,111}, then E(Qs[V1]) =
{(000,001), (001,011), (011,111)}. However, letV; be
the vertex set{000,001,011,010}, then E(Q3[V3]) =
{(000,001), (001,011), (011,010), (010,000)}. Actually,
max4(Q3) = 4. To maximize the number of edges join-
ing vertices of a vertex set withu vertices of a graph is an
important issue in this research.

Letm = Z;:Ol 2k wherely > 13 > -+ > 1,_; > 0.
For ann-dimensional hypercub@,,, it is proved in [1] that
max,,(Qn) = Si_g(% + )24, For therecursive cir-
culant graphsRC(2", 4), the value ofmax,, (RC(2",4))
is proved in [16]. The results of maximally:-induced
subgraph have applications in the evaluation of fault toler-
ance and bandwidth of networks. Maximizing the number
of transitions corresponding to single edges may decrease
the power consumption because of switching activities in
processors [14]. In addition, they also relate to electro-
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mechanical or optical sensors [16]. The same technique also ! 00 | @0 | | oo@ | | @10 !

can be used to facilitate browsing of documents in libraries i | b M !

and data storage systems [12]. Some other applications can ¥ ® o100 | |01€ | e |

be seen in [1]. Go, “Gor ol God Goi
Then-dimensional hypercube, denoted ®y;, is a pop- GO, GQ,

ular network because of its attractive properties, including @ GO, ) GO,

regularity, symmetry small diameter strong connectivity
recursive constructionpartitionability, andrelatively low
link complexity[3, 11, 13]. There are some variations of
the hypercube),, appearing in literature, such asisted
cubes[2, 10], crossed cube$9, 15], andmbbius cubes
[8, 15]. These variations preserve most of the good topolog-
ical properties of the hypercube, and even better. For exam-
ple, the diameter of these variation cubes is around half of
that of the hypercube. Recently, the twisted cubes, crossed
cubes, and iwbius cubes are proved to be super connected
and super fault-tolerant hamiltonian graphs [5, 7]. We de-
fine a generalization of those graphs. Theimensional
generalized hypercubedenoted byG@,,, are generaliza- GO, ,
tions of the then-dimensional twisted cubeBQ,,, crossed
cubesC(@,,, and nbbius cubes\/Q,,. Letr andiy > [; >
-+ > [,._1 be nonnegative integers with = E:;g 2. In o8y GO,
this paper, we show thatiax,, (GQ,) = Y1—, (4 +4)2% S 110
forn > 3 and0 < m < 2". Moreover, we provide 60,
an algorithm to find the maximallyn-induced subgraph 111
vrer(GQ,) of graphGQ,, forn > 3 and0 < m < 2m.

The rest of this paper is organized as follows. Section
2 starts with the definition of generalized hypercubes and
defines the functiog(m). Section 3 forms the main result

of the paper. In Section 4, we give the conclusion remarks. 3 Maximally m-induced Subgraph of Gener-
alized Hypercubes

Figure 1. (a) GQ1; (b) Two situations of GQ-.

GQn-Z
10v, ..vv,

GQn’3 1110v, ..v v,

10v, ,..vv

Figure 2. Labels of the vertex set of GQ,,.

2 Preliminary

In this section, we state and show the main result that
given a generalized hypercule&),, for n > 3 and an in-
tegerm for 0 < m < 27, we have thaimax,,(GQ,) =
g(m). In order to prove it, the following lemma is needed.

Motivated by the recursively structure of the hypercubes,
crossed cubes, twisted cubes, andbims cubes, we have
the following n-dimensional generalized hypercubes, de-
noted byGQ,. TheGQ,, for n > 0 is recursively defined
as follows. Fom = 0, GQ is a vertex. Fon = 1, GQ is
isomorphic to the -dimensional hypercub@; with vertex
set{0, 1} and edge sef(0,1)}. As forn > 2, GQ,, con-
sists of (1) two not necessarily identidat),,_;’s, denoted
by GQY_, andGQ. _,; and (2) an arbitrary perfect match-
ing with 2"~ edges between the tw&Q,,_;’s, each vertex
in GQY _, is adjacent to exactly one vertex@Q® ;. The
n-dimensional generalized hypercub@€),, for n = 1,2 Lemma 2 Given a generalized hyperculi&,, for n > 3,

are shown in Figure 1, in which the edge settif), has and an integerm for 0 < m < 2". We have that
two different situations. Figure 2 illustrates labels of the max,, (GQn) < g(m). B N

vertex set ofGQ),,.

Now, the Functiory(m) is defined as the following. Let  proof. This lemma is proved by induction. For the induc-
m be an integer withn = 37— 2% andly > I; > -+ > tion basen = 3, itis not hard to check thahax,,, (GQ3) <
l,—1. Then,g(m) = Z;;&(% +14)2%. As an example, for  g(m) for 0 < m < 8 by brute force. Assume that
n=286=26+2%+22421 ¢(86) = (6/2+0)2° + (4/2+ max,,(GQ,) < g(m) for 0 < m < 2". Now, we
1)2% + (2/2 +2)22 + (1/2 + 3)2! = 259. shall show that for then-induced subgraph of th@Q,, + 1,

Lemma 1l [16] For any nonnegative integersng,m,
g(mo +m1) > g(mo) + g(m1) + min{mg, m1}.

The following lemma shows that far > 3 and(0 <
m < 2", the maximallym-induced subgrapl »*>*(GQ,,)
of GQ,, contains at mos§(m) edges by induction.


Administrator
矩形


max,, (GQni1) < g(m) for 0 < m < 271 In them-
induced subgraph with vertices ofGQ,,+1, we may as-
sume that there arey, vertices inGQY andm; in GQ.,
with m = mg 4+ my. Without loss of generality, we may
assume thatng > my > 0. We divide the proof into the
following two cases.

Case 1:m; = 0. So them vertices are all distributed in
GQY andm < 2". By the induction hypothesis, we have
thatmax,, (GQn+1) < g(m).

Case 2: m; > 0. For the maximallym-induced sub-
graph ofGQ,. .1, there arem, > 0 vertices inGQ° and
my in GQL. Hencemax,,(GQn11) < max,,,(GQY) +
max,,, (GQL) +min{mg, m; }. By the induction hypothe-
sis, max,,, (GQY) < g(mp) andmax,,, (GQL) < g(m;).

In addition,g(mg)+g(m1)+min{mg, m1} < g(mo+m1)
by Lemma 1. As a result, we have the following equation
and this lemma is proved.

max, (GQD) + may, (GQL)

+ min{mg, m; }

g(mo) + g(m1) + min{mog, m1 }
g(mo +mq)

g(m). °©

maX,, (GQn+t1)

IN

I IAIA

Now, we give an algorithm to find amn-induced
subgraph of7Q,, with g(m) edges.

Algorithm
01.V’ := BUILD .VERTEX_SET(n, m);

[* Give ann-dimensional generalized@,, for n > 3,
and an integem, where0 < m < 2". Letm
=31 2%, wherely > 1; > - > 0l,_y > 0. %

02. BUILD VERTEX,SET(n, m)

03. begin

04. V':=0; [*V'isavertexsubsetdfQ,,. */

05. if (m = 0) then returni’” := {);

06. if (m =2")thenreturnV’ := V(GQ.,);

07. fori:=0tor—1

08. V= Vu{1n D0y, g - vgvov, € {0,1}
for0 <z <l;—1};

09. returnV’; I* GQ,[V'] is the maximallym-induced

subgraph of7@Q,, */
10. end BUILDVERTEX_SET

Take one situation of7Q3; as Figure 3 for example,
while m = 7, V' = {000, 001, 010, 011, 100, 101, 110}.
Now, we investigate in the number of edges#d,,[V'] of
the above algorithm. Firstly, if» = 0, by Line 5 of the al-
gorithm,V’ = § and| E(GQ.[V'])| = 0 = ¢(0). Secondly,
if m = 2", by Line 6 of the algorithm}’ = V(GQ,)
and|E(GQ,[V'])] = 2" x § = g(2"). Finally, we con-
sider thatd < m < 2". Letm = >._, 2%, where
lo >1y >--->1._1 > 0. After finishing the for loop of

Table 1. Total number of edges of
with 0 <m < 2™,

GQn[V']

for loop [E(GQ[V'])]

i=0 |E(GQu,)|

i=1 |E(GQuy)| + (|IE(GQu)| +2")

i=2 |E(GQi,)| + (IE(GQ, )| +2™)
+ (|E(GQu,)| +2 x 22)

i=3 |E(GQu,)| + (|IE(GQy,)| +2)
+ (|B(GQi,)| +2 x 22)
+ (IE(GQ13)| +3x25)

i=r—1 (GQ10)|+(|E(GQ11)\+2“)

(1E(GQuy)| +2 x 2'2)
(|E(GQ13)| +3x2'%)

|E GQi, )|+ (r = 1) x 2r-1)

lo +(211 l1 +2l1)
(2l2 12+2x212)
(213 13+3x213)
21' 1 xlr—1+(r—1)><21' 1)

|

4
+
4.
+(
=2l
4
+
4.
+

(
g(m)

the algorithm (lines 7-8), Table 1 is established, and the total
number of edges offQ,,[V’] is g(m). Therefore, Lemma
3 follows.

-

Figure 3. Maximally m-induced subgraph of
the generalized hypercube GQ3 with m = 7.

Lemma 3 Given a generalized hyperculb&),, for n > 3,
and an integerm for 0 < m < 2", We have that

max,, (GQ,) > g(m).

According to Lemma 2 and Lemma 3, the main result of
this paper is stated as Theorem 1.

Theorem 1 Given a generalized hyperculd&?,, for n >
3, and an integerm for 0 < m < 2". We have that

max,, (GQ,) = g(m).
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By the construction scheme of generalized hypercubes,[6]
the hypercubes, crossed cubes , twisted cubes, @filis
cubes are special cases of generalized hypercubes. As a
result, we have the following corollary.

Corollary 1 max,, (@) max,, (CQx)
max,, (T'Q,) = max,(MQ,) = g(m) for n >
and0 < m < 2™,

= [
3

4 Conclusion Remarks (8]

The n-dimensional generalized hyperculi&?),, is a
promising candidate for interconnection networks. Addi- [9]
tionally, the crossed cubesq@),,, twisted cubed'Q,,, and
mobius cubesM @),, are special cases of theQ,,. This
research determined the maximum number of edges of a
subgraph of th&/@,, induced by a given number of ver-
tices with0 < m < 2™. We also give an algorithm to find
the maximallym-induced subgrapl,»*(G@Q,,) of gener-
alized hypercubes.
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