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Abstract

The topological structure of an interconnection network
can be modeled by a graphG = (V, E) whereV is the
vertex set andE the edge set ofG. For a vertex subset
V ′ ⊆ V of graph G, the subgraph ofG induced byV ′,
denoted byG[V ′], is a graph with vertex setV ′ and all
the edges ofG with both ends of vertices inV ′. An m-
induced subgraph of a graph is such one which induced by
m vertices. A maximallym-induced subgraph of a graph
G, denoted byV max

m (G), can be defined asV max
m (G) =

{G[V ′] | maxV ′⊆V,|V ′|=m |E(G[V ′])|}. Letmaxm(G) be
the number of edges in such a maximallym-induced sub-
graphV max

m (G). Letm be an integer withm =
∑r−1

i=0 2li

and l0 > l1 > · · · > lr−1. g(m) =
∑r−1

i=0 ( li
2 + i)2li .

For ann-dimensional hypercubeQn, it is proved by Abdel-
Ghaffar in 2003 thatmaxm(Qn) = g(m) for n ≥ 1 and
0 ≤ m ≤ 2n. In this paper, we investigate in the max-
imally m-induced subgraph of the generalized hypercubes
GQn and show thatmaxm(GQn) = g(m) for n ≥ 3 and
0 ≤ m ≤ 2n. The hypercubes, twisted cubes, crossed
cubes, and m̈obius cubes are special cases of generalized
hypercubes. Additionally, we provide an algorithm to find a
maximallym-induced subgraph of generalized hypercubes.

Keywords: subgraph, hypercube, generalized hypercube,
maximallym-induced subgraph.

1 Introduction

The topological structure of aninterconnection network
can be modeled by agraph, while vertices representproces-
sorsand edges representlinks between processors. For the
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purpose of connecting hundreds or thousands of processing
elements, many interconnection network topologies have
been proposed in literature. Graph theory can be used to
analyze the networks and most of the graph definitions we
use are standard [4]. Terms networks and graphs are used
interchangeably in this paper.

Given a graphG = (V, E) whereV is the vertex set and
E the edge set ofG. For a vertex subsetV ′ of graphG,
the subgraph ofG induced byV ′, denoted byG[V ′], is a
graph with vertex setV ′ and all the edges ofG with both
ends of vertices inV ′. An m-induced subgraphof a graph
is such one which induced bym vertices [16]. Amaximally
m-induced subgraphof a graphG, denoted byV max

m (G),
can be defined as

V max
m (G) = {G[V ′] | max

V ′⊆V,|V ′|=m
|E(G[V ′])|}.

Let maxm(G) be the number of edges in such a maxi-
mally m-induced subgraphV max

m (G). Then-dimensional
hypercube[3], denoted byQn, is an undirected graph
with 2n vertices, which consists of alln-bit binary strings
as its vertices. TakeQ3 for an instance, letV1 be
the vertex set{000, 001, 011, 111}, then E(Q3[V1]) =
{(000, 001), (001, 011), (011, 111)}. However, letV2 be
the vertex set{000, 001, 011, 010}, then E(Q3[V2]) =
{(000, 001), (001, 011), (011, 010), (010, 000)}. Actually,
max4(Q3) = 4. To maximize the number of edges join-
ing vertices of a vertex set withm vertices of a graph is an
important issue in this research.

Let m =
∑r−1

i=0 2li , wherel0 > l1 > · · · > lr−1 ≥ 0.
For ann-dimensional hypercubeQn, it is proved in [1] that
maxm(Qn) =

∑r−1
i=0 ( li

2 + i)2li . For the recursive cir-
culant graphsRC(2n, 4), the value ofmaxm(RC(2n, 4))
is proved in [16]. The results of maximallym-induced
subgraph have applications in the evaluation of fault toler-
ance and bandwidth of networks. Maximizing the number
of transitions corresponding to single edges may decrease
the power consumption because of switching activities in
processors [14]. In addition, they also relate to electro-
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mechanical or optical sensors [16]. The same technique also
can be used to facilitate browsing of documents in libraries
and data storage systems [12]. Some other applications can
be seen in [1].

Then-dimensional hypercube, denoted byQn, is a pop-
ular network because of its attractive properties, including
regularity, symmetry, small diameter, strong connectivity,
recursive construction, partitionability, and relatively low
link complexity[3, 11, 13]. There are some variations of
the hypercubeQn appearing in literature, such astwisted
cubes[2, 10], crossed cubes[9, 15], andmöbius cubes
[8, 15]. These variations preserve most of the good topolog-
ical properties of the hypercube, and even better. For exam-
ple, the diameter of these variation cubes is around half of
that of the hypercube. Recently, the twisted cubes, crossed
cubes, and m̈obius cubes are proved to be super connected
and super fault-tolerant hamiltonian graphs [5, 7]. We de-
fine a generalization of those graphs. Then-dimensional
generalized hypercubes, denoted byGQn, are generaliza-
tions of the then-dimensional twisted cubesTQn, crossed
cubesCQn, and m̈obius cubesMQn. Let r andl0 > l1 >
· · · > lr−1 be nonnegative integers withm =

∑r−1
i=0 2li . In

this paper, we show thatmaxm(GQn) =
∑r−1

i=0 ( li
2 + i)2li

for n ≥ 3 and 0 ≤ m ≤ 2n. Moreover, we provide
an algorithm to find the maximallym-induced subgraph
V max

m (GQn) of graphGQn for n ≥ 3 and0 ≤ m ≤ 2n.
The rest of this paper is organized as follows. Section

2 starts with the definition of generalized hypercubes and
defines the functiong(m). Section 3 forms the main result
of the paper. In Section 4, we give the conclusion remarks.

2 Preliminary

Motivated by the recursively structure of the hypercubes,
crossed cubes, twisted cubes, and möbius cubes, we have
the following n-dimensional generalized hypercubes, de-
noted byGQn. TheGQn for n ≥ 0 is recursively defined
as follows. Forn = 0, GQ0 is a vertex. Forn = 1, GQ1 is
isomorphic to the1-dimensional hypercubeQ1 with vertex
set{0, 1} and edge set{(0, 1)}. As for n ≥ 2, GQn con-
sists of (1) two not necessarily identicalGQn−1’s, denoted
by GQ0

n−1 andGQ1
n−1; and (2) an arbitrary perfect match-

ing with 2n−1 edges between the twoGQn−1’s, each vertex
in GQ0

n−1 is adjacent to exactly one vertex inGQ1
n−1. The

n-dimensional generalized hypercubesGQn for n = 1, 2
are shown in Figure 1, in which the edge set ofGQ2 has
two different situations. Figure 2 illustrates labels of the
vertex set ofGQn.

Now, the Functiong(m) is defined as the following. Let
m be an integer withm =

∑r−1
i=0 2li andl0 > l1 > · · · >

lr−1. Then,g(m) =
∑r−1

i=0 ( li
2 + i)2li . As an example, for

n = 86 = 26 +24 +22 +21, g(86) = (6/2+0)26 +(4/2+
1)24 + (2/2 + 2)22 + (1/2 + 3)21 = 259.
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Figure 1. (a) GQ1; (b) Two situations of GQ2.
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Figure 2. Labels of the vertex set of GQn.

3 Maximally m-induced Subgraph of Gener-
alized Hypercubes

In this section, we state and show the main result that
given a generalized hypercubeGQn for n ≥ 3 and an in-
tegerm for 0 ≤ m ≤ 2n, we have thatmaxm(GQn) =
g(m). In order to prove it, the following lemma is needed.

Lemma 1 [16] For any nonnegative integersm0,m1,
g(m0 + m1) ≥ g(m0) + g(m1) + min{m0, m1}.

The following lemma shows that forn ≥ 3 and 0 ≤
m ≤ 2n, the maximallym-induced subgraphV max

m (GQn)
of GQn contains at mostg(m) edges by induction.

Lemma 2 Given a generalized hypercubeGQn for n ≥ 3,
and an integerm for 0 ≤ m ≤ 2n. We have that
maxm(GQn) ≤ g(m).

Proof. This lemma is proved by induction. For the induc-
tion basen = 3, it is not hard to check thatmaxm(GQ3) ≤
g(m) for 0 ≤ m ≤ 8 by brute force. Assume that
maxm(GQn) ≤ g(m) for 0 ≤ m ≤ 2n. Now, we
shall show that for them-induced subgraph of theGQn+1,
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maxm(GQn+1) ≤ g(m) for 0 ≤ m ≤ 2n+1. In them-
induced subgraph withm vertices ofGQn+1, we may as-
sume that there arem0 vertices inGQ0

n andm1 in GQ1
n

with m = m0 + m1. Without loss of generality, we may
assume thatm0 ≥ m1 ≥ 0. We divide the proof into the
following two cases.
Case 1: m1 = 0. So them vertices are all distributed in
GQ0

n andm ≤ 2n. By the induction hypothesis, we have
thatmaxm(GQn+1) ≤ g(m).
Case 2: m1 > 0. For the maximallym-induced sub-
graph ofGQn+1, there arem0 > 0 vertices inGQ0

n and
m1 in GQ1

n. Hence,maxm(GQn+1) ≤ maxm0(GQ0
n) +

maxm1(GQ1
n)+min{m0, m1}. By the induction hypothe-

sis,maxm0(GQ0
n) ≤ g(m0) andmaxm1(GQ1

n) ≤ g(m1).
In addition,g(m0)+g(m1)+min{m0,m1} ≤ g(m0+m1)
by Lemma 1. As a result, we have the following equation
and this lemma is proved.

maxm(GQn+1) ≤ maxm0(GQ0
n) + maxm1(GQ1

n)
+ min{m0,m1}

≤ g(m0) + g(m1) + min{m0,m1}
≤ g(m0 + m1)
= g(m). ¦

Now, we give an algorithm to find anm-induced
subgraph ofGQn with g(m) edges.

Algorithm
01. V ′ := BUILD VERTEX SET(n,m);

/* Give ann-dimensional generalizedGQn for n ≥ 3,
and an integerm, where0 ≤ m ≤ 2n. Let m
=

∑r−1
i=0 2li , wherel0 > l1 > · · · > 0lr−1 ≥ 0. */

02. BUILD VERTEX SET(n,m)
03. begin
04. V ′ := ∅; /* V ′ is a vertex subset ofGQn. */
05. if (m = 0) then returnV ′ := ∅;
06. if (m = 2n) then returnV ′ := V (GQn);
07. for i := 0 to r − 1
08. V ′ := V ′∪{1n−(li+1)0vli−1 · · · v1v0|vx ∈ {0, 1}

for 0 ≤ x ≤ li − 1};
09. returnV ′; /* GQn[V ′] is the maximallym-induced

subgraph ofGQn */
10. end BUILDVERTEX SET

Take one situation ofGQ3 as Figure 3 for example,
while m = 7, V ′ = {000, 001, 010, 011, 100, 101, 110}.
Now, we investigate in the number of edges ofGQn[V ′] of
the above algorithm. Firstly, ifm = 0, by Line 5 of the al-
gorithm,V ′ = ∅ and|E(GQn[V ′])| = 0 = g(0). Secondly,
if m = 2n, by Line 6 of the algorithm,V ′ = V (GQn)
and |E(GQn[V ′])| = 2n × n

2 = g(2n). Finally, we con-

sider that0 < m < 2n. Let m =
∑r−1

i=0 2li , where
l0 > l1 > · · · > lr−1 ≥ 0. After finishing the for loop of

Table 1. Total number of edges of GQn[V ′]
with 0 < m < 2n.

for loop |E(GQn[V ′])|
i = 0 |E(GQl0)|
i = 1 |E(GQl0)| + (|E(GQl1)|+ 2l1)

i = 2 |E(GQl0)| + (|E(GQl1)|+ 2l1)

+ (|E(GQl2)|+ 2× 2l2)

i = 3 |E(GQl0)| + (|E(GQl1)|+ 2l1)

+ (|E(GQl2)|+ 2× 2l2)

+ (|E(GQl3)|+ 3× 2l3)

· · · · · ·
i = r − 1 |E(GQl0)| + (|E(GQl1)|+ 2l1)

+ (|E(GQl2)|+ 2× 2l2)

+ (|E(GQl3)|+ 3× 2l3)
+ · · ·
+ (|E(GQlr−1)|+ (r − 1)× 2lr−1)

= 2l0 × l0
2

+ (2l1 × l1
2

+ 2l1)

+ (2l2 × l2
2

+ 2× 2l2)

+ (2l3 × l3
2

+ 3× 2l3)
+ · · ·
+ (2lr−1 × lr−1

2
+ (r − 1)× 2lr−1)

= g(m)

the algorithm (lines 7-8), Table 1 is established, and the total
number of edges ofGQn[V ′] is g(m). Therefore, Lemma
3 follows.
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Figure 3. Maximally m-induced subgraph of
the generalized hypercube GQ3 with m = 7.

Lemma 3 Given a generalized hypercubeGQn for n ≥ 3,
and an integerm for 0 ≤ m ≤ 2n. We have that
maxm(GQn) ≥ g(m).

According to Lemma 2 and Lemma 3, the main result of
this paper is stated as Theorem 1.

Theorem 1 Given a generalized hypercubeGQn for n ≥
3, and an integerm for 0 ≤ m ≤ 2n. We have that
maxm(GQn) = g(m).
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By the construction scheme of generalized hypercubes,
the hypercubes, crossed cubes , twisted cubes, and möbius
cubes are special cases of generalized hypercubes. As a
result, we have the following corollary.

Corollary 1 maxm(Qn) = maxm(CQn) =
maxm(TQn) = maxm(MQn) = g(m) for n ≥ 3
and0 ≤ m ≤ 2n.

4 Conclusion Remarks

The n-dimensional generalized hypercubeGQn is a
promising candidate for interconnection networks. Addi-
tionally, the crossed cubesCQn, twisted cubesTQn, and
möbius cubesMQn are special cases of theGQn. This
research determined the maximum number of edges of a
subgraph of theGQn induced by a given number ofm ver-
tices with0 ≤ m ≤ 2n. We also give an algorithm to find
the maximallym-induced subgraphV max

m (GQn) of gener-
alized hypercubes.
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