
Bridge-connectivity Augmenting Problem with a

Partition Constraint

Hsin-Wen Wei∗, Wan-Chen Lu†, Pei-Chi Huang†, Wei-Kuan Shih†, and Tsan-sheng Hsu∗

∗Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan

{hwwei, tshsu}@iis.sinica.edu.tw
†Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan

{wanchen, peggy, wshih}@rtlab.cs.nthu.edu.tw

Abstract

This paper considers the augmentation problem of
an undirected graph with k partitions of its vertices.
The main issue is how to add a set of edges with
the smallest possible cardinality so that the resulting
graph is 2-edge-connected, i.e., bridge-connected,
while maintaining the partition constraint. To solve
this problem, we propose a simple linear-time algo-
rithm. We show that the algorithm runs in O(log n)
parallel time on an EREW PRAM using a linear
number of processors.

Key words: 2-edge-connectivity, bridge-connectivity,
augmentation, partition constraint

1 Introduction

A graph is said to be k-edge-connected if it remains
connected after the removal of any set of edges whose
cardinality is less than k. Finding the smallest set of
edges to make an undirected graph k-edge-connected
is a fundamental problem in many important appli-
cations; readers may refer to [4, 7, 12] for a com-
prehensive survey. Many algorithms have been devel-
oped to resolve the problem of making general graphs
k-edge connected or k-vertex connected for various
values of k [3, 8, 9, 10, 14, 17]. Note that there
is a linear-time algorithm for the smallest bridge-
connectivity augmentation problem on the general
graph that does not have a partition constraint [3].
In [6], a linear-time algorithm for bridge-connectivity
augmentation with a bipartite constraint is described.
In [11], Jensen et al. proposed a polynomial time al-
gorithm that solves the k-edge-connectivity augmenta-
tion problem on a graph that has partition constraints
in O(n(m+n log n) log n) time, where m is the number
of distinct edges in the input graph.

Figure 1: (a) A graph with three partitions of vertices.
(b) A smallest 2-edge-connectivity augmentation of (a)
with the set of added edges marked by dashed lines.

In this paper, we focus on augmenting graphs with
a partition constraint. Here the partition constraint
is that the vertex set of an input graph is parti-
tioned into k disjoint vertex subsets and each edge
in the augmentation must be added between two dif-
ferent vertex subsets. We propose a linear-time algo-
rithm that addresses the problem of adding the small-
est number of edges to a given graph with a given
partition constraint to make it 2-edge-connected, or
bridge-connected, while maintaining the constraint.
Figure 1(a) shows an example of a graph with three
partitions of vertices. A smallest 2-edge-connectivity
augmentation of Figure 1(a) is shown in Figure 1(b).

We solve the problem of a smallest 2-edge-
connectivity augmentation of graphs with a partition
constraint by transforming the input graph G into a
well-known data structure called a bridge-block for-
est [5]. Our approach adds the smallest possible num-
ber of edges to make a bridge-block forest 2-edge-
connected. Note that the edge set added to the bridge-
block forest by our algorithm can be transformed into
the corresponding edge set added to the input graph
G. The algorithm runs in sequential liner time and
O(log n) parallel time on an EREW PRAM using a
linear number of processors.

The remainder of this paper is organized as fol-
lows. Section 2 contains graph-theoretical definitions
and previously known properties. In Section 3, we in-
troduce the concept of loose edges and propose an al-
gorithm that makes a loose forest 2-edge-connected. In
Section 4, we propose an algorithm that finds a small-
est 2-edge-connectivity augmentation for a bridge-
block forest. The paper is concluded in Section 5.

2 Preliminaries

2.1 Graph-theoretical definitions

Let a graph G = (V, E), where |V | = n and |E| = m.
G is a tree if it is an undirected, connected, and acyclic
graph. A maximal connected subgraph is a component
of G. A forest is a graph, whose components are all
trees, and a degree-1 vertex of a forest is called a leaf.
An edge whose endpoints are a vertex u and a vertex
v is denoted as (u, v). Note that, for an edge set E′,
G−E′ denotes G without the edges in E′, and G∪E′

denotes G with the edges in E′ added to it.
In this paper, all graphs are undirected, and have

neither self-loops nor multiple edges. The vertex set
of an input graph is assumed to be partitioned into k
disjoint partitions. A partition of the vertex set in a
graph is called a vertex partition. Let Pi denote the
ith vertex partition of an input graph, i.e., Pi is a
subset of V , and V = {P1 ∪ P2 ∪ · · · ∪ Pk} (k ≥ 1),
∀Pi, Pj ∈ V , Pi ∩ Pj = ∅, i 6= j. Our problem is how
to add a set of edges such that the resulting graph is
2-edge-connected and the two endpoints of each added
edge are not in the same vertex partition.

2.2 Bridge-block forest

A vertex u is connected to a vertex v in a graph G if
u and v are in the same connected component of G.
Two vertices of a graph are 2-edge-connected if they
are in the same connected component and remain so
after the removal of any single edge. A set of vertices
is 2-edge-connected if each pair of its vertices is 2-edge-
connected; similarly, a graph is 2-edge-connected if its
set of vertices is 2-edge-connected. A bridge is an edge
of a graph G, the removal of which would increase the
number of connected components of G by one. Given a
graph G with at least three vertices, a smallest 2-edge-
connectivity augmentation of G, denoted by aug2e(G),
is a set of edges with the minimum cardinality whose
addition makes G 2-edge-connected.

A block in a graph is an induced subgraph of a max-
imal 2-edge-connected subset of vertices. If a block
contains all the nodes in a connected component of

G, it is called an isolated block. A singular connected
component is one formed by an isolated vertex, and
a singular block is one with exactly one vertex. The
bridge-block graph of an undirected graph G, denoted
by BB(G), is defined as follows. Each block is repre-
sented by a vertex of BB(G). When all the blocks in
G are represented by vertices, BB(G) becomes a for-
est, such that each bridge in G corresponds to an edge
in BB(G) and vice versa. For example, the blocks
a, b, · · · , i are represented by vertices. The resulting
tree is illustrated in Figure 2. A mono block of Pi in
G is a block comprised of vertices in Pi of G. A hybrid
block in G is a block containing at least two vertices,
one in Pi and another in Pj of G, where i 6= j and
Pi, Pj ∈ V . An isolated mono block of Pi in G is an
isolated block and also a mono block of Pi in G. An
isolated hybrid block in G is an isolated block and also
a hybrid block in G.

The vertices and leaves in BB(G) are defined as
follows. Given a graph G with k vertex partitions
P1, · · · , Pk, k ≥ 1, let Ci denote the ith vertex par-
tition in BB(G), where all corresponding blocks and
vertices are in Pi of G. An isolated vertex of Ci in
BB(G) is an isolated mono block of Pi or an isolated
vertex of Pi in G. An isolated hybrid vertex in BB(G)
is an isolated hybrid block in G. A mono leaf (respec-
tively, mono vertex) of Ci in BB(G) is a leaf (respec-
tively, vertex) in BB(G), whose corresponding block
in G is a mono block of Pi. A hybrid leaf in BB(G) is
a vertex in BB(G), whose corresponding block in G is
a hybrid block.

In addition, let Fn be a function that can trans-
form an edge set added to BB(G) into a correspond-
ing edge set added to G. If E′ is the edge set added
to BB(G), then Fn(E′) is the corresponding edge set
added to G, i.e., aug2e(G)=Fn(E′). Similarly, if e′

is an edge added to BB(G), then Fn(e′) is a corre-
sponding edge added between a black vertex and a
non-adjacent white vertex of G, if possible.

Given a PRAM model M, let TM(n, m) be the
parallel time needed to compute the connected com-
ponents of G using PM(n, m) ≤ (n + m) processors.

Fact 1 ([1, 2])

1. If M = CRCW , then TCRCW (n, m) =
O(log n) and PCRCW (n, m) =
O((n + m)·α(m, n)/ log n).

2. If M = EREW , then TEREW (n, m) = O(log n)
and PEREW (n, m) = O(n + m).

A rooted bridge-block forest for a graph can be
computed in sequential linear time and in O(log n +
TM(n, m)) parallel time using O((n + m)/ logn +
PM(n, m)) processors on an M PRAM [13, 15, 16].

Figure 2: (a) A graph has three vertex partitions and
the maximum 2-edge-connected subsets of vertices of
this graph are grouped into a set of blocks by the
dashed lines. (b) The bridge-block forest of the graph
in (a).

Fact 2 An edge can be added between two blocks in G,
unless both blocks are mono blocks of Pi in G.

3 Loose Forest

To reduce the complexity of finding the augmentation
of a graph, we introduce a new concept of loose edges.
If an edge e = (u, v) with two endpoints u and v in
different vertex partitions of G, i.e., u ∈ Pi, v ∈ Pj , i 6=
j, can be removed from the input graph G and its two
endpoints u, v can be connected to other vertices in
G, then this edge is called a loose edge. Conversely,
if an edge is not a loose edge, it is called a fixed edge.
A loose block of a graph is the induced subgraph of
the maximal 2-edge-connected subset of vertices and
contains exactly one loose edge. A bridge-block tree is
loose if each leaf in the tree is a loose block. A bridge-
block forest is defined as a loose forest, if all of its trees
are loose trees.

In this paper, we first solve the problem of making a
loose forest 2-edge-connected. We then solve the prob-
lem of a smallest 2-edge-connectivity augmentation of
a graph with a partition constraint by transforming
the input graph G into a loose forest. For simplifying
the discussion, we define two operations reconnect and
swap. Reconnect is an operation that removes a set of
edges Er from the given graph or data structure and
adds a set of edges Ea, which connect the endpoints of
the removed edges, where |Er| = |Ea| and Er∩Ea = ∅.
Let e1 = (u1, v1), e2 = (u2, v1) be two edges, swap e1

and e2 is an operation that removes e1, e2 and adds
two edges e′

1
= (u1, v2), e′

2
= (u1, v1) or e′

1
= (u1, u2),

e′
2

= (v1, v1). The following lemma shows the property
of swap operation.

Lemma 1 (swap property) Given two 2-edge-
connected components G1 and G2, and two edges e1,
e2, where e1 = (u1, v1) ∈ G1, e2 = (u2, v2) ∈ G2.
Let G′ = G1 ∪ G2 − {e1, e2} ∪ (u1, v2) ∪ (u2, v1) or
G′ = G1 ∪ G2 − {e1, e2} ∪ (u1, u2) ∪ (v1, v2), then G′

is a 2-edge-connected component.

Proof. After removing e1 (respectively, e2), there
is still a tree path from u1 to v1 in G1 (respectively,
from u2 to v2 in G2). After adding edges (u1, v2) and
(u2, v1) (or (u1, u2) and (v1, v2)), then G1 and G2 are
connected, and it is obvious that there exists a cycle
containing (u1, v1, u2, v2). Therefore G′ is a 2-edge-
connected component. 2

Before solving the case of loose forest, we first con-
sider a simpler case that takes a set of loose blocks as
an input graph. We propose an method that reconnets
a set of loose blocks to a 2-edge-connected component
as shown in Algorithm 1.

Algorithm 1 Reconnect a set of loose blocks to a
2-edge-connected component

1: procedure LBto2EC(LB, EL) {∗ LB is a set of
loose blocks with a set of loose edges EL in it ∗}

2: E′ = ∅; E′
L = ∅; LB′ = LB

3: Number each loose block in LB as b1, · · · , b|LB|;
4: Number the loose edge in the loose block bi as ei,

1 ≤ i ≤ |EL|; {∗ |LB| = |EL| ∗}
5: if there are at least two loose blocks in LB′ then

6: for i from 1 to bEL/2c do

7: LB′ = LB′ − e2i−1 − e2i; {∗ Assume that
e2i−1 = (a, b) and e2i = (c, d); ∗}

8: if a and c are in the same vertex partition
or b and d are in the same vertex par-
tition then

9: Let e′1 = (a, d) and e′2 = (b, c);
10: else

11: Let e′1 = (a, c) and e′2 = (b, d);
12: end if

13: Let e′1 be a loose edge and e′2 be a fixed
edge;

14: LB′ = LB′ ∪ e′1 ∪ e′2;
15: E′

L = E′
L ∪ e′1;

16: E′ = E′ ∪ e′2;
17: end for

18: if |EL| is odd then

19: Let E′
L = E′

L ∪ e|EL|;
20: end if

21: Let E′ = E′∪ LBto2EC(LB′, E′
L);

22: end if

23: return E′;
24: end procedure

Lemma 2 Let BB(G) be the input graph and EL be
the set of loose edges in BB(G). Then, BB(G)−EL ∪

E′ is a 2-edge-connected compoent, where E′ is the
edge set that returned by Algorithm 1, and no edges in
E′ violate the partition constraint.

Proof. By Lemma 1, two loose blocks can be recon-
nected to a 2-edge-connected component after swap-
ping their loose edges. Note that steps 7 − 14 process
swap operation between two loose edges. In addition,
one of the new edges formed by swap operation in the
new block is assigned as a loose edge and the other
edge is assigned fixed. The new formed block is also
a loose block. Since our algorithm recursively swaps
loose edges between two loose blocks until there is only
one loose block, the set of loose blocks is reconnected
to a 2-edge-connected component.

Now, we consider whether the edges in E′ violate
the partition constraint. In our algorithm, it swaps
two loose edges e2i−1 = (a, b), e2i = (c, d) of two loose
blocks. Since a loose edge connects two vertices in
different partitions, then a (respectively, c) and b (re-
spectively, d) are in different partitions, In addition, it
is obvious to see that the partition constraint of these
added edges can be guaranteed by steps 8−12. There-
fore, no edges in E′ violate the partition constraint. 2

Now, we consider a loose forest F as an input
graph, it is trivial to see that Algorithm 2 can cor-
rectly reconnect a loose forest to a 2-edge-connected
component.

Algorithm 2 Reconnect a loose forest to a 2-edge-
connected component

1: procedure Fto2EC(F , EL) {∗ F is a loose forest
with a set of loose edges EL. ∗}

2: E′ = ∅;
3: Let X be a set of leaves and isolated vertices in F ;
4: E′=LBTo2EC(X,EL);
5: return E′;
6: end procedure

4 Main Result

Let G be the input graph. In this paper, we use F
and BB(G) interchangeably to denote the bridge-block
forest for an input graph G. C1, C2, · · · , Ck denote the
vertex partitions of BB(G). Let Si and H denote the
sets of mono leaves of Ci and a set of hybrid leaves
in BB(G), respectively. In addition, let S∗

i and H∗

denote the sets of isolated vertices of Ci and a set of
isolated hybrid vertices in BB(G), respectively. We say
that BB(G) is Ci-dominated if |Si|+2|S∗

i | > d(2|S∗
1
|+

· · · + 2|S∗
k | + 2|H∗| + |S1| + · · · + |Sk| + |H |)/2e.

Let | ˆSmax| = max{|Si|+2|S∗
i ||1 ≤ i ≤ k}. Without

loss of generality, we assume that |S1|+2|S∗
1
| = | ˆSmax|.

4.1 Lower bound on aug2e(BB(G))

Let LOWi2e(BB(G)) = max{| ˆSmax|, d(2|S∗
1
| + · · · +

2|S∗
k| + 2|H∗| + |S1| + · · · + |Sk| + |H |)/2e}.

Theorem 1 |aug2e(BB(G))| ≥ LOWi2e(BB(G)).

Proof. Note that each leaf needs one incident edge
and each isolated vertex needs two incident edges to
make the resulting graph 2-edge-connected. Hence,
|aug2e(G)| ≥ d(2|S∗

1
| + · · · + 2|S∗

k| + 2|H∗| + |S1| +
· · · + |Sk| + |H |)/2e. By Fact 2, the endpoints of an
added edge cannot both be in the same vertex par-
tition. Thus, |aug2e(G)| ≥ | ˆSmax|, so the theorem
holds. 2

Corollary 1 If BB(G) is Ci-dominated, then
LOWi2e(BB(G)) = |Si| + 2|S∗

i |.

Proof. By definition. 2

4.2 Augmentation Algorithm

First, we present an algorithm that numbers the leaves
and isolated vertices of an input bridge-block forest,
as shown in Algorithm 3. Based on the assigned num-
bers of leaves and isolated vertices, we can add edges
between the leaves and isolated vertices of the in-
put graph without violating the partition constraint.
Then, we present an algorithm for finding the aug-
mentation of BB(G), as shown in Algorithm 4. Here
we assume that, BB(G) contains at least two leaves
or two isolated vertices, or at least one leave and one
isolated vertex that are in different vertex partitions

Algorithm 3 Numbering the leaves and isolated ver-
tices in F
1: procedure Numbering(F) {∗ F is a bridge-block

forest with k partitions of its vertices; ∗}
2: Let λ0 = 0;
3: for i from 1 to k do

4: Assign a number to each leaf in Si from λi−1+1
to λi−1 + |Si|;

5: Assign two consecutive numbers to each iso-
lated vertex in S∗

i ,
from λi−1+|Si|+1 to λi−1+|Si|+2|S∗

i |;
6: Let λi = λi−1 + |Si| + 2|S∗

i |;
7: end for

8: Assign a number to each leaf in H from λk + 1 to
λk + |H |;

9: Assign two consecutive numbers to each isolated
vertex in H∗, from λk + |H |+ 1 to λk + |H |+
2|H∗|;

10: end procedure

Figure 3 illustrate the numbering procedure in Al-
gorithm 3. In this example, there are three vertex

Figure 3: An illustration of the Numbering Procedure.

partitions. The black, white, and gray circles denote
the vertices of the first, second, and third partitions,
respectively. The black leaves in the graph are num-
bered 1 to 3 and each isolated vertex is assigned two
consecutive numbers; therefore, the black isolated ver-
tices are numbered 4 and 5. Similarly, the vertices of
the second and third partitions are assigned consecu-
tive numbers.

Lemma 3 The partition constraint is maintained in
Algorithm 4.

Proof. According to Algorithm 3, the vertices in
the same vertex partition are assigned successive num-
bers, and the numbers assigned to a vertex parti-
tion are equal to |Si| + 2|S∗

i |, 1 ≤ i ≤ k. We
prove the lemma with the following cases. Note that,
|S1| + 2|S∗

1
| = | ˆSmax| . In case 1, | ˆSmax| is less than

b`/2c. Since | ˆSmax| = max{|Si| + 2|S∗
i ||1 ≤ i ≤ k},

no vertex partition is assigned more than `/2 numbers
if ` is even; and no vertex partition is assigned more
than b`/2c numbers if ` is odd.

Case 1.1: ` is even. The algorithm only adds an
edge between two vertices with numbers i and i+ `/2,
1 ≤ i ≤ `/2. If two vertices with numbers i and i +
`/2 are in the same vertex partition, then the vertex
partition must contain `/2 + 1 numbers. However,
since no vertex partition is assigned more than `/2
numbers, a vertex partition can not have two vertices
with numbers i and i + `/2.

Case 1.2: ` is odd. The algorithm adds an edge
between two vertices with numbers i and i + b`/2c,
1 ≤ i ≤ b`/2c, and two vertices with numbers b`/2c+1
and `. If two vertices with numbers i and i + b`/2c or
b`/2c+ 1 and ` are in the same vertex partition, then
the vertex partition must contain b`/2c + 1 numbers.
However, since no vertex partition is assigned more
than b`/2c numbers, a vertex partition can not have
two vertices with numbers i and i + b`/2c.

Case 2: | ˆSmax| > b`/2c. Clearly, the algorithm
only adds edges between the vertex partition that has
| ˆSmax| numbers and other vertex partitions. Therefore
the lemma holds. 2

Figure 4 shows an example that illustrates steps

5 − 15 of Algorithm 4.

Theorem 2 Algorithm 4 is correct and optimal.

Proof. We first prove the correctness of Algorithm 4.
In step 5, the algorithm applies Algorithm 3 to assign
numbers to leaves and isolated vertices. By Lemma 3,
the partition constraint is maintained after adding
edges. Steps 16 − 21, transform a graph into a loose
forest. Then, in step 22, the algorithm applies Al-
gorithm 2 to reconnect the loose forest into a single
2-edge-connected component. Therefore, Algorithm 4
is correct.

Next, we prove the optimality of our algorithm,
which must consider two cases: case 1, | ˆSmax| ≤ b`/2c,
and case 2. | ˆSmax| > b`/2c. It is obvious that the
number of edges added in case 1 is equal to d`/2e in
steps 8 − 12 of the algorithm. Therefore, the number
of added edges in case 1 is equal to LOWi2e(BB(G)).
Similarly, the number of added edges in case 2 is equal
to | ˆSmax| and | ˆSmax| > b`/2c, i.e., ˆSmax-dominated.
The number of added edges in case 2 is also equal to
LOWi2e(BB(G)). Note that the algorithm does not
add any edges in steps 16−20. Therefore, Algorithm 4
is optimal. 2

Theorem 3 Algorithm 4 runs in sequential linear
time and O(log n) parallel time on an EREW PRAM
using a linear number of processors.

Proof. Given a graph G as input, by Fact 1,
the first step in Algorithm 4 takes sequential lin-
ear time and O(log n + TM(n, m)) parallel time using
O((n+m)/ log n+PM(n, m)) processors on an EREW
PRAM to compute BB(G). After computing BB(G),
the numbering procedure takes sequential liner time
and O(log n) parallel time. Then, the algorithm takes
O(1) time to determine which case should be executed.
In steps 7 − 19, the algorithm takes sequential liner
time and O(log n) parallel time to add edges between
vertices. Finally, the algorithm applies Algorithm 2
to reconnect the graph to a 2-edge-connected compo-
nent, and it is obvious that Algorithm 2 takes sequen-
tial liner time O(log n) parallel time. Therefore, this
theorem holds. 2

Note, it is clear that the resulting graph derived
by Algorithm 4 is a simple graph, since the algorithm
only adds edges between leaves and isolated vertices,
and no edge would be added between a vertex and its
parent.

5 Concluding remarks

We have proposed a number of algorithms for find-
ing a smallest 2-edge-connectivity augmentation of in-

Algorithm 4 Finding a smallest 2-edge-connectivity
augmentation of a graph G with a partition constraint

1: procedure FS2Aug(G)
2: Let F = BB(G);

3: Let ` =
∑k

i=1
|Si| + 2|S∗

i | + |H | + 2|H∗|;
4: E = ∅; E′ = ∅; E1 = ∅; E2 = ∅;
5: Numbering(F);
6: switch(| ˆSmax|)
7: Case 1: | ˆSmax| ≤ b`/2c
8: Case 1.1: ` is even
9: E′ = {(vi, vi+`/2)|1 ≤ i ≤ `/2};

10: Case 1.2: ` is odd
11: E′ = {(vi, vi+b`/2c)|1 ≤ i ≤ b`/2c};
12: E1 = {vb`/2c, v`};

13: Case 2: | ˆSmax| > b`/2c
14: E′ = {(vi, vi+| ˆSmax|)|1 ≤ i ≤ ` − | ˆSmax|};

15: E1 = {(vj , v`)|` − | ˆSmax| + 1 ≤ j ≤ | ˆSmax|};
16: Let E′ = E′ ∪ E1;
17: Let F ′ = BB(F ∪ E′);
18: Let X be a set of leaves and isolated vertices in F ′;
19: Arbitrarily select an added edge in each leaf and

each isolated vertex of F ′ from E′ and let E2 =
e1, e2, · · · , e|X| denote the set of the selected
added edges;

20: E′ = E′ − E2;
21: Let all edges in E2 be loose edges;
22: E2=FTo2EC(F ′, E2);
23: E = E′ ∪ E2;
24: return E;
25: end procedure

put graphs with a partition constraint. The proposed
methods produce a simple graph if possible, or a multi-
graph when it is not possible to obtain a simple graph
by any approach. The algorithms can be trivially par-
allelized to run in optimal O(log n) time using a linear
number of EREW processors.

References

[1] K. W. Chong, Y Han, and T. W. Lam. Concurrent
threads and optimal parallel minimum spanning trees
algorithm. Journal of ACM, 48(2):297–323, 2001.

[2] R. Cole and U. Vishkin. Approximate parallel
scheduling. Part II: Applications to logarithmic-time
optimal graph algorithms. Information and Compu-

tation, 92:1–47, 1991.

[3] K. P. Eswaran and R. E. Tarjan. Augmentation prob-
lems. SIAM Journal on Computing, 5:653–665, 1976.

[4] A. Frank. Connectivity augmentation problems in
network design. In J. R. Birge and K. G. Murty, ed-
itors, Mathematical Programming: State of the Art

1994, pages 34–63. The University of Michigan, 1994.

Figure 4: An illustration of steps in Algorithm 4.

[5] F. Harary. Graph Theory. Addison-Wesley, Reading,
Massachusetts, 1969.

[6] P. C. Huang, H. W. Wei, W. C. Lu, W. K. Shih,
and T.-s. Hsu. Smallest Bipartite Bridge-connectivity

Augmentation. Algorithmica, 2007.

[7] T.-s. Hsu. Graph Augmentation and Related Prob-

lems: Theory and Practice. PhD thesis, University of
Texas at Austin, 1993.

[8] T.-s. Hsu. On four-connecting a triconnected graph.
Journal of Algorithms, 35:202–234, 2000.

[9] T.-s. Hsu. Simpler and faster biconnectivity augmen-
tation. Journal of Algorithms, 45(1):55–71, 2002.

[10] T.-s. Hsu and M. Y. Kao. Optimal augmentation for
bipartite componentwise biconnectivity in linear time.
SIAM Journal on Discrete Mathematics, 19(2):345–
362, 2005.

[11] J. B. Jensen, H. N. Gabow, T. Jordan, and Z. Szigeti.
Edge-connectivity augmentation with partition con-
straints. SIAM Journal on Discrete Mathematics,
12:160–207, 1999.

[12] H. Nagamochi. Recent development of graph connec-
tivity augmentation algorithms. IEICE Transactions

on Information and System, E83-D:372–383, 2000.

[13] V. Ramachandran. Parallel open ear decomposition
with applications to graph biconnectivity and tricon-
nectivity. In J. H. Reif, editor, Synthesis of Parallel

Algorithms, pages 275–340. Morgan-Kaufmann, 1993.

[14] A. Rosenthal and A. Goldner. Smallest augmentations
to biconnect a graph. SIAM Journal on Computing,
6:55–66, 1977.

[15] R. E. Tarjan. Depth-first search and linear graph al-
gorithms. SIAM Journal on Computing, 1:146–160,
1972.

[16] R. E. Tarjan and U. Vishkin. An efficient parallel bi-
connectivity algorithm. SIAM Journal on Computing,
14:862–874, 1985.

[17] T. Watanabe and A. Nakamura. A minimum 3-
connectivity augmentation of a graph. Journal of

Computer and System Science, 46:91–128, 1993.

