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Abstract-In this paper, an order-independent 

algorithm for data reduction, called the Dynamic 
Condensed Nearest Neighbor (DCNN) rule, is 
proposed to adaptively construct prototypes in 
training dataset and to reduce the over-fitting 
affect with superfluous instances for the Support 
Vector Machine (SVM). Furthermore, a hybrid 
model based on the genetic algorithm is proposed 
to optimize the prototype construction, feature 
selection, and the SVM kernel parameters setting 
simultaneously. Several UCI benchmark datasets 
are considered to compare the proposed 
GA-DCNN-SVM approach with the GA-based 
previously published method. The experimental 
results show that the proposed hybrid model 
outperforms the existing method and improves the 
classification accuracy for SVM. 
 
Keywords: dynamic condensed nearest neighbor, 
prototype construction, feature selection, genetic 
algorithm, support vector machine. 
 
1. Introduction  

The support vector machine (SVM) was first 
proposed by Vapnik [1] and has been successful as 
a high performance classifier in several domains 
including data mining and the machine learning 
research community. Due to the data sets that we 
process today are becoming increasingly larger, 
not only in terms of the number of patterns 
(instances), but also the dimension of features 
(attributes), which may degrade the efficiency of 
most learning algorithms, especially when there 
exist redundant instances or irrelevant features. 
However, for some datasets, the performance of 
SVM is sensitive to how the kernel parameters are 
set [2]. As a result, obtaining the optimal essential 
instances, features subset and SVM parameters 
must occur simultaneously. 
  In the literature, several data reduction 
algorithms have been proposed that extract a 
consistent subset of the overall training set, namely, 
Condensed Nearest Neighbor (CNN), Modified 
CNN (MCNN), Fast CNN (FCNN), and others 

[3-6], that is, a subset that correctly classifies all 
the discarded training set objects through the NN 
rule. These algorithms have been shown in some 
cases to achieve condensation ratios corresponding 
to a small percentage of the overall training set and 
to obtain the comparable classification accuracy. 
However, these papers solely focused on data 
reduction, but not deal with features selection to 
reduce the irrelevant features for the classifier. 
  Feature selection algorithms may be widely 
categorized into two groups: the filter and the 
wrapper approaches [7-8]. The filter approaches 
select highly ranked features based on a statistical 
score as a preprocessing step. They are relatively 
computationally cheap since they do not involve 
the induction algorithm. Wrapper approaches, on 
the contrary, directly use the induction algorithm 
to evaluate the feature subsets. They generally 
outperform filter methods in terms of classification 
accuracy, but are computationally more intensive. 
Huang and Wang [2] proposed a GA-based feature 
selection method that optimized both the feature 
selection and parameters setting for the SVM 
classifier, but they did not take into account the 
treatment of these redundant or noisy instances in 
a classification process. So far, to the best of our 
knowledge, there is no other research using an 
evolutionary algorithm to simultaneously solve 
these three type problems as mentioned above. 

In this paper, we first introduce a new data 
reduction algorithm which differs from the original 
CNN in its employments of the voting scheme for 
prototype construction and the adaptively merged 
rate for prototype augmentation. Hence, it is called 
the dynamic CNN (DCNN) algorithm. Second, we 
proposed a novel GA-DCNN-SVM model that 
hybridized the prototype construction, feature 
selection and parameters optimization methods 
with genetic algorithm, exhibiting high efficiency 
in terms of classification accuracy for SVM. 
  The rest of this paper is organized as follows. 
Section 2 describes the related works including the 
basic SVM, the CNN rule and GA concepts. In 
section 3, the prototype voting scheme, the DCNN 
algorithm and the hybrid model are presented. 



Section 4 contains the experimental results from 
using the proposed method to classify several UCI 
benchmark datasets and comparison with the 
GA-based previously published method. Finally, in 
section 5, conclusions are drawn. 
 
2. Related works  
 
2.1. SVM classifier 

SVM starts from a linear classifier and searches 
the optimal hyperplane with maximal margin. 
Given a training set of instance-label pairs 
( , ), 1,2,...,i ix y i m= where n

ix R∈ and { 1, 1}iy ∈ + − . 
The generalized linear SVM finds an optimal 
separating hyperplane ( )f x w x= ⋅ + b  by solving 
the following optimization problem: 
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,where C is a penalty parameter on the training 
error, and iξ is the non-negative slack variables. 
This optimization model can be solved using the 
Lagrangian method, a dual Lagrangian must be 
maximized with respect to a non-negative iα under 

the constrains and , and the 

optimal hyperplane parameters and can be 
obtained. The optimal decision hyperplane 
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Linear SVM can be generalized to non-linear 
SVM via a mapping function , which is also 
called the kernel function, and the training data can 
be linearly separated by applying the linear SVM 
formulation. The inner product

Φ

( ( ) ( ))i jx xΦ ⋅Φ is 
calculated by the kernel function k x for given 
training data. Radial basis function (RBF) is a 
common kernel function as Eq. (3). In order to 
improve classification accuracy, the kernel 
parameter

( , )i jx

γ should be properly set. 
Radial Basis Function kernel: 
                (3) 2( , ) exp( || || )i j i jk x x x xγ= − −

 
2.2. The CNN algorithm 

The condensed nearest neighbor (CNN) rule 
first introduced by Hart [3] is that patterns in the 
training set may be very similar and some do not 
add extra information and thus may be discarded.  
The algorithm uses two bins, called training set S 

and prototype subset P. Initially, randomly select 
one sample from S to P. Then, we pass one by one 
over the samples in S per epoch and classify each 
patter ix S∈ using P as the prototype set. During 
the scan, whenever a pattern ix is misclassified, it is 
transferred from S to P and the prototype subset is 
augmented; otherwise the pattern ix is called 
merged into P and still left in S. The algorithm 
terminates when no pattern is transferred during a 
complete pass of S and no new prototype is added 
to P. In other words, the CNN rule stops when all 
samples in S have been fully merged into these 
prototypes in P. 
  The CNN algorithm pseudo code is shown in 
Figure 1. This method, being a local search, does 
not guarantee finding the minimal subset and 
furthermore, different subsets are found when the 
process of training set order is changed. 
 

Algorithm CNN rule
Input: A training set S; 
Output: A prototype subset P; 
1  Initiation  
2  : {}P = ; 
3  Randomly select a new prototype to P; 
4  Repeat 
5    Augmentation = False; 
6   For all patterns x S∈ using *p P∈  
7     IF  Then *( ) ( )class x class p≠

8        :P P x= ∪ ; 
9        Augmentation = True; 

10     End IF 
11   End For  
12  Until Not ( Augmentation ); 
13 Return ( P ); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig. 1. Pseudo code of the CNN algorithm. 
 

2.3. Genetic algorithm 
Genetic algorithm (GA) is one of the most 

effective approaches for solving optimization 
problem. The basic idea of GA is to encode 
candidate solutions of a problem into genotypes, 
and candidate solutions could be improved through 
the evolution mechanism, such as selection, 
crossover, and mutation. 

The GA consists of six main steps: population 
initialization, fitness calculation, termination check, 
selection, crossover, and mutation. In the 
beginning, the initial population of a GA is 
generated randomly. Then, the evaluation values 
of the fitness function for the individuals in the 
current population are calculated. After that, the 
termination criterion is checked, and the whole GA 
procedure stops if the termination condition is 
satisfied. Otherwise, these operations of selection, 



crossover, and mutation are performed.  
 

3. Methods 
 

We start by giving some preliminary definitions. 
Assume that we are given a dataset in which 

{ }( , ), 1, 2,...,i iS x y i m= =  is a set of m number of 
samples with well-defined class labels. Note that 

is the vector of dataset for the 
i-th sample describing in D-dimensional Euclidean 
space and is the class label associated with

1 2( , , ..., )T
i i i iDx x x x=

iy ix , 
, q is the number of classes. 1 2{ , ,..., }iy C c c c∈ = q

Our goal is to extract a small consistent subset 
P from S, where { }( , ), 1, 2,...,j jP x y j n and n m= = < , 
such that  is the nearest pattern to*p P∈ x S∈ . 
Members of P are called prototypes. The distance 
between any two vectors ix and jx using the 
distance measure is: ( )d ⋅
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3.1. Prototype voting scheme (PVS) 

Majority vote is one of the simplest and intuitive 
ensemble combination techniques. Consider the n 
samples, c-class dataset U from S, given an 
instance ix of U, the nearest neighbors’ distance 
vector (NNDV) of ix in U according to a distance d: 
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We pass one by one over all of the instances in 

U, the outputs of NNDV in U are first organized 
into a decision prototype matrix (DPM) as shown 
in Figure 2. The column for 1, ,j cd to represents 
the support from samples 

, ,n j cd

1x to nx  for the 
candidate point jx , and the row to is 
the NNDV of 

,1,i cd , ,i n cd

ix . The vote will then result in an 
ensemble decision for the candidate point x λ , and 
the λ  value is: 

, ,1 1
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nn

i j cj i

dλ
=

=

= ∑                (7) 

 
The candidate point with the highest total 

support is then chosen as the prototype. The 
pseudo code of the prototype voting scheme (PVS) 
algorithm is shown in Figure 3. 
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      Fig. 2. Decision Prototype Matrix of the PVS. 

 

 
    Fig. 3. Pseudo code of the PVS algorithm 

Algorithm PVS rule
Input: A training set U with c-class from S; 
Output: A prototype point λ ; 
1  For all patterns ix in U 
2  For each candidate jx in U 

3   If ( jix x≠ and { }min ( , )i jd x x =True) Then 

4        1ijd = ; 
5   Else 
6        0ijd = ; 
7   End If 
8  End For 
9  End For 
10 For each candidate jx in U 

11  Summation of to support value; ijd

12 End For 
13 Choose jx with the maximum support value ; 
14 Return ( λ ); 

 
Different from the CNN rule with randomly 

selecting candidate point for the prototype 
construction process, the proposed PVS algorithm 
is order-independent and always returns the same 
consistent prototype subset from the original 
dataset. 
 
3.2. The DCNN algorithm 

The CNN rule has the undesirable property that 
the consistent subset depends on the order in 
which the data is processed. Thus, multiple runs of 
the method over randomly permuted versions of 
the original training set should be executed in 
order to settle the quality of its output [3].  

As the CNN rule randomly chooses samples as 
prototypes and checks whether all samples have 
been fully merged into prototype subset, we 
introduce the PVS algorithm to improve the 
randomly select process in Prototype Initiation 
stage and use an adaptively merged rate coefficient 

mθ  for dynamically tuning the flexible criterion in 
Merge Detection process. Hence, it is called the 
dynamic CNN (DCNN) algorithm. The DCNN has 



the following advantages. First, it incorporates 
simply voting scheme in prototype construction to 
always return the same consistent training subset 
independent of the order in which the data is 
processed and can thus outperform the CNN rule. 
Second, the employment of the adaptive merged 
rate coefficient in the Merge Detection process is 
flexible to edit out noisy instances and to reduce 
the over-fitting affect with superfluous instances. 
Third, despite being quite simple, it requires fewer 
iteration to converge and speeds up the 
computational time than the CNN does. The 
adaptively merged rate coefficient, denoted as 

[0,1]mθ ∈ , is defined as the ratio of the number of 
 merged into prototypes to the number of 

overall dataset and evaluated by formula (8). The 
number of instances merged into prototypes and 
the number of overall dataset are indicated by 

mergeN and totalN , respectively. 

instances

100%merge
m

totalN
θ = ×                   (8) 

The DCNN algorith
Ste , 

Step 2) ther all 

N

m is described as follows. 
p 1) Prototype Initiation: For each class c

adopts the PVS algorithm to construct a 
new c-prototype from c-sample. 
Merge Detection: Detect whe
samples have been achieved the user 
defined merged rate coefficient value mθ . 
If so, terminate the process; otherwi , 
proceed to the Step 3. 

Prototype Augmentatio

se

Step 3) n: For each c, if 

 
.3. The GA-DCNN-SVM hybrid model 

m, 
int

3.3.1. Chromosome representation  
function 

(de

e

there are any un-merged c-samples, 
applies the PVS algorithm to construct a 
new c-prototype; otherwise, no new 
prototype is added to class c. Proceed to 
Step 2. 

3
This work introduces a novel hybrid algorith
egrates the prototype construction, feature 

selection and parameter optimization, to improve 
the outlier sensitivity problem of standard SVM 
for data classification and attain comparable 
classification accuracy with fewer input feature. 
The chromosome representation, fitness definition 
and system procedure for the proposed hybrid 
model are described as follows. 
 

This research used the RBF kernel 
fined by Eq. (3)) for the SVM classifier to 

implement our proposed method. The RBF kernel 
function requires that only two parameters, C and γ 
should be set [9]. Using the adaptively merg d rate 

for DCNN and the RBF kernel for SVM, the 
parameters mθ , C , γ and features used as input 
attributes m t e optimized simultaneously for 
our proposed GA-DCNN-SVM hybrid system. 
  The chromosome therefore, is comprised 

us b

of 
four parts, mθ , C , γ  and features mask. Figure 4 
shows the nary hromosome representation of 
our design. In Figure 4, 
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ig. 4. The chromosome comprisesF mθ , C, γ and 

 
In Fig. 4, the bit strings , where 

 features mask. 

1 2 0...l lb b b− −

{ }0,1 , 0,1,..., 1i lib ∈ = − , represen genotype 

m

ting the 
format of parameter θ , C  and γ  should be 
transformed into pheno pe by form la (9). Note 
that the precision of representing parameter 
depends on the length of the bit string l ( such as 

m
n

ty z u

θ , cn and rn ); and the minimum and maximum 
e min x[ , ]z z of the parameter is determined by 

the us eatures mask is Boolean that ‘1’ 
represents the feature is selected, and ‘0’ indicates 
the feature is not selected. 
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3.3.2. Fitness definition 

ide of GA’s operation 
to

 Fitness function is the gu
 search for optimal solutions. For maximizing 

the classification accuracy and minimizing the 
number of selected features, the fitness function F 
is a weighted sum with WA for the classification 
accuracy weight and WF for the selected features 
as defined by formula (10). The weight accuracy 
WA can be adjusted to a high value (such as 100%) 
if the accuracy is the most important. Acc is the 
SVM classification accuracy, fi is the value of 
feature mask － ‘1’ represents the feature i is 
selected and ‘0’ indicates that feature i is not 



selected, and nf is the total number of features. 
1

fn −
⎛ ⎞
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Thus, for the chromosome with high classification 

3.3.3. The proposed hybrid system procedure 

G
 

rocedure GA-DCNN-SVM hybrid model 

oned using the 10-fold 

ization 
f 

accuracy and a small number of features produce a 
high fitness value. 
 

 In this section, details of the proposed novel 
A-DCNN-SVM procedure are described below. 

P
Step 1) Data preparation 
  The dataset was partiti
cross validation. The training and testing sets are 
represented as TR and TE, respectively. 
Step 2) GA parameters setting and initial
  Set the GA parameters including number o
iterations G, population sizes P, crossover rate Pc, 
mutation rate Pm, and weight WA and WF for fitness 
calculation. Randomly generate P chromosomes 
comprised of the mθ , C, γ and features mask.  
Step 3) Converting genotype to phenotype 
  Convert each parameter ( mθ , C and γ) from its 

 
 a prototypes subset, 

de

genotype into a phenotype. 
Step 4) Execute DCNN rule

The DCNN rule computes
noted by PS, from the original training set TR 

according to the merged rate parameter mθ . Use the 
training-set-consistent subset PS to r lace the 
entire training set is adopted. 
Step 5) Scaling 

ep

ure can be linearly scaled to the 
ra

For each feat
nge [-1, +1] or [0, 1] by formula (11), where p is 

the original value, *p is the scaled value, max f is 
the maximum value of feature f, and min f is the 
minimum value of feature f. 

* min f

max minf f−
            (11) 

Step 6) Selected features subset 
e features mask is 

se

aining and testing 
 train the 

SV

p
p

−
=       

After the GA operation and th
lected, the features subset can be determined. 

Thus, we denote the PS and TE datasets with 
selected features subset as PS_FS and TE_FS, 
respectively.  
Step 7) SVM model tr

Based on the parameters C and γ, to
M classifier using the training dataset PS_FS, 

then the classification accuracy Acc for SVM using 
the testing dataset TE_FS can be calculated.    
Step 8) Fitness evaluation 

For each chromosome, evaluate its fitness by 
formula (11).  
Step 9) Termination criteria 

If the termination criteria are satisfied, the 
process ends. The optimal parameters mθ , C, γ and 
features subset are obtained. Otherwise, go to the 
next step. 
Step 10) GA operation 

Continue to search for better solutions by 
genetic algorithm, including selection, crossover 
and mutation. 
 
4. Numerical illustrations 

This section reports the experiments conducted 
to evaluate the classification accuracy of the 
proposed hybrid system using several real-world 
datasets from the UCI benchmark database [10]. 
These datasets consist of numeric and nominal 
attributes. Table 1 summarizes the number of 
numeric attributes, number of nominal attributes, 
number of classes, and number of instances for 
these datasets.  
 
Table 1. Datasets used in the experiments. 

Names Num. 
classes

Num. 
instances

Nominal 
features 

Numeric 
features 

Total 
features 

Australian 2 690 6 8 14 
German 2 1000 0 24 24 
Heart 2 270 7 6 13 
Vehicle 4 940 0 18 18 
Vowel 11 990 3 10 13 

 
Our implementation platform was carried out on 

the Matlab 7.3, by extending the Libsvm version 
2.82 which is originally designed by Chang & Lin 
[11]. The empirical evaluation was performed on 
Intel Pentium IV CPU running at 3.4GHz and 1 
GB RAM. 

The GA-SVM approach was suggested by 
Huang [2] for searching the best C, γ and features 
subset, which deals solely with feature selection 
and parameters optimization by means of genetic 
algorithm. Experimental results from our proposed 
GA-DCNN-SVM hybrid method were compared 
with that from the GA-SVM algorithm. The detail 
parameter setting for genetic algorithm is as the 
following: population size 600, crossover rate 0.7, 
mutation rate 0.02, two point crossover, roulette 
wheel selection and the generation number 500. 
The best chromosome is obtained when the 
termination criteria satisfy. We set 

m
nθ =20, 

=20 and =20; the value of cn rn fn depends on the 
experimental datasets described in Table 1. We 
defined WA = 0.8 and WF = 0.2 for all experiments.



 
Table 2. Experimental results for Heart disease dataset using GA-DCNN-SVM and GA-SVM algorithms. 
 GA-DCNN-SVM algorithm GA-SVM algorithm 
Fold# Acc nf Optimized mθ  Optimized C Optimized γ Acc nf Optimized C Optimized γ 

1 93.8 4 0.91762668 52.8991662 0.54895732 92.4 5 5.5801297 0.57708836 
2 98.2 6 0.95872936 162.8651756 0.02765115 98.1 7 60.2411283 0.01708658 
3 100.0 7 0.96772981 133.6631785 0.02488665 100.0 7 171.3113128 0.21574369 
4 94.6 4 0.92086954 26.9159661 0.10925755 92.6 4 95.2776294 0.05706643 
5 98.5 6 0.94607836 82.7895272 0.33687129 98.4 7 267.4913877   0.33562374 
6 93.7 4 0.91765053 165.9553541 0.18916658 92.6 6 53.6696245   0.07895168 
7 94.6 4 0.94782197 20.6576587 0.06485473 92.1 4 216.8613768 0.12075873 
8 97.6 6 0.92492187 9.7715546 0.08432751 97.5 6 170.5518422 0.45896385 
9 93.8 4 0.92642064 216.8693786 0.21982678 90.7 4 75.5779491 0.08705219 

10 96.2 5 0.93052900 88.8319034 0.46812314 93.7 6 83.6912762 0.11775911 
Average 96.10 5.0    94.81 5.6   

Table 3. Summary results on five UCI datasets
GA-DCNN-SVM GA-SVM Name 

Avg_Acc Avg_nf Avg_Acc Avg_nf

Australian 90.25 4.3 88.17 4.5 
German 87.38 12.6 85.64 13.1 
Heart 96.10 5.0 94.81 5.6 
Vehicle 85.92 8.6 84.06 9.7 
Vowel 99.21 7.1 98.52 7.9 

 
Taking the Heart disease dataset, for example, 

the classification accuracy Acc, number of selected 
features nf, and the best parameters mθ , C, γ for 
each fold using GA-DCNN-SVM algorithm and 
GA-SVM approach are shown in Table 2. For the 
GA-DCNN-SVM approach, average classification 
accuracy is 96.10%, and average number of 
features is 5.0. For GA-SVM algorithm, its 
average classification accuracy is 94.81%, and 
average number of features is 5.6. Table 3 shows 
the summary results for the average classification 
accuracy Avg_Acc and the average number of 
selected features Avg_nf for the five UCI datasets 
using the two approaches. Generally, compared 
with the GA-SVM algorithm, the proposed method 
has good accuracy performance with slightly fewer 
features and consistently outperforms the existing 
GA-based previously published approach. 

 
5. Conclusion  

In this paper, we first introduce a new DCNN 
data reduction algorithm to efficiently improve the 
original CNN method. Second, we propose a novel 
GA-DCNN-SVM hybrid model to simultaneously 
optimize prototype construction, feature selection 
and parameters setting for SVM classifier. To the 
best of our knowledge, this is the first hybrid 
algorithm to integrate the data reduction, feature 
selection and parameters optimization for SVM. 
Compared with the GA-based previously 
published method, experimental results shows that 
our proposed hybrid model outperforms and 
exhibits the high efficiency for the SVM. 
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