
1111

Mining Time-Interval Sequential Patterns Using Clustering Analysis

Hao-En Chueh
1
, Nancy P. Lin

2

1
Department of Information Management, Yuanpei University

2
Department of Computer Sciences and Information Engineering, Tamkang University

1
hechueh@mail.ypu.edu.tw,

2
nancylin@mail.tku.edu.tw

Abstract-A time-interval sequential pattern is a

sequential pattern with the information about the

time intervals between itemsets. Most algorithms

of mining time-interval sequential patterns find the

time intervals between itemsets by predefining

some non-overlap time partitions, however, a

predefined set of non-overlap time partitions

cannot be suitable for every pair of successive

itemsets. Therefore, in this paper, we present a

new algorithm to mine time-interval sequential

patterns without defining any time partitions in

advance. The algorithm first adopts the clustering

analysis to automatically generate the suitable

time partitions for frequent occurring pairs of

successive itemsets, and then uses these generated

time partitions to extend typical algorithms to

discover the time-interval sequential patterns. Our

result of experiment verifies that this algorithm

outperforms than the algorithms which use some

predefined and non-overlap time partitions.

Keywords: Data Mining, Sequential Pattern, Time

Interval, Clustering Analysis.

1. Introduction
Data mining is the procedure of discovering

hidden, useful, previously unknown information

from databases. The existing techniques of data

mining include association analysis, classification,

clustering, etc, and one of the important techniques

is mining sequential patterns. Mining sequential

patterns first introduced by Agrawal and Srikant

(1995) is the task of finding frequently occurring

patterns related to time or other sequences from a

sequence database [1]. An example of a sequential

pattern is “A customer who bought a digital

camera will return to buy an extra memory card”.

Mining sequential patterns is widely used in the

field of retail business to assist in making various

marketing decisions since many transaction

records are stored as sequence data [3,5,7].

Many algorithms of mining sequential patterns

have been proposed [1,4,6,9], and most of these

algorithms only focus on finding the order of the

itemsets, but ignore the time intervals between

successive itemsets. An example of a sequential

pattern with time intervals between successive

itemsets is “A customer who bought a digital

camera will buy an extra memory card within one

month”. In business field, actually, a sequential

pattern which includes the time intervals between

successive itemsets is more valuable than a

traditional sequential pattern without any time

information, because the time intervals between

successive itemsets can offer useful information

for businesses to sell the appropriate products to

their customers at the right time. To this end, some

researches start to propose algorithms to discover

the sequential patterns with time intervals between

itemsets, called time-interval sequential pattern

[2].

To find the time intervals between every pair of

successive itemsets, most proposed algorithms of

mining time-interval sequential patterns usually

predefine some non-overlap time partitions, and

assume that the time interval between each pair of

successive itemsets can match one time partition of

this predefined set, but a predefined set of non-

overlap time partitions, in fact, cannot be suitable

for every pair of successive itemsets. Generating

the suitable time partitions for every pair of

successive itemsets directly from the real data is

more reasonable. Accordingly, in this paper, we

present a new algorithm to mine time-interval

sequential patterns without predefining any time

partitions. This algorithm tries to use the clustering

analysis first to automatically generate the suitable

time partitions between frequent occurring pairs of

successive itemsets, and then uses these generated

time partitions to extend typical algorithms to

discover the time-interval sequential patterns.

The rest of this paper is organized as follows.

Some researches related to time-interval sequential

patterns are reviewed in section 2. The proposed

time-interval sequential patterns mining algorithm

is presented in section 3. A simple experiment is

displayed in section 4. The conclusions are given

2222

in section 5.

2. Time-Interval Sequential Patterns
The problem of sequential patterns mining

which can be described as the task of discovering

frequently occurring ordered patterns from a given

sequence database was first introduced by Agrawal

and Srikant in the mid 1990s [1].

A sequence is an ordered list of itemsets. Let

},......,,{
21 m

iiiI = be a set of items, ,,
21

ssS =<

>
k

s......, is a sequence, where Is
i

⊆ is called an

itemset. Length of a sequence means the number

of itemsets in the sequence, and a sequence

contains k itemsets is called a k-sequence. The

support of a sequence S is denoted by supp)(S and

means the percentage of total number of records

containing sequence S in the sequence database.

If supp)(S is greater than or equal to a predefined

threshold, called minimal support, than sequence

S is considered as a frequent sequence and called

a sequential pattern.

Many algorithms have been proposed to mine

sequential pattern [1,4,6,9], and most algorithms

only focus on finding the frequently occurring

order of the itemsets, but ignore the time intervals

between itemsets. The time intervals between

itemsets, in fact, can offer useful information for

businesses to sell the appropriate products to their

customers at the right time. Due to the value of the

time intervals between itemsets, some researchers

start to propose algorithms to mine various

sequential patterns with time information between

itemsets recently [2,8,10,11].

Srikant et al. [10] utilize three restrictions, the

maximum interval),(intervalmax − the minimum

interval),(intervalmin − and the time window size

)(sizewindow − to find sequential patterns related

to time intervals, and the discovered pattern is

like)),,(),,((DCBA where),(BA and),(DC are

called subsequences of)).,(),,((DCBA The −max

interval and the intervalmin − are respectively

used to indicate the maximal and minimal interval

within subsequence. The sizewindow − is used to

indicate the interval among subsequences. For

example, let the intervalmax − is set to 10 hours,

the intervalmin − is set to 3 hours, and −window

size is set to 24 hours. That is, the time interval

between A and B lies in [2,10], the time interval

between C and D also lies in [2,10], and the time

interval between),(BA and),(DC lies in [0,24].

Mannila et al. [8] use a window width)(win to

find frequent episodes in sequences of events, and

the discovered episode is like).,,(CBA Assume

that the win is set to 3 days, then the episode

),,(CBA means that, in 3 days, A occurs first, B

follows, and C happens finally.

Wu et al. [11] utilize a window)(d as well to

find the sequential pattern likes),,,(CBA such that,

in a sequential pattern, the interval between

adjacent events is within the window d .

Assume d is set to 5 hours, then the discovered

pattern),,(CBA means that A occurs first, B

follows, and C happens finally and the interval

between A and B , and between B and C is within

5 hours.

Chen et al. [2] use a predefined set of non-

overlap time partitions to discover potential

time-interval sequential patterns, and the

discovered pattern is like),,,,,(
20

CIBIA where

20
, II belong to the non-overlap set of time

partitions. Assume that, in the set of time partitions,

0
I denotes the time interval t satisfying 10 ≤≤ t

day;
2

I denotes the time interval t satisfying

73 ≤< t days, and then the pattern),,,,(
20

CIBIA

means that BA, and C happen in this order, and the

interval between A and B is within 1 day , and the

interval between B and lies between 3 days and 7

days.

Although these preceding discussion researches

can discover the sequential patterns with the time

information between itemsets by using a or some

predefined and fixed time partitions, the patterns

whose intervals between itemsets lie outside these

predefined time ranges cannot be found yet.

Therefore, this work presents a new algorithm

to mine time-interval sequential patterns without

defining any time partitions in advance, and the

main concept of this algorithm is to generate the

suitable time partitions directly from the real data.

This algorithm first uses the clustering analysis to

automatically generate the suitable time partitions

for frequent occurring pairs of successive itemsets,

and then adopts these generated time partitions to

extend typical algorithms to mine the sequential

patterns with time intervals between every pair of

successive itemsets.

Details of the proposed time-interval sequential

mining patterns algorithm are presented in the

following section.

3. The Proposed Algorithm
The proposed time-interval sequential patterns

mining algorithm is presented in this section. This

3333

algorithm uses clustering analysis to automatically

generate the suitable time partitions directly from

the real data for the frequent occurring pairs of

successive itemsets, and then uses these generated

time partitions to extend the typical algorithms to

discover the sequential patterns with time intervals

between every pair of successive itemsets. Steps of

the algorithm are described as follows.

Notation:

},......,,{
21 m

iiiI = : The set of items.

>=<
ni

sssS ,......,,
21

: A sequence, where each

Is
k

⊆ .

},......,,{
21 k

SSSD = : The set of sequences.

supp)(
i

S : The support of
i

S .

suppmin − : The minimal support threshold.

k
CS : The set of candidate k-sequences.

k
FS : The set of frequent k-sequences.

k
CTIS : The set of candidate time-interval

k-sequences.

k
FTIS : The set of frequent time-interval

k-sequences.

Algorithm:

Step 1: Producing
1

FS . Each itemset can be

regarded as a candidate 1-sequence. A candidate

1-sequence whose support is greater than or equal

to suppmin − is a frequent 1-sequence, and the set

of all frequent 1-sequences is
1

FS .

Step 2: Producing
2

CS . For any two frequent

1-sequences
1

s and ,
2

s where
121

, FSss ∈ and ,
21

ss ≠

then we can generate 2 candidate 2-sequences

><
21

, ss and ><
12

,ss that belong to
2

CS .

Step 3: Producing
2

FS . A candidate 2-sequence

whose support is greater than or equal to −min

supp is a frequent 2-sequence, and the set of all

frequent 2-sequences is
2

FS .

Step 4: Finding the set of all the suitable time

partitions for each frequent 2-sequences of
2

FS .

For any frequent 2-sequence of
2

FS ,, ><
qp

ss all

the time intervals between
p

s and
q

s appears in D

are listed in increasing order, then the following

clustering steps are used to find the suitable time

partitions of all these intervals.

Step 4(a): Assume that],,,[),1(
21 z

tttzT L= is

the increasingly ordered list of the time intervals of

., ><
qp

ss Let }),1({, zTssT
qp

>=< be the set of

all the suitable time partitions of ., ><
qp

ss The

first step of the clustering analysis is to find the

maximal difference between two adjacent intervals

from all partitions of ,, ><
qp

ssT and then divide

the partition with the maximal difference into 2

partitions. At the beginning, only one partition is

in ><
qp

ssT , , therefore, the chosen partition is

).,1(zT Assume that the different between
i

t and

1+i
t is maximal, than),1(zT is divided into),1(iT

and),,1(ziT + where],,,[),1(
1 i

ttiT L=),1(ziT +

].,,[
1 zi

tt L
+

=

Step 4(b): The second step is to calculate the

support of ><
qp

ss , that respectively includes time

intervals within these two partitions. If the support

of ><
qp

ss , that includes time intervals within

),1(iT is greater than or equal to ,suppmin −

),1(iT is a suitable time partition of ><
qp

ss , , and

then),1(iT is reserved, otherwise),1(iT is deleted.

Similarly, if the support of ><
qp

ss , that includes

time intervals within),1(ziT + is greater than or

equal to ,suppmin −),1(ziT + is a suitable time

partition, and then),1(iT is reserved, otherwise

),1(iT is deleted. Thus, the chosen partition is

placed by the reserved partitions. If no partition is

reserved, this chosen partition is considered as

non-dividable. If all of the differences between

two adjacent intervals in a partition are equal, this

partition is considered as non-dividable as well.

Step 4(c): Repeating step 4(a) and step 4(b),

until all time partitions in ><
qp

ssT , are non-

dividable.

Step 5: Producing
2

FTIS . Each 2-sequence of

2
FS is extended by all its suitable time partitions

to form
2

FTIS . Let ,,{, 21 TTssT
qp

>=< },
R

TL is

the set of all the suitable time partitions of the

sequence ,, ><
qp

ss then ,1,,, RisTsT
q

i

p
L=><

is a frequent time-interval 2-sequences.

Step 6: Producing 3, ≥kCTIS
k

. For any two

frequent time-interval (k-1)-sequences
1

S and ,
2

S

where ,,,,,,,
1,12,12,12,11,11,11

>=<
−−− kkk

sTssTsS L =
2

S

;,,,,,,
11,22,22,22,21,21,2 −−−−

∈><
kkkk

FTISsTssTs L
2,1

s

;,,,
2,21,12,23,11,2 −−

===
kk

sssss L ,,
2,23,11,22,1

TTTT ==

,,
3,22,1 −−

=
kk

TTL then we can generate a candidate

time-interval k-sequences ,,,,
2,11,11,11

LLsTsS =<

.,,,,
1,22,21,12,12,1

>
−−−−− kkkkk

sTsTs

Step 7: Producing .3, ≥kFTIS
k

 A candidate

4444

time-interval k-sequence whose support is greater

than or equal to suppmin − is a frequent time-

interval k-sequence, and the set of all frequent

time-interval k-sequences is .
k

FTIS

Step 8: Repeating step 6 and step 7, until no

next
k

CTIS can be generated.

According to these steps, an experiment using a

simple sequence database will be displayed in the

next section.

4. Experiment
In this section, we use the sequence database

shown as in Table 1 to discover the time-interval

sequential patterns. In Table 1, Id denotes the

record number of a sequence, and each sequence is

represented as ,),(,),,(),,(
2211

><
nn

tststs L where

i
s denotes an itemset, and

i
t denotes the time

stamp that
i

s occurs; suppmin − is set as 0.3.

Table 1: A sequence database.

Id Sequence

01 (s5,8), (s4,15), (s6,20)

02 (s1,2), (s3,7), (s2,11), (s6,18)

03 (s2,3), (s1,4), (s3,7), (s6,16), (s7,19)

04 (s1,2), (s2,8), (s6,10), (s7,15)

05 (s5,4), (s6,16), (s1,20), (s3,24)

06 (s7,7), (s1,13), (s5,18), (s2,25), (s6,28)

07 (s5,4), (s1,8), (s3,12), (s6,16), (s7,20)

08 (s1,3), (s5,6), (s2,9), (s4,18), (s6,21)

09 (s2,5), (s1,10), (s3,15), (s6,20), (s7,25)

10 (s6,2), (s7,8), (s5,12), (s2,17)

First, we need to calculate the supports of all

itemsets to produce .
1

FS Supports of all itemsets

are shown in Table 2. Here, we can obtain =
1

FS

}.,,,,,{
765321

ssssss

Table 2: Supports of itemsets.

itemset supp

s1 0.8

s2 0.7

s3 0.5

s4 0.2

s5 0.6

s6 1

s7 0.6

Next,
2

CS is generated by jointing ;
11

FSFS ×

Supports of the sequences in
2

CS are calculated

and shown in Table 3. Therefore, we obtain =
3

FS

,,,,,,,,,,{
6271613121

><><><><>< ssssssssss

,,,,,,,,,,
6525736372

><><><><>< ssssssssss

}.,
76

>< ss

Table 3: Supports of sequences in
2

CS
2

CS supp 2
CS supp

<s1,s2> 0.4 <s5,s1> 0.2

<s1,s3> 0.5 <s5,s2> 0.3

<s1,s5> 0.2 <s5,s3> 0.2

<s1,s6> 0.7 <s5,s6> 0.5

<s1,s7> 0.4 <s5,s7> 0.1

<s2,s1> 0.2 <s6,s1> 0.1

<s2,s3> 0.2 <s6,s2> 0.1

<s2,s5> 0.0 <s6,s3> 0.1

<s2,s6> 0.6 <s6,s5> 0.1

<s2,s7> 0.3 <s6,s7> 0.5

<s3,s1> 0.0 <s7,s1> 0.1

<s3,s2> 0.1 <s7,s2> 0.2

<s3,s5> 0.0 <s7,s3> 0.0

<s3,s6> 0.4 <s7,s5> 0.2

<s3,s7> 0.3 <s7,s6> 0.1

For each frequent 2-sequence of

2
FS , all its

time intervals are recorded and listed in increasing

order (Table 4).

Table 4: Time intervals of the sequences of
2

FS
2

FS time intervals

<s1,s2> T<s1,s2>= {6, 9, 12}

<s1,s3> T<s1,s3>= {3, 4, 5}

<s1,s6> T<s1,s6> = {8, 10, 12, 16, 18}

<s1,s7> T<s1,s7>= {12, 13, 15 }

<s2,s6> T<s2,s6>={2, 3, 7, 12, 13, 15}

<s2,s7> T<s2,s7>= {7, 16, 20}

<s3,s6> T<s3,s6>= {4, 5, 9, 11 }

<s3,s7> T<s3,s7>= {8, 10, 12}

<s5,s2> T<s5,s2> = {3, 5, 7}

<s5,s6> T<s5,s6> = {10, 12, 15}

<s6,s7> T<s6,s7> = {3, 4, 5, 6 }

According to the step 4 described in the above

section, the set of all suitable time partitions for

5555

each sequences of
2

FS are obtained as in Table 5.

Next, each 2-sequence of
2

FS is extended by all

its suitable time partitions to form
2

FTIS (Table 6).

Table 5: The suitable time partitions of sequences

of
2

FS .

2
FS suitable time partitions

<s1,s2> T<s1,s2>= {]12,6[1

2,1
=T }

<s1,s3> T<s1,s3>= {]5,3[1

3,1
=T }

<s1,s6> T<s1,s6> = {],12,8[1

6,1
=T]18,16[2

6,1
=T }

<s1,s7> T<s1,s7>= {]15,12[1

7,1
=T }

<s2,s6> T<s2,s6>={],7,2[1

6,2
=T]15,12[2

6,2
=T }

<s2,s7> T<s2,s7>= {]20,16[1

7,2
=T }

<s3,s6> T<s3,s6>= {]11,4[1

6,3
=T }

<s3,s7> T<s3,s7>= {]12,8[1

7,3
=T }

<s5,s2> T<s5,s2> = {]7,3[1

2,5
=T }

<s5,s6> T<s5,s6> = {]12,10[1

6,5
=T }

<s6,s7> T<s6,s7> = {]6,3[1

7,6
=T }

Table 6 :
2

FTIS

<s1,
1

2,1
T , s2>

<s1,
1

3,1
T , s3>

<s1,
1

6,1
T , s6>, <s1,

2

6,1
T , s6>

<s1,
1

7,1
T , s7>

<s2,
1

6,2
T , s6>, <s2,

2

6,2
T , s6>

<s2,
1

7,2
T , s7>

<s3,
1

6,3
T , s6>

<s3,
1

7,3
T , s7>

<s5,
1

2,5
T , s2>

<s5,
1

6,5
T , s6>

<s6,
1

7,6
T , s7>

3
CTIS , the set of candidate time-interval 3-

sequences is generated by jointing
2

FTIS .
2

FTIS×

Supports of the sequences of
3

CTIS are calculated

and shown in Table 7. A candidate time-interval

3-sequence whose support is greater than or equal

to suppmin − is called as a frequent time-

interval 3- sequence. Therefore, we can obtain the

set of all the frequent time-interval 3-sequences,

=
4

FTIS { <s1,
1

2,1
T ,s2,

1

6,2
T ,s6>, <s1,

1

3,1
T ,s3,

1

6,3
T ,s6>,

<s1,
1

3,1
T ,s3,

1

7,3
T ,s7>, <s1,

1

6,1
T ,s6,

1

7,6
T ,s7>, <s3,

1

6,3
T ,

s6,
1

7,6
T , s7> }.

Table 7: Supports of sequences of
3

CTIS

3
CTIS supp

<s1,
1

2,1
T , s2,

1

6,2
T , s6> 0.3

<s1,
1

2,1
T , s2,

2

6,2
T , s6> 0.1

<s1,
1

2,1
T , s2,

1

7,2
T , s7> 0.1

<s1,
1

3,1
T , s3,

1

6,3
T , s6> 0.4

<s1,
1

3,1
T , s3,

1

7,3
T , s7> 0.3

<s1,
1

6,1
T , s6,

1

7,6
T , s7> 0.4

<s2,
1

6,2
T , s6,

1

7,6
T , s7> 0.1

<s2,
2

6,2
T , s6,

1

7,6
T , s7> 0.2

<s3,
1

6,3
T , s6,

1

7,6
T , s7> 0.3

<s5,
1

2,5
T , s2,

1

7,2
T , s7> 0

<s5,
1

6,5
T , s6,

1

7,6
T , s7> 0.1

The set of candidate time-interval 4-sequences,

,
4

CTIS is generated by jointing
3

FTIS .
3

FTIS×

Here, only one sequence, <s1,
1

3,1
T , s3 ,

1

6,3
T , s6 ,

1

7,6
T ,

s7>, is generated. The support of the sequence

<s1,
1

3,1
T , s3 ,

1

6,3
T , s6 ,

1

7,6
T , s7> is 0.3, thus <s1,

1

3,1
T ,

s3 , 1

6,3
T , s6 , 1

7,6
T , s7> is a frequent time-interval

4-sequences, and we obtain =
4

FTIS {<s1,
1

3,1
T , s3 ,

1

6,3
T , s6 ,

1

7,6
T , s7>}. Because no next

5
CTIS can be

generated, the algorithm stops here.

According to the experimental results, we can

clearly see that the suitable time partitions for

every pair of successive itemsets are different and

overlap, therefore, for every pair of successive

itemsets, it is more reasonable to generate the

suitable time partitions directly from the real data

when mining time-interval sequential patterns.

5. Conclusions
A sequential pattern with the time intervals

between successive itemsets is more valuable than

a traditional sequential pattern without any time

information. Most existing time-interval sequential

pattern mining algorithms reveal the time-interval

between itemsets by predefining some non-overlap

time partitions, but a predefined set of non-overlap

time partitions, in fact, cannot be suitable for every

6666

pair of successive itemsets.

In this paper, we present a new algorithm to

mine time-interval sequential patterns without pre-

defining any time partitions. This algorithm use

the clustering analysis to automatically generate

the suitable time partitions between frequent

occurring pairs of successive itemsets, and then

uses these generated time partitions to extend

typical algorithms to discover the time-interval

sequential patterns. The result of our experiment

verifies that the concept of our algorithm is more

reasonable than these algorithms which use some

predefined and non-overlap time partitions.

References
[1] R. Agrawal, and R. Srikant, “Mining sequential

patterns,” Proceedings of the International

Conference on Data Engineering, pp. 3–14,

1995.

[2] Y. L. Chen, M. C. Chiang, and M. T. Ko,

“Discovering time-interval sequential patterns

in sequence databases,” Expert Systems with

Applications, vol.25, no. 3, pp. 343–354, 2003.

[3] M. S. Chen, J. Han, and P. S. Yu, “Data mining:

An overview from a database perspective,”

IEEE Transactions on Knowledge and Data

Engineering, vol.8, no.6, pp. 866–883, 1996.

[4] M. S. Chen, J. S. Park, and P. S. Yu, “Efficient

data mining for path traversal patterns,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 10, no. 2, pp. 209–221, 1998.

[5] M. H. Dunham, Data mining, Introductory and

Advanced Topics, Pearson Education Inc.,

2003.

[6] J. Han, G. Dong, and Y. Yin, “Efficient mining

of partial periodic patterns in time series

database,” Proceedings of 1999 International

Conference on Data Engineering, pp. 106–115,

1999.

[7] J. Han, and M. Kamber, Data mining:

Concepts and Techniques, Academic Press,

2001.

[8] H. Mannila, H. Toivonen, and A. Inkeri

Verkamo, “Discovery of frequent episodes in

event sequences,” Data Mining and

Knowledge Discovery, vol. 1, no.3, pp.

259-289, 1997.

[9] J. Pei, J. Han, H. Pinto, Q, Chen, U. Dayal, and

M.-C. Hsu, “PrefixSpan: Mining sequential

patterns efficiently by prefix-projected pattern

growth,” Proceedings of 2001 International

Conference on Data Engineering, pp. 215–224,

2001.

[10] R. Srikant, and R. Agrawal, “Mining

sequential patterns: Generalizations and

performance improvements,” Proceedings of

the 5th International Conference on Extending

Database Technology, pp. 3–17, 1996.

[11] P. H. Wu, W. C. Peng, and M. S. Chen,

“Mining sequential alarm patterns in a

telecommunication database,” Proceedings of

Workshop on Databases in Telecommunic-

ations (VLDB 2001), pp. 37-51, 2001.

