
1111        

Mining Time-Interval Sequential Patterns Using Clustering Analysis 

Hao-En Chueh
1
, Nancy P. Lin

2 

1
Department of Information Management, Yuanpei University 

2
Department of Computer Sciences and Information Engineering, Tamkang University 

1
hechueh@mail.ypu.edu.tw, 

2
nancylin@mail.tku.edu.tw 

 

 

Abstract-A time-interval sequential pattern is a 

sequential pattern with the information about the 

time intervals between itemsets. Most algorithms 

of mining time-interval sequential patterns find the 

time intervals between itemsets by predefining 

some non-overlap time partitions, however, a 

predefined set of non-overlap time partitions 

cannot be suitable for every pair of successive 

itemsets. Therefore, in this paper, we present a 

new algorithm to mine time-interval sequential 

patterns without defining any time partitions in 

advance. The algorithm first adopts the clustering 

analysis to automatically generate the suitable 

time partitions for frequent occurring pairs of 

successive itemsets, and then uses these generated 

time partitions to extend typical algorithms to 

discover the time-interval sequential patterns. Our 

result of experiment verifies that this algorithm 

outperforms than the algorithms which use some 

predefined and non-overlap time partitions. 
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Interval, Clustering Analysis. 

 

 

1. Introduction  
Data mining is the procedure of discovering 

hidden, useful, previously unknown information 

from databases. The existing techniques of data 

mining include association analysis, classification, 

clustering, etc, and one of the important techniques 

is mining sequential patterns. Mining sequential 

patterns first introduced by Agrawal and Srikant 

(1995) is the task of finding frequently occurring 

patterns related to time or other sequences from a 

sequence database [1]. An example of a sequential 

pattern is “A customer who bought a digital 

camera will return to buy an extra memory card”. 

Mining sequential patterns is widely used in the 

field of retail business to assist in making various 

marketing decisions since many transaction 

records are stored as sequence data [3,5,7]. 

Many algorithms of mining sequential patterns 

have been proposed [1,4,6,9], and most of these 

algorithms only focus on finding the order of the 

itemsets, but ignore the time intervals between 

successive itemsets. An example of a sequential 

pattern with time intervals between successive 

itemsets is “A customer who bought a digital 

camera will buy an extra memory card within one 

month”. In business field, actually, a sequential 

pattern which includes the time intervals between 

successive itemsets is more valuable than a 

traditional sequential pattern without any time 

information, because the time intervals between 

successive itemsets can offer useful information 

for businesses to sell the appropriate products to 

their customers at the right time. To this end, some 

researches start to propose algorithms to discover 

the sequential patterns with time intervals between 

itemsets, called time-interval sequential pattern 

[2]. 

To find the time intervals between every pair of 

successive itemsets, most proposed algorithms of 

mining time-interval sequential patterns usually 

predefine some non-overlap time partitions, and 

assume that the time interval between each pair of 

successive itemsets can match one time partition of 

this predefined set, but a predefined set of non- 

overlap time partitions, in fact, cannot be suitable 

for every pair of successive itemsets. Generating 

the suitable time partitions for every pair of 

successive itemsets directly from the real data is 

more reasonable. Accordingly, in this paper, we 

present a new algorithm to mine time-interval 

sequential patterns without predefining any time 

partitions. This algorithm tries to use the clustering 

analysis first to automatically generate the suitable 

time partitions between frequent occurring pairs of 

successive itemsets, and then uses these generated 

time partitions to extend typical algorithms to 

discover the time-interval sequential patterns. 

The rest of this paper is organized as follows. 

Some researches related to time-interval sequential 

patterns are reviewed in section 2. The proposed 

time-interval sequential patterns mining algorithm 

is presented in section 3. A simple experiment is 

displayed in section 4. The conclusions are given 
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in section 5. 

 

2. Time-Interval Sequential Patterns 
The problem of sequential patterns mining 

which can be described as the task of discovering 

frequently occurring ordered patterns from a given 

sequence database was first introduced by Agrawal 

and Srikant in the mid 1990s [1]. 

A sequence is an ordered list of itemsets. Let 

},......,,{
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iiiI = be a set of items, ,,
21

ssS =<  

>
k

s......, is a sequence, where Is
i

⊆ is called an 

itemset.  Length of a sequence means the number 

of itemsets in the sequence, and a sequence 

contains k itemsets is called a k-sequence.  The 

support of a sequence S is denoted by supp )(S and 

means the percentage of total number of records 

containing sequence S in the sequence database.  

If supp )(S is greater than or equal to a predefined 

threshold, called minimal support, than sequence 

S  is considered as a frequent sequence and called 

a sequential pattern. 

Many algorithms have been proposed to mine 

sequential pattern [1,4,6,9], and most algorithms 

only focus on finding the frequently occurring 

order of the itemsets, but ignore the time intervals 

between itemsets. The time intervals between 

itemsets, in fact, can offer useful information for 

businesses to sell the appropriate products to their 

customers at the right time. Due to the value of the 

time intervals between itemsets, some researchers 

start to propose algorithms to mine various 

sequential patterns with time information between 

itemsets recently [2,8,10,11]. 

Srikant et al. [10] utilize three restrictions, the 

maximum interval ),( intervalmax − the minimum 

interval ),( intervalmin − and the time window size 

)( sizewindow − to find sequential patterns related 

to time intervals, and the discovered pattern is 

like )),,(),,(( DCBA where ),( BA and ),( DC are 

called subsequences of )).,(),,(( DCBA  The −max  

interval  and the intervalmin −  are respectively 

used to indicate the maximal and minimal interval 

within subsequence. The sizewindow − is used to 

indicate the interval among subsequences. For 

example, let the intervalmax −  is set to 10 hours, 

the intervalmin − is set to 3 hours, and −window  

size  is set to 24 hours. That is, the time interval 

between A and B lies in [2,10], the time interval 

between C and D also lies in [2,10], and the time 

interval between ),( BA and ),( DC lies in [0,24]. 

Mannila et al. [8] use a window width )(win to 

find frequent episodes in sequences of events, and 

the discovered episode is like ).,,( CBA  Assume 

that the win is set to 3 days, then the episode 

),,( CBA  means that, in 3 days, A occurs first, B  

follows, and C happens finally. 

Wu et al. [11] utilize a window )(d as well to 

find the sequential pattern likes ),,,( CBA such that, 

in a sequential pattern, the interval between 

adjacent events is within the window d .  

Assume d is set to 5 hours, then the discovered 

pattern ),,( CBA means that A occurs first, B  

follows, and C  happens finally and the interval 

between A and B , and between B and C is within 

5 hours. 

Chen et al. [2] use a predefined set of non- 

overlap time partitions to discover potential 

time-interval sequential patterns, and the 

discovered pattern is like ),,,,,(
20

CIBIA where 

20
, II belong to the non-overlap set of time 

partitions. Assume that, in the set of time partitions, 

0
I denotes the time interval t  satisfying 10 ≤≤ t  

day;
2

I denotes the time interval t satisfying 

73 ≤< t days, and then the pattern ),,,,(
20

CIBIA  

means that BA, and C happen in this order, and the 

interval between A and B is within 1 day , and the 

interval between B and lies between 3 days and 7 

days. 

Although these preceding discussion researches 

can discover the sequential patterns with the time 

information between itemsets by using a or some 

predefined and fixed time partitions, the patterns 

whose intervals between itemsets lie outside these 

predefined time ranges cannot be found yet. 

Therefore, this work presents a new algorithm 

to mine time-interval sequential patterns without 

defining any time partitions in advance, and the 

main concept of this algorithm is to generate the 

suitable time partitions directly from the real data. 

This algorithm first uses the clustering analysis to 

automatically generate the suitable time partitions 

for frequent occurring pairs of successive itemsets, 

and then adopts these generated time partitions to 

extend typical algorithms to mine the sequential 

patterns with time intervals between every pair of 

successive itemsets. 

Details of the proposed time-interval sequential 

mining patterns algorithm are presented in the 

following section. 

 

3. The Proposed Algorithm 
The proposed time-interval sequential patterns 

mining algorithm is presented in this section. This 
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algorithm uses clustering analysis to automatically 

generate the suitable time partitions directly from 

the real data for the frequent occurring pairs of 

successive itemsets, and then uses these generated 

time partitions to extend the typical algorithms to 

discover the sequential patterns with time intervals 

between every pair of successive itemsets. Steps of 

the algorithm are described as follows. 

 
Notation: 

},......,,{
21 m

iiiI = : The set of items. 

>=<
ni

sssS ,......,,
21

: A sequence, where each  

Is
k

⊆ . 

},......,,{
21 k

SSSD = : The set of sequences. 

supp )(
i

S : The support of
i

S . 

suppmin − : The minimal support threshold. 

k
CS : The set of candidate k-sequences. 

k
FS : The set of frequent k-sequences. 

k
CTIS : The set of candidate time-interval 

k-sequences. 

k
FTIS : The set of frequent time-interval 

k-sequences. 

 

Algorithm: 

Step 1: Producing
1

FS . Each itemset can be 

regarded as a candidate 1-sequence. A candidate 

1-sequence whose support is greater than or equal 

to suppmin − is a frequent 1-sequence, and the set 

of all frequent 1-sequences is
1

FS . 

Step 2: Producing
2

CS . For any two frequent 

1-sequences
1

s and ,
2

s where
121

, FSss ∈ and ,
21

ss ≠  

then we can generate 2 candidate 2-sequences 

><
21

, ss and ><
12

,ss that belong to
2

CS . 

Step 3: Producing
2

FS . A candidate 2-sequence 

whose support is greater than or equal to −min  

supp is a frequent 2-sequence, and the set of all 

frequent 2-sequences is
2

FS . 

Step 4: Finding the set of all the suitable time 

partitions for each frequent 2-sequences of
2

FS . 

For any frequent 2-sequence of
2

FS ,, ><
qp

ss all 

the time intervals between
p

s and
q

s appears in D  

are listed in increasing order, then the following 

clustering steps are used to find the suitable time 

partitions of all these intervals. 

Step 4(a): Assume that ],,,[),1(
21 z

tttzT L=  is 

the increasingly ordered list of the time intervals of 

., ><
qp

ss  Let }),1({, zTssT
qp

>=< be the set of 

all the suitable time partitions of ., ><
qp

ss  The 

first step of the clustering analysis is to find the 

maximal difference between two adjacent intervals 

from all partitions of ,, ><
qp

ssT  and then divide 

the partition with the maximal difference into 2 

partitions. At the beginning, only one partition is 

in ><
qp

ssT , , therefore, the chosen partition is 

).,1( zT Assume that the different between
i

t and 

1+i
t  is maximal, than ),1( zT is divided into ),1( iT  

and ),,1( ziT + where ],,,[),1(
1 i

ttiT L= ),1( ziT +  

].,,[
1 zi

tt L
+

=  

Step 4(b): The second step is to calculate the 

support of ><
qp

ss , that respectively includes time 

intervals within these two partitions. If the support 

of ><
qp

ss ,  that includes time intervals within 

),1( iT is greater than or equal to ,suppmin −  

),1( iT is a suitable time partition of ><
qp

ss , , and 

then ),1( iT is reserved, otherwise ),1( iT is deleted. 

Similarly, if the support of ><
qp

ss , that includes 

time intervals within ),1( ziT +  is greater than or 

equal to ,suppmin −  ),1( ziT +  is a suitable time 

partition, and then ),1( iT  is reserved, otherwise 

),1( iT  is deleted. Thus, the chosen partition is 

placed by the reserved partitions. If no partition is 

reserved, this chosen partition is considered as 

non-dividable. If all of the differences between 

two adjacent intervals in a partition are equal, this 

partition is considered as non-dividable as well. 

Step 4(c): Repeating step 4(a) and step 4(b), 

until all time partitions in ><
qp

ssT ,  are non- 

dividable. 

Step 5: Producing
2

FTIS . Each 2-sequence of 

2
FS is extended by all its suitable time partitions 

to form
2

FTIS . Let ,,{, 21 TTssT
qp

>=< },
R

TL is 

the set of all the suitable time partitions of the 

sequence ,, ><
qp

ss then ,1,,, RisTsT
q

i

p
L=><  

is a frequent time-interval 2-sequences. 

Step 6: Producing 3, ≥kCTIS
k

. For any two 

frequent time-interval (k-1)-sequences
1

S and ,
2

S  

where ,,,,,,,
1,12,12,12,11,11,11

>=<
−−− kkk

sTssTsS L =
2

S  

;,,,,,,
11,22,22,22,21,21,2 −−−−

∈><
kkkk

FTISsTssTs L
2,1

s  

;,,,
2,21,12,23,11,2 −−

===
kk

sssss L ,,
2,23,11,22,1

TTTT ==  

,,
3,22,1 −−

=
kk

TTL then we can generate a candidate 

time-interval k-sequences ,,,,
2,11,11,11

LLsTsS =<  

.,,,,
1,22,21,12,12,1

>
−−−−− kkkkk

sTsTs  

Step 7: Producing .3, ≥kFTIS
k

 A candidate 
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time-interval k-sequence whose support is greater 

than or equal to suppmin − is a frequent time- 

interval k-sequence, and the set of all frequent 

time-interval k-sequences is .
k

FTIS  

Step 8: Repeating step 6 and step 7, until no 

next 
k

CTIS can be generated. 

According to these steps, an experiment using a 

simple sequence database will be displayed in the 

next section. 

 

4. Experiment 
In this section, we use the sequence database 

shown as in Table 1 to discover the time-interval 

sequential patterns. In Table 1, Id  denotes the 

record number of a sequence, and each sequence is 

represented as ,),(,),,(),,(
2211

><
nn

tststs L where 

i
s denotes an itemset, and 

i
t denotes the time 

stamp that 
i

s  occurs; suppmin −  is set as 0.3. 

 

Table 1: A sequence database. 

Id Sequence 

01 (s5,8), (s4,15), (s6,20) 

02 (s1,2), (s3,7), (s2,11), (s6,18) 

03 (s2,3), (s1,4), (s3,7), (s6,16), (s7,19) 

04 (s1,2), (s2,8), (s6,10), (s7,15) 

05 (s5,4), (s6,16), (s1,20), (s3,24) 

06 (s7,7), (s1,13), (s5,18), (s2,25), (s6,28) 

07 (s5,4), (s1,8), (s3,12), (s6,16), (s7,20) 

08 (s1,3), (s5,6), (s2,9), (s4,18), (s6,21) 

09 (s2,5), (s1,10), (s3,15), (s6,20), (s7,25) 

10 (s6,2), (s7,8), (s5,12), (s2,17) 

 

First, we need to calculate the supports of all 

itemsets to produce .
1

FS  Supports of all itemsets 

are shown in Table 2. Here, we can obtain =
1

FS  

}.,,,,,{
765321

ssssss  

 
Table 2: Supports of itemsets. 

itemset supp 

s1 0.8 

s2 0.7 

s3 0.5 

s4 0.2 

s5 0.6 

s6 1 

s7 0.6 

 

Next,
2

CS is generated by jointing ;
11

FSFS ×  

Supports of the sequences in 
2

CS are calculated 

and shown in Table 3. Therefore, we obtain =
3

FS  

,,,,,,,,,,{
6271613121

><><><><>< ssssssssss  

,,,,,,,,,,
6525736372

><><><><>< ssssssssss  

}.,
76

>< ss  

 

Table 3: Supports of sequences in
2

CS .... 
2

CS  supp 2
CS  supp 

<s1,s2> 0.4 <s5,s1> 0.2 

<s1,s3> 0.5 <s5,s2> 0.3 

<s1,s5> 0.2 <s5,s3> 0.2 

<s1,s6> 0.7 <s5,s6> 0.5 

<s1,s7> 0.4 <s5,s7> 0.1 

<s2,s1> 0.2 <s6,s1> 0.1 

<s2,s3> 0.2 <s6,s2> 0.1 

<s2,s5> 0.0 <s6,s3> 0.1 

<s2,s6> 0.6 <s6,s5> 0.1 

<s2,s7> 0.3 <s6,s7> 0.5 

<s3,s1> 0.0 <s7,s1> 0.1 

<s3,s2> 0.1 <s7,s2> 0.2 

<s3,s5> 0.0 <s7,s3> 0.0 

<s3,s6> 0.4 <s7,s5> 0.2 

<s3,s7> 0.3 <s7,s6> 0.1 

 
For each frequent 2-sequence of 

2
FS , all its 

time intervals are recorded and listed in increasing 

order (Table 4). 

 

Table 4: Time intervals of the sequences    of
2

FS .... 
2

FS  time intervals 

<s1,s2> T<s1,s2>= {6, 9, 12} 

<s1,s3> T<s1,s3>= {3, 4, 5} 

<s1,s6> T<s1,s6> = {8, 10, 12, 16, 18} 

<s1,s7> T<s1,s7>= {12, 13, 15 } 

<s2,s6> T<s2,s6>={2, 3, 7, 12, 13, 15} 

<s2,s7> T<s2,s7>= {7, 16, 20} 

<s3,s6> T<s3,s6>= {4, 5, 9, 11 } 

<s3,s7> T<s3,s7>= {8, 10, 12} 

<s5,s2> T<s5,s2> = {3, 5, 7} 

<s5,s6> T<s5,s6> = {10, 12, 15} 

<s6,s7> T<s6,s7> = {3, 4, 5, 6 } 

 
According to the step 4 described in the above 

section, the set of all suitable time partitions for 
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each sequences of 
2

FS  are obtained as in Table 5. 

Next, each 2-sequence of 
2

FS is extended by all 

its suitable time partitions to form
2

FTIS (Table 6). 

 

Table 5: The suitable time partitions of sequences

of
2

FS . 

2
FS  suitable time partitions 

<s1,s2> T<s1,s2>= { ]12,6[1

2,1
=T } 

<s1,s3> T<s1,s3>= { ]5,3[1

3,1
=T } 

<s1,s6> T<s1,s6> = { ],12,8[1

6,1
=T ]18,16[2

6,1
=T } 

<s1,s7> T<s1,s7>= { ]15,12[1

7,1
=T } 

<s2,s6> T<s2,s6>={ ],7,2[1

6,2
=T ]15,12[2

6,2
=T } 

<s2,s7> T<s2,s7>= { ]20,16[1

7,2
=T } 

<s3,s6> T<s3,s6>= { ]11,4[1

6,3
=T } 

<s3,s7> T<s3,s7>= { ]12,8[1

7,3
=T } 

<s5,s2> T<s5,s2> = { ]7,3[1

2,5
=T } 

<s5,s6> T<s5,s6> = { ]12,10[1

6,5
=T } 

<s6,s7> T<s6,s7> = { ]6,3[1

7,6
=T } 

 

Table 6 :
2

FTIS  

<s1,
1

2,1
T , s2> 

<s1,
1

3,1
T , s3> 

<s1,
1

6,1
T , s6>, <s1,

2

6,1
T , s6> 

<s1,
1

7,1
T , s7> 

<s2,
1

6,2
T , s6>, <s2,

2

6,2
T , s6> 

<s2,
1

7,2
T , s7> 

<s3,
1

6,3
T , s6> 

<s3,
1

7,3
T , s7> 

<s5,
1

2,5
T , s2> 

<s5,
1

6,5
T , s6> 

<s6,
1

7,6
T , s7> 

 

3
CTIS , the set of candidate time-interval 3- 

sequences is generated by jointing
2

FTIS .
2

FTIS×  

Supports of the sequences of 
3

CTIS are calculated 

and shown in Table 7. A candidate time-interval 

3-sequence whose support is greater than or equal 

to suppmin −  is called as a frequent time- 

interval 3- sequence. Therefore, we can obtain the 

set of all the frequent time-interval 3-sequences, 

=
4

FTIS { <s1,
1

2,1
T ,s2,

1

6,2
T ,s6>, <s1,

1

3,1
T ,s3,

1

6,3
T ,s6>, 

<s1,
1

3,1
T ,s3,

1

7,3
T ,s7>, <s1,

1

6,1
T ,s6,

1

7,6
T ,s7>, <s3,

1

6,3
T , 

s6,
1

7,6
T , s7> }. 

 

Table 7: Supports of sequences of
3

CTIS  

3
CTIS  supp 

<s1,
1

2,1
T , s2,

1

6,2
T , s6> 0.3 

<s1,
1

2,1
T , s2,

2

6,2
T , s6> 0.1 

<s1,
1

2,1
T , s2,

1

7,2
T , s7> 0.1 

<s1,
1

3,1
T , s3,

1

6,3
T , s6> 0.4 

<s1,
1

3,1
T , s3,

1

7,3
T , s7> 0.3 

<s1,
1

6,1
T , s6,

1

7,6
T , s7> 0.4 

<s2,
1

6,2
T , s6,

1

7,6
T , s7> 0.1 

<s2,
2

6,2
T , s6,

1

7,6
T , s7> 0.2 

<s3,
1

6,3
T , s6,

1

7,6
T , s7> 0.3 

<s5,
1

2,5
T , s2,

1

7,2
T , s7> 0 

<s5,
1

6,5
T , s6,

1

7,6
T , s7> 0.1 

 

The set of candidate time-interval 4-sequences, 

,
4

CTIS  is generated by jointing
3

FTIS .
3

FTIS×  

Here, only one sequence, <s1,
1

3,1
T , s3 ,

1

6,3
T , s6 ,

1

7,6
T , 

s7>, is generated. The support of the sequence 

<s1,
1

3,1
T , s3 ,

1

6,3
T , s6 ,

1

7,6
T , s7> is 0.3, thus <s1,

1

3,1
T , 

s3 , 1

6,3
T , s6 , 1

7,6
T , s7> is a frequent time-interval 

4-sequences, and we obtain =
4

FTIS {<s1,
1

3,1
T , s3 , 

1

6,3
T , s6 ,

1

7,6
T , s7>}.  Because no next

5
CTIS can be 

generated, the algorithm stops here. 

According to the experimental results, we can 

clearly see that the suitable time partitions for 

every pair of successive itemsets are different and 

overlap, therefore, for every pair of successive 

itemsets, it is more reasonable to generate the 

suitable time partitions directly from the real data 

when mining time-interval sequential patterns. 

 

5. Conclusions 
A sequential pattern with the time intervals 

between successive itemsets is more valuable than 

a traditional sequential pattern without any time 

information. Most existing time-interval sequential 

pattern mining algorithms reveal the time-interval 

between itemsets by predefining some non-overlap 

time partitions, but a predefined set of non-overlap 

time partitions, in fact, cannot be suitable for every 
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pair of successive itemsets. 

In this paper, we present a new algorithm to 

mine time-interval sequential patterns without pre- 

defining any time partitions. This algorithm use 

the clustering analysis to automatically generate 

the suitable time partitions between frequent 

occurring pairs of successive itemsets, and then 

uses these generated time partitions to extend 

typical algorithms to discover the time-interval 

sequential patterns. The result of our experiment 

verifies that the concept of our algorithm is more 

reasonable than these algorithms which use some 

predefined and non-overlap time partitions. 
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