
 1

An AdaBoost Approach to Detecting and Extracting Texts  
from Natural Scene Images 

 
Chin-Shyurng Fahn and Chia-Wei Liu 

 
Department of Computer Science and Information Engineering 

National Taiwan University of Science and Technology, Taipei 10607, Taiwan 
E-mail: csfahn@csie.ntust.edu.tw 

Abstract- In this paper, we present a new 
connected-component-based text detection and extraction 
method for natural scene images using AdaBoost 
techniques. First, we utilize the Canny operator and devise 
a two-phase two-scan labeling connected components 
algorithm to precisely find out candidate character blocks. 
Subsequently, several fundamental filtering rules are 
derived from the characteristics of texts to screen non-text 
blocks. Reducing the number of candidate character 
blocks can speed up the efficiency of the text classifier and 
improve the accuracy. Then we distinguish text blocks 
from the remaining candidate blocks using the strong 
classifier that is trained by an AdaBoost algorithm. In the 
sequel, we group the detected characters into words. 
Compared with other machine learning algorithms, the 
algorithm has an advantage of facilitating the speed of 
convergence during the training. Thus, we can update 
training samples to deal with comprehensive 
circumstances but do not spend much computational cost. 
Finally, we adopt a binarization method with an adaptive 
threshold to extract text regions. Even in an unbalanced 
illuminant environment, we can still extract texts 
successfully. Experimental results reveal that the text 
recall and precision rates are both more than 95% and the 
system efficiency of execution is also satisfactory. 

Keywords: AdaBoost algorithm, connected component 
labeling, text detection, text extraction, natural scene 
image. 
 
1. Introduction 

In recent years, it is easy to take a picture anywhere 
and anytime owing to the popularization of digital 
cameras and cellular phones. Therefore, the image 
containing characters is not restricted to being obtained 
through a scanner. The existing text detection methods can 
be grouped into two classes typically. The first one is 
connected-component-based (CC-based) methods and the 
second one is texture-based methods. The CC-based 
methods can extract texts efficiently, but they will 
encounter difficulties when texts touch with themselves or 
other graphical objects.  

Characters in videos, documents, and images possess 
quite rich information. The text information extraction 

(TIE) techniques are widely applied to the license plate 
detection, business card analysis, and video subtitle 
location, and so forth. Characters in an image will have 
the following general characteristics [1]:  

1) Geometry: The arrangements of text lines are 
vertical and horizontal in the majority. Characters in the 
same text line are usually aggregated with a uniform 
clearance and their sizes are regular. 

2) Color: Characters in the same text line often have 
the same or similar color. The CC-based methods are also 
set up on this assumption. 

3) Edge: Characters within a title in most of natural 
scenes commonly have a strong contrast to the 
background in order to read conveniently. 

The bulk of the existing text detection methods are 
implemented according to the character characteristics 
mentioned above. But such characteristics will be varied 
by the influence of environments or people. Hence, we 
want to develop an adaptive text detection and extraction 
method, which can keep certain accuracy along with the 
change of scenes. Fig. 1 shows the system flow chart of 
our proposed text detection and extraction method.  
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Fig. 1  The system flow chart. 
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2. Text Detection 
In this section, we first indicate how to obtain 

candidate character blocks by Canny edge detection and 
connected component (CC) labeling. Then we will 
conduct a preliminary filter to further screen the candidate 
character blocks.  

 
2.1. Canny edge detection 

In order to label CCs more precisely, it essentially 
requires a good edge detection result. Too many useless 
edge pixels will make the CC-based methods be confused. 
The Canny edge detection method is known as the optimal 
edge detector. Through a careful evaluation, we adopt the 
edge detection algorithm proposed by Canny [2]. 

 
2.2. Connected component labeling 

To obtain the CC properties of an image, such as the 
number of CCs and the size of each CC, we develop a 
simple and fast CC labeling algorithm. [3]. This algorithm 
provides much less execution time than the conventional 
labeling algorithms do [4]-[6], particularly than the 
recursive methods.  

 
2.3. Character block filtering 

The outcome of the CC labeling is the primary text 
detection result. In order to decrease the computational 
time of the text classifier later and improve the recognition 
rate, we have to screen some candidate blocks which do 
not contain characters obviously. The following depicts 
the CC properties and filtering rules where WB  represents 
the width of a CC block, HB  represents its height, H 
indicates the height of the original image, W indicates its 
width, and EN  symbolizes the number of edge pixels in 
a CC. The candidate character block satisfying with any 
condition of the filtering rules listed in Table 1 will be 
discarded, where iS  means the scaling factor of a CC 
block. 

Considering feature extraction later, the block size 
used for executing the wavelet transform is 16 by 16. So 
in the first rule, we remove the block whose height is 
smaller than 16. In the second and third rules, we want to 
filter out too large blocks and too thin blocks. In the fourth 
rule, we take account of whether the number of edge 
pixels is enough to form a closed area. Because the 
characteristic of strokes, the edge pixels in a character 
block will constitute a closed outline. Therefore, while the 
condition of 1.5W HB B >  meets, it shows that the 
associated block contains more than one letter at least. If 
the number of edge pixels is smaller than the 
circumference of the block, it shows that these edge pixels 
are certainly unable to form the closed area. While the 
condition of 1H WB B >  satisfies, it may be the letter L or 
I, or the digit 1, and so forth. In our experiments, the 
preliminary filter can take away about 50 percents of 
blocks for most of natural scene images and only costs a 
little computational time. It contributes to the reduction of 
computational time for candidate blocks classification 

afterwards.  
If the width of a candidate character block is greater 

than or equal to its height, we split it into several blocks in 
the horizontal direction to handle them separately. Fig. 2(a) 
graphically shows the above manipulation. Conversely, on 
the condition of H WB B> , we extend the block into a 
square as Fig. 2(b) illustrates. 

 
Table 1  The Conditions of Filtering Rules 

Condition Meaning 

16HB <  The block height 
is too small. 

1.5 and 2( ), or
1    and 1.5( )

W H E H W

H W E H W

B B N B B
B B N B B

> < +
> < +  

The number of 
edge pixels is too 
few. 

2   or   2W HB W B H> >  The block size is 
too large. 

1

1

10 , or
1

10

n
H W i H i Wi

n
H W i H i Wi

B B S B S B
n

B B S B S B
n

=

=

× > × ×

× < × ×

∑
∑

 
The block size 
related to all valid 
blocks is too large 
or too small. 

 

      2
H WB B−

 
(a)                         (b) 

 
Fig. 2  Illustration of manipulating a candidate character block; 

(a) partition of the block if W HB B≥ ; (b) extension of 
the block if H WB B> . 

 
3. Text Verification and Extraction 

After candidate character blocks have been screened, 
we will first proceed with feature extraction based on 
texture analysis. The text verification of the candidate 
blocks are then conducted by an AdaBoost approach. 
Finally, CC fusion is carried out to further achieve text 
extraction from natural scene images. 
 
3.1. Feature extraction 

We adopt the discrete wavelet transform (DWT) to 
extract the features of characters for texture analysis and 
description. Since its advantage is to provide not only the 
relation between time and frequency domains but also the 
relation between time and intensity domains. According to 
this, we perform the 2D-Haar (1-Level) DWT on the 
candidate blocks and subsequently extract features from 
four Haar wavelet sub-bands. First, we calculate the 
histogram of wavelet coefficients, where kz  means the 
intensity of a wavelet coefficient and ( )kp z  stands for 
the probability density function of kz . In the following 
expression, M and N are the height and width of a wavelet 
sub-band, respectively, and ( , )w i j  is the wavelet 
coefficient. Herein, we take a wavelet sub-band as an 
example depicted below: 
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The first kind of features is the mean of wavelet 
coefficients:  

Mean = 
1 1

1 ( , )M N

i jM N
w i j

= =
×

×
∑ ∑              (1) 

The second kind of features is the contrast of wavelet 
coefficients: 

Contrast = 21 1/(1+ )σ− ⎡ ⎤⎣ ⎦               (2) 

where 2 2
1 1

1 [ ( , ) ]M N

i jM N
w i jσ μ

= =
=

×
−∑ ∑   

The third kind of features is the entropy of wavelet 
coefficients, which is based on the information theory: 

Entropy = 
1 1

( , ) log ( , )M N

i j
w i j w i j

= =
−∑ ∑         (3) 

The fourth kind of features is the energy of wavelet 
coefficients: 

Energy = 2
1 1

( , )M N

i j
w i j

= =∑ ∑                 (4) 

And the fifth kind of features is the third moment of the 
intensities of wavelet coefficients, which is used for a 
measurement of histogram skewness: 

The third moment = 255 3
0
( ) ( )k kk
z p zμ

=
−∑        (5) 

Besides the above five kinds of features derived from 
the wavelet coefficients directly, some other features that 
express the information of two relative coefficients for all 
wavelet sub-bands are employed. Considering the strokes 
of a character, we can extract the features in form of a 
co-occurrence matrix whose element can be represented as 

( , | , )C m n d θ , where m and n indicate two wavelet 
coefficients, d stands for the distance, and θ  means the 
angle between m and n, respectively. In the experiments, 
we find four co-occurrence matrices with 

0 , 45 , 90 ,θ = ° ° ° and 135°  and d = 1 for each wavelet 
sub-band. Furthermore, we extract three kinds of features 
from a co-occurrence matrix, which are the correlation, 
inverse difference moment, and inertia stated as follows: 

Correlation = 
( )( ) ( , | , )

( , | , )x y

m nm n

m n

m n C m n d
C m n d

μ μ θ
σ σ θ

− −∑ ∑
∑ ∑

    (6) 

where 1

1
( , )

N
m jN

w m jμ =
=∑ , 1

1
( , )

M
n iM

w i nμ =
=∑ , 

1 2
x mmM

σ σ= ∑ , 1 2
y nnN

σ σ= ∑  

2 21 12 2
1 1
[ ( , ) ] ,  and [ ( , ) ]m n

N M
m nj iN M

w m j w i nσ μ σ μ= =
= =

− −∑ ∑

Inverse difference moment = 
2

( , | , )
1 ( )

( , | , )

m n

m n

C m n d
m n

C m n d

θ

θ
+ −∑ ∑

∑ ∑
    (7) 

and Inertia = 
2( ) ( , | , )

( , | , )
m n

m n

m n C m n d
C m n d

θ
θ

−∑ ∑
∑ ∑

            (8) 

Hence, each wavelet sub-band will have twelve 
features extracted from the four co-occurrence matrices. 
Adding the five kinds of features mentioned above, there 
are seventeen features for a sub-band. Finally, we have a 
sixty eight dimensional feature vector to describe the 
texture of a character block. Such a feature vector will be 
applied to train the AdaBoost strong classifier that is used 
for verifying the candidate character blocks later. 

3.2. Classification strategies 
Boosting is a general method for enhancing the 

performance and extending the capabilities of a learning 
scheme.  

 
3.2.1. The AdaBoost algorithm. 

The AdaBoost (adaptive boosting) algorithm is a kind 
of boosting algorithms which were proposed by Freund 
and Schapire [7]. Fig. 3 is a generalized version of the 
AdaBoost algorithm for binary classification problems. 

 
Given: 1 1 2 2{( , ), ( , ), ..., ( , )}S x y x y x y=

l l
 with ix ∈X  and 

{ 1, 1}.iy ∈ − +  

Initialize the distribution: ( )
1 1/ ,  1, 2,..., .iD i= =l l  

For  t = 1,2,…,T: 
Train the weak learner using the distribution 

( ) ,  1, 2,..., .i
tD i = l  

Get the weak hypothesis : .tg R→X  
Update: 

( ) ( )
1 exp( ( )) ,  1, 2,..., ,t i t i t

i i
t tD D y x Z igα+ = − = l  

where 
t

Z  is a normalization factor ( ( )
1

i
tD + is still a distribution)

and 
11

ln
2

t
t

t

ε
α

ε
−

=  with 
1

( ) [ ( )].t i t ii

i
tD y g xε

=
= ≠∑ l

 

Output the final hypothesis: ( )1
( ) ( ) .T

t tt
G sign Gα

=
= ∑ XX  

 
Fig. 3  A generalized version of the AdaBoost algorithm. 

 
In such an AdaBoost algorithm, we select a weak 

classifier tg  which has the lowest classification error 
with respect to the distribution tD  at each of iterations. 
And then update the distribution of training samples and 
the weight of the weak classifier according to the weighted 
training error rate tε  and weighting factor tα  until 
reaching the number of specified iterations. However, the 
prerequisite is 1 2tε < ; otherwise, the iteration will 
terminate. All the Adaboost-based techniques can be 
regarded as a greedy optimization method for minimizing 
the exponential error function as follows [8].  

1
exp( ( ))t i t i

i
E y g x

=

= −∑
l

                 (9) 

The upper bound of the training error for the strong 
classifier is ,t tZΠ  where tZ  is expressed below. 

( )

1 exp( ( ))i
tt ti iiZ D y g x

=
= −∑ l                  (10) 

As a result, minimizing t tZΠ  is almost identical to 
minimizing the overall classification error, because 
training samples usually account for a significant part of 
the whole samples. The purpose of the AdaBoost 
algorithm is to improve the existing weak learning 
algorithms L. The boosting algorithm looks for several 
weak classifiers tg  through conducting L repeatedly, and 
combines these weak classifiers to be a strong classifier G 
in accordance with certain rules. Consequently, the 
performance of G is much better than that of any weak 
classifier in the classification function space. 
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3.2.2. Classifier realization. 
The weak classifier is the core of an AdaBoost 

algorithm. Each weak classifier produces the answer “yes” 
or “no” for a particular feature. There are various 
algorithms for predicting continuous variables or 
categorical variables from a group of continuous 
predictions/categorical factor effects. The classification 
and regression tree (CART) algorithm was proposed by 
Breiman et al. [9]. Here, we adopt the CART as the 
structure of the weak classifier trained with the AdaBoost 
algorithm. 

We utilize the following two rules for the construction 
of a CART node. Given a training sample set 

1 1 2 2 = { }( ,  ),  ( ,  ), ,  ( ,  )S x y x y x y…
l l

, where each xi 

belongs to an instance space nR∈X  (each vector with 
dimensionality n; 

1 2
( , ,..., )

ni i i ix x x x= ) and each label yi 
belongs to a finite label space { 1, 1}Y ∈ − + .     
Rule 1. For each feature (all dimensions), find out a 

threshold which separates the sample set S with a 
minimal error. 

Rule 2.  Select the j-th feature with the minimal error and 
build a CART node. 
(a) Set up the branch condition: j jthresholdξ > . 
(b) Arrange the branches that are connected with 

leaves to perform respective classification. 
 
3.3. Connected component fusion 

Before text extraction, we have to group and extend 
the character blocks verified by the AdaBoost strong 
classifier into complete word regions. Because valid 
character regions sometimes lose letters resulting from the 
verification, it is necessary to remedy the misclassification 
blocks by clustering character regions into word ones. 
What follows is the remedial method called CC fusion 
process. 

Starting from an arbitrary connected component CCA, 
the search region is extended to twice the height of the CC 
in the horizontal direction (both left and right). If there is a 
connected component CCB satisfying with either of the 
following conditions, the two CCs are regarded as the 
same cluster.  

1) The top of CCB is between the tops 
of ( )7

AA HCC B± , and the bottom of CCB is between the 

bottom of 
AA HCC B−  and the bottom of ( )2

AA HCC B+ . 

2) The bottom of CCB is between the bottoms 
of ( )7

AA HCC B± , and the top of CCB is between the top 

of ( )2
AA HCC B−  and the top of

AA HCC B+ . 

The CC fusion process stops until each valid CC has 
been clustered. We rescue the misclassified CC of a 
character in the search region of each cluster and set it to 
be valid. Finally, the new boundary of each cluster is 
found and the cluster which consists of only one CC is 
discarded because of characters in an image often in form 
of text lines. However, if the distribution of characters in 
an image is sparse or too many misclassification blocks 
are closely located to each other, the CC fusion process 

will obtain a poor result.  
Although it is possible to directly extract texts from 

gray images, we acquire a worse performance 
substantially than from binary images. Therefore, we 
apply an improved version of Niblack’s adaptive 
binarization method which was proposed by Sauvola et al. 
[10] to extract word regions. Sauvola’s method is required 
to suitably determine a dynamic threshold Tr for each 
pixel from intensity statistics within a local mask of size r 
as Eq. (11) states. 

( , ) ( , ) [1 (1 ( , ) )]r r rT x y x y k x y Rμ σ= × + −        (11) 
where ( , )r x yμ  and ( , )r x yσ  stand for the mean and 
standard deviation (STD) of the pixel intensities within the 
local mask, respectively. Additionally, R is the possible 
range of STD, whose purpose is normalization, and k is an 
empirical constant.  

 
4. Experimental Results and Discussion 

The developing experimental environment includes 
Borland C++ Builder 6, MATLAB 7.2, and Microsoft 
Windows XP; the personal computer is equipped with 
Pentium IV 3.2 GHz CPU and 1 GB RAM.  

 
4.1. Training samples 

Our training samples are gathered from the 
competition dataset provided by the International 
Conference on Document Analysis and Recognition in 
2006. The competition dataset mainly comprises the 
covers of books, natural scenes, various kinds of articles, 
signboards, and so on. Besides, there are some samples 
collected from Internet. We use the GML AdaBoost 
Matlab Toolbox which is provided by the Graphics and 
Media Laboratory of the Computer Science Department at 
Moscow State University [11] and Matlab 7.2 for 
training/constructing our strong classifier. The positive 
samples and negative samples are marked manually from 
CC labeling images by users. We have 3,000 training 
samples, including equal number of text samples and 
non-text samples. Fig. 4 illustrates some of our training 
samples. 

 

         

         
(a) 

 

      

    
(b) 

 
Fig. 4  Part of training samples: (a) positive ones; (b) negative 

ones. 
 
4.2. Error estimation of different models 

In the field of statistics, cross-validation is employed 
to estimate a generalization error based on re-sampling. 
The generalization errors of various models serve as 
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choosing the best one among them. Cross-validation is to 
partition a set of samples into many subsets such that 
performance analysis is initially executed on a single 
subset of samples. The remaining subsets of samples used 
to validate the hypothesis are called validation (or test) 
data. There are several common types of cross-validation; 
for example, holdout cross-validation, K-fold 
cross-validation, and leave-one-out cross-validation. In the 
experiments, we utilize 5-fold cross-validation to estimate 
the accuracy of different system models. Attempting to 
find out the optimal numbers of splits and training 
iterations is to prevent from the occurrence of over-fitting.  

Figs. 5 and 6 show the error rates resulting from varied 
training models with different numbers of CART splits, 
feature types, and versions of AdaBoost algorithms. From 
the model estimation, we can see that the best 
performance is achieved while the Gentle AdaBoost 
algorithm uses wavelet features and 16 CART splits. As 
for the number of CART splits greater than 16, it does not 
attain an obvious improvement in the classification 
accuracy. Moreover, it becomes very time-consuming 
while training and verification. Thus, we adopt the Gentle 
AdaBoost algorithm employing wavelet features and 16 
CART splits as our classification model for a tradeoff 
between accuracy and efficiency. The training time on the 
condition of 3,000 samples, 16 CART splits, 68 wavelet 
features, and 200 iterations of the Gentle AdaBoost 
algorithm takes 5 minutes approximately. 

 

 
                                       

Fig. 5  The error rate resulting from the training model with 
gray level features for 8 splits and 5-fold 
cross-validation. 

 

 
                      

Fig. 6  The error rate resulting from the training model with 
wavelet features for 16 splits and 5-fold 
cross-validation. 

4.3. System evaluation and data analysis 
Before the exhibition of experimental results formally, 

we first explain our notations and definitions listed in 
Table 2 which will be used to measure our system 
performance subsequently. 

 
Table 2  Notations and Definitions Used for the Measurement 

of System Performance 
Notation Definition 

Precision rate 
  

True positive

True positive False positive+
 

Recall rate 
  

True positive

True positive False negative+
 

True positive    Result Ground TruthI  

False positive    Result Ground TruthI  

False negative    Result Ground TruthI  

 
We apply both precision and recall rates to measure 

the performance of our system; generally speaking, the 
precision rate is inversely related to the recall rate, where 
the true positive is the number of texts that are correctly 
classified as texts, the false positive is the number of 
non-texts that are incorrectly classified as texts, and the 
false negative is the number of texts that are incorrectly 
classified as non-texts.  

Our testing image set has 100 pictures altogether, each 
of which is retrieved from Internet or taken by ourselves. 
The contents of the image set are signboards mainly. The 
following demonstrates the classification accuracy of the 
AdaBoost strong classifier and analyzes the experimental 
results according to the above definitions. The basic unit is 
a block of 16×16 pixels, from which 256 gray level 
features and 68 wavelet features are extracted, respectively. 
The total number of CCs is 36,612, including 1,938 text 
blocks and 34,674 non-text ones. The accuracy of 
classification is recorded in Table 3.  

 
Table 3  The Overall Performance of Our System 

Set  Feature Precision rate Recall rate 
wavelet 98.25% 99.14% Training

gray level 96.89% 97.73% 
wavelet 95.27% 95.95% Testing gray level 90.56% 92.54% 

 
Note that the meanings of the precision and recall rates 

for the training and testing sets are slightly different. The 
cardinality of the training set is the number of training 
samples. The precision and recall rates of the training set 
mean the classification accuracy of the AdaBoost strong 
classifier when the validation is in progress directly. And 
the cardinality of the testing set is the number of CCs 
totally. We compute the numbers of true positives, false 
positives, and false negatives from the final classification 
results of the AdaBoost strong classifier. Table 4 shows the 
execution time for each step on an average. It is easily 
seen that the step of edge detection using the Canny 
operator takes most of the execution time for processing 
an image. 
 



 6

Table 4  Average Execution Time for Processing an Image of 
640×480 Pixels 

Step Edge 
detection 

CC 
labeling 

Preliminary 
filtering 

Recognition 
time 

CC 
fusion 

Text 
extraction 

Time 
(ms) 270 30 < 10 see Table 5 < 10 35 

 
The recognition time for identifying a character block 

of 16×16 pixels is revealed in Table 5 which includes the 
duration of block resizing, wavelet transform (for taking 
wavelet features), feature extraction, and text 
identification by the AdaBoost strong classifier. Compared 
to adopt raw gray level features, the recognition time 
needs six more times when the wavelet features derived 
from the wavelet transform are employed. 
 
Table 5  Average Recognition Time for Identifying a Character 

Block of 16×16 Pixels 
Feature Wavelet Gray level 

Recognition time 
(ms/block) 1.257928 0.208485 

 
The total execution time for an image of 640×480 

pixels depends on the number of candidate character 
blocks; in general, it is less than 1 second spent in the 
processing steps from edge detection to text extraction. 
Fig. 7 demonstrates some examples of text detection and 
extraction results from the final strong classifier using the 
Gentle AdaBoost algorithm with wavelet features and 16 
CART splits in 200 iterations.  

 

      
(a)                         (b) 

 

     
(c)                          (d)  

                           
Fig. 7  Some examples of text detection and extraction results:  

(a) & (b) the original images; (c) & (d) the extracted 
texts from (a) & (b), respectively. 

 
5. Conclusions and Future Works 

In this paper, we have presented a robust text detection 
and extraction method based on CC labeling and an 
AdaBoost algorithm. Combining with the Canny edge 
detection and CC labeling, we can find out candidate 
character blocks precisely even in a noisy image. As the 
experimental outcomes show, our proposed method 
achieves a satisfactory result in most of different natural 
scenes and the computational time is also appreciatively.  

Compared to Chen and Yuille’s texture-based 
AdaBoost text detection method [12], we manipulate an 
image of 2,048×1,536 pixels by taking 2 seconds 

approximately, while their system needs about 3 seconds. 
Some future works are worth investigating to attain better 
performance. We can choose other feature extraction 
techniques; for example, multi-channel Gabor transform 
coefficients, or we can mix up distinct types of features.  
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