
 1

An AdaBoost Approach to Detecting and Extracting Texts
from Natural Scene Images

Chin-Shyurng Fahn and Chia-Wei Liu

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology, Taipei 10607, Taiwan
E-mail: csfahn@csie.ntust.edu.tw

Abstract- In this paper, we present a new
connected-component-based text detection and extraction
method for natural scene images using AdaBoost
techniques. First, we utilize the Canny operator and devise
a two-phase two-scan labeling connected components
algorithm to precisely find out candidate character blocks.
Subsequently, several fundamental filtering rules are
derived from the characteristics of texts to screen non-text
blocks. Reducing the number of candidate character
blocks can speed up the efficiency of the text classifier and
improve the accuracy. Then we distinguish text blocks
from the remaining candidate blocks using the strong
classifier that is trained by an AdaBoost algorithm. In the
sequel, we group the detected characters into words.
Compared with other machine learning algorithms, the
algorithm has an advantage of facilitating the speed of
convergence during the training. Thus, we can update
training samples to deal with comprehensive
circumstances but do not spend much computational cost.
Finally, we adopt a binarization method with an adaptive
threshold to extract text regions. Even in an unbalanced
illuminant environment, we can still extract texts
successfully. Experimental results reveal that the text
recall and precision rates are both more than 95% and the
system efficiency of execution is also satisfactory.

Keywords: AdaBoost algorithm, connected component
labeling, text detection, text extraction, natural scene
image.

1. Introduction

In recent years, it is easy to take a picture anywhere
and anytime owing to the popularization of digital
cameras and cellular phones. Therefore, the image
containing characters is not restricted to being obtained
through a scanner. The existing text detection methods can
be grouped into two classes typically. The first one is
connected-component-based (CC-based) methods and the
second one is texture-based methods. The CC-based
methods can extract texts efficiently, but they will
encounter difficulties when texts touch with themselves or
other graphical objects.

Characters in videos, documents, and images possess
quite rich information. The text information extraction

(TIE) techniques are widely applied to the license plate
detection, business card analysis, and video subtitle
location, and so forth. Characters in an image will have
the following general characteristics [1]:

1) Geometry: The arrangements of text lines are
vertical and horizontal in the majority. Characters in the
same text line are usually aggregated with a uniform
clearance and their sizes are regular.

2) Color: Characters in the same text line often have
the same or similar color. The CC-based methods are also
set up on this assumption.

3) Edge: Characters within a title in most of natural
scenes commonly have a strong contrast to the
background in order to read conveniently.

The bulk of the existing text detection methods are
implemented according to the character characteristics
mentioned above. But such characteristics will be varied
by the influence of environments or people. Hence, we
want to develop an adaptive text detection and extraction
method, which can keep certain accuracy along with the
change of scenes. Fig. 1 shows the system flow chart of
our proposed text detection and extraction method.

Image

Candidate character blocks

Canny Edge
Detection

Connected
Component

Labeling

Preliminary
Filtering

Feature
Extraction

Drop
out

Connected
Component

Fusion

Text
Extraction

Training
Samples

Training By
Adaboost
Algorithm

Strong
Classifier

Text

Fig. 1 The system flow chart.

 2

2. Text Detection
In this section, we first indicate how to obtain

candidate character blocks by Canny edge detection and
connected component (CC) labeling. Then we will
conduct a preliminary filter to further screen the candidate
character blocks.

2.1. Canny edge detection

In order to label CCs more precisely, it essentially
requires a good edge detection result. Too many useless
edge pixels will make the CC-based methods be confused.
The Canny edge detection method is known as the optimal
edge detector. Through a careful evaluation, we adopt the
edge detection algorithm proposed by Canny [2].

2.2. Connected component labeling

To obtain the CC properties of an image, such as the
number of CCs and the size of each CC, we develop a
simple and fast CC labeling algorithm. [3]. This algorithm
provides much less execution time than the conventional
labeling algorithms do [4]-[6], particularly than the
recursive methods.

2.3. Character block filtering

The outcome of the CC labeling is the primary text
detection result. In order to decrease the computational
time of the text classifier later and improve the recognition
rate, we have to screen some candidate blocks which do
not contain characters obviously. The following depicts
the CC properties and filtering rules where WB represents
the width of a CC block, HB represents its height, H
indicates the height of the original image, W indicates its
width, and EN symbolizes the number of edge pixels in
a CC. The candidate character block satisfying with any
condition of the filtering rules listed in Table 1 will be
discarded, where iS means the scaling factor of a CC
block.

Considering feature extraction later, the block size
used for executing the wavelet transform is 16 by 16. So
in the first rule, we remove the block whose height is
smaller than 16. In the second and third rules, we want to
filter out too large blocks and too thin blocks. In the fourth
rule, we take account of whether the number of edge
pixels is enough to form a closed area. Because the
characteristic of strokes, the edge pixels in a character
block will constitute a closed outline. Therefore, while the
condition of 1.5W HB B > meets, it shows that the
associated block contains more than one letter at least. If
the number of edge pixels is smaller than the
circumference of the block, it shows that these edge pixels
are certainly unable to form the closed area. While the
condition of 1H WB B > satisfies, it may be the letter L or
I, or the digit 1, and so forth. In our experiments, the
preliminary filter can take away about 50 percents of
blocks for most of natural scene images and only costs a
little computational time. It contributes to the reduction of
computational time for candidate blocks classification

afterwards.
If the width of a candidate character block is greater

than or equal to its height, we split it into several blocks in
the horizontal direction to handle them separately. Fig. 2(a)
graphically shows the above manipulation. Conversely, on
the condition of H WB B> , we extend the block into a
square as Fig. 2(b) illustrates.

Table 1 The Conditions of Filtering Rules

Condition Meaning

16HB < The block height
is too small.

1.5 and 2(), or
1 and 1.5()

W H E H W

H W E H W

B B N B B
B B N B B

> < +
> < +

The number of
edge pixels is too
few.

2 or 2W HB W B H> > The block size is
too large.

1

1

10 , or
1

10

n
H W i H i Wi

n
H W i H i Wi

B B S B S B
n

B B S B S B
n

=

=

× > × ×

× < × ×

∑
∑

The block size
related to all valid
blocks is too large
or too small.

 2
H WB B−

(a) (b)

Fig. 2 Illustration of manipulating a candidate character block;

(a) partition of the block if W HB B≥ ; (b) extension of
the block if H WB B> .

3. Text Verification and Extraction

After candidate character blocks have been screened,
we will first proceed with feature extraction based on
texture analysis. The text verification of the candidate
blocks are then conducted by an AdaBoost approach.
Finally, CC fusion is carried out to further achieve text
extraction from natural scene images.

3.1. Feature extraction

We adopt the discrete wavelet transform (DWT) to
extract the features of characters for texture analysis and
description. Since its advantage is to provide not only the
relation between time and frequency domains but also the
relation between time and intensity domains. According to
this, we perform the 2D-Haar (1-Level) DWT on the
candidate blocks and subsequently extract features from
four Haar wavelet sub-bands. First, we calculate the
histogram of wavelet coefficients, where kz means the
intensity of a wavelet coefficient and ()kp z stands for
the probability density function of kz . In the following
expression, M and N are the height and width of a wavelet
sub-band, respectively, and (,)w i j is the wavelet
coefficient. Herein, we take a wavelet sub-band as an
example depicted below:

 3

The first kind of features is the mean of wavelet
coefficients:

Mean =
1 1

1 (,)M N

i jM N
w i j

= =
×

×
∑ ∑ (1)

The second kind of features is the contrast of wavelet
coefficients:

Contrast = 21 1/(1+)σ− ⎡ ⎤⎣ ⎦ (2)

where 2 2
1 1

1 [(,)]M N

i jM N
w i jσ μ

= =
=

×
−∑ ∑

The third kind of features is the entropy of wavelet
coefficients, which is based on the information theory:

Entropy =
1 1

(,) log (,)M N

i j
w i j w i j

= =
−∑ ∑ (3)

The fourth kind of features is the energy of wavelet
coefficients:

Energy = 2
1 1

(,)M N

i j
w i j

= =∑ ∑ (4)

And the fifth kind of features is the third moment of the
intensities of wavelet coefficients, which is used for a
measurement of histogram skewness:

The third moment = 255 3
0
() ()k kk
z p zμ

=
−∑ (5)

Besides the above five kinds of features derived from
the wavelet coefficients directly, some other features that
express the information of two relative coefficients for all
wavelet sub-bands are employed. Considering the strokes
of a character, we can extract the features in form of a
co-occurrence matrix whose element can be represented as

(, | ,)C m n d θ , where m and n indicate two wavelet
coefficients, d stands for the distance, and θ means the
angle between m and n, respectively. In the experiments,
we find four co-occurrence matrices with

0 , 45 , 90 ,θ = ° ° ° and 135° and d = 1 for each wavelet
sub-band. Furthermore, we extract three kinds of features
from a co-occurrence matrix, which are the correlation,
inverse difference moment, and inertia stated as follows:

Correlation =
()() (, | ,)

(, | ,)x y

m nm n

m n

m n C m n d
C m n d

μ μ θ
σ σ θ

− −∑ ∑
∑ ∑

 (6)

where 1

1
(,)

N
m jN

w m jμ =
=∑ , 1

1
(,)

M
n iM

w i nμ =
=∑ ,

1 2
x mmM

σ σ= ∑ , 1 2
y nnN

σ σ= ∑

2 21 12 2
1 1
[(,)] , and [(,)]m n

N M
m nj iN M

w m j w i nσ μ σ μ= =
= =

− −∑ ∑

Inverse difference moment =
2

(, | ,)
1 ()

(, | ,)

m n

m n

C m n d
m n

C m n d

θ

θ
+ −∑ ∑

∑ ∑
 (7)

and Inertia =
2() (, | ,)

(, | ,)
m n

m n

m n C m n d
C m n d

θ
θ

−∑ ∑
∑ ∑

 (8)

Hence, each wavelet sub-band will have twelve
features extracted from the four co-occurrence matrices.
Adding the five kinds of features mentioned above, there
are seventeen features for a sub-band. Finally, we have a
sixty eight dimensional feature vector to describe the
texture of a character block. Such a feature vector will be
applied to train the AdaBoost strong classifier that is used
for verifying the candidate character blocks later.

3.2. Classification strategies
Boosting is a general method for enhancing the

performance and extending the capabilities of a learning
scheme.

3.2.1. The AdaBoost algorithm.

The AdaBoost (adaptive boosting) algorithm is a kind
of boosting algorithms which were proposed by Freund
and Schapire [7]. Fig. 3 is a generalized version of the
AdaBoost algorithm for binary classification problems.

Given: 1 1 2 2{(,), (,), ..., (,)}S x y x y x y=

l l
 with ix ∈X and

{ 1, 1}.iy ∈ − +

Initialize the distribution: ()
1 1/ , 1, 2,..., .iD i= =l l

For t = 1,2,…,T:
Train the weak learner using the distribution

() , 1, 2,..., .i
tD i = l

Get the weak hypothesis : .tg R→X
Update:

() ()
1 exp(()) , 1, 2,..., ,t i t i t

i i
t tD D y x Z igα+ = − = l

where
t

Z is a normalization factor (()
1

i
tD + is still a distribution)

and
11

ln
2

t
t

t

ε
α

ε
−

= with
1

() [()].t i t ii

i
tD y g xε

=
= ≠∑ l

Output the final hypothesis: ()1
() () .T

t tt
G sign Gα

=
= ∑ XX

Fig. 3 A generalized version of the AdaBoost algorithm.

In such an AdaBoost algorithm, we select a weak

classifier tg which has the lowest classification error
with respect to the distribution tD at each of iterations.
And then update the distribution of training samples and
the weight of the weak classifier according to the weighted
training error rate tε and weighting factor tα until
reaching the number of specified iterations. However, the
prerequisite is 1 2tε < ; otherwise, the iteration will
terminate. All the Adaboost-based techniques can be
regarded as a greedy optimization method for minimizing
the exponential error function as follows [8].

1
exp(())t i t i

i
E y g x

=

= −∑
l

 (9)

The upper bound of the training error for the strong
classifier is ,t tZΠ where tZ is expressed below.

()

1 exp(())i
tt ti iiZ D y g x

=
= −∑ l (10)

As a result, minimizing t tZΠ is almost identical to
minimizing the overall classification error, because
training samples usually account for a significant part of
the whole samples. The purpose of the AdaBoost
algorithm is to improve the existing weak learning
algorithms L. The boosting algorithm looks for several
weak classifiers tg through conducting L repeatedly, and
combines these weak classifiers to be a strong classifier G
in accordance with certain rules. Consequently, the
performance of G is much better than that of any weak
classifier in the classification function space.

 4

3.2.2. Classifier realization.
The weak classifier is the core of an AdaBoost

algorithm. Each weak classifier produces the answer “yes”
or “no” for a particular feature. There are various
algorithms for predicting continuous variables or
categorical variables from a group of continuous
predictions/categorical factor effects. The classification
and regression tree (CART) algorithm was proposed by
Breiman et al. [9]. Here, we adopt the CART as the
structure of the weak classifier trained with the AdaBoost
algorithm.

We utilize the following two rules for the construction
of a CART node. Given a training sample set

1 1 2 2 = { }(,), (,), , (,)S x y x y x y…
l l

, where each xi

belongs to an instance space nR∈X (each vector with
dimensionality n;

1 2
(, ,...,)

ni i i ix x x x=) and each label yi
belongs to a finite label space { 1, 1}Y ∈ − + .
Rule 1. For each feature (all dimensions), find out a

threshold which separates the sample set S with a
minimal error.

Rule 2. Select the j-th feature with the minimal error and
build a CART node.
(a) Set up the branch condition: j jthresholdξ > .
(b) Arrange the branches that are connected with

leaves to perform respective classification.

3.3. Connected component fusion

Before text extraction, we have to group and extend
the character blocks verified by the AdaBoost strong
classifier into complete word regions. Because valid
character regions sometimes lose letters resulting from the
verification, it is necessary to remedy the misclassification
blocks by clustering character regions into word ones.
What follows is the remedial method called CC fusion
process.

Starting from an arbitrary connected component CCA,
the search region is extended to twice the height of the CC
in the horizontal direction (both left and right). If there is a
connected component CCB satisfying with either of the
following conditions, the two CCs are regarded as the
same cluster.

1) The top of CCB is between the tops
of ()7

AA HCC B± , and the bottom of CCB is between the

bottom of
AA HCC B− and the bottom of ()2

AA HCC B+ .

2) The bottom of CCB is between the bottoms
of ()7

AA HCC B± , and the top of CCB is between the top

of ()2
AA HCC B− and the top of

AA HCC B+ .

The CC fusion process stops until each valid CC has
been clustered. We rescue the misclassified CC of a
character in the search region of each cluster and set it to
be valid. Finally, the new boundary of each cluster is
found and the cluster which consists of only one CC is
discarded because of characters in an image often in form
of text lines. However, if the distribution of characters in
an image is sparse or too many misclassification blocks
are closely located to each other, the CC fusion process

will obtain a poor result.
Although it is possible to directly extract texts from

gray images, we acquire a worse performance
substantially than from binary images. Therefore, we
apply an improved version of Niblack’s adaptive
binarization method which was proposed by Sauvola et al.
[10] to extract word regions. Sauvola’s method is required
to suitably determine a dynamic threshold Tr for each
pixel from intensity statistics within a local mask of size r
as Eq. (11) states.

(,) (,) [1 (1 (,))]r r rT x y x y k x y Rμ σ= × + − (11)
where (,)r x yμ and (,)r x yσ stand for the mean and
standard deviation (STD) of the pixel intensities within the
local mask, respectively. Additionally, R is the possible
range of STD, whose purpose is normalization, and k is an
empirical constant.

4. Experimental Results and Discussion

The developing experimental environment includes
Borland C++ Builder 6, MATLAB 7.2, and Microsoft
Windows XP; the personal computer is equipped with
Pentium IV 3.2 GHz CPU and 1 GB RAM.

4.1. Training samples

Our training samples are gathered from the
competition dataset provided by the International
Conference on Document Analysis and Recognition in
2006. The competition dataset mainly comprises the
covers of books, natural scenes, various kinds of articles,
signboards, and so on. Besides, there are some samples
collected from Internet. We use the GML AdaBoost
Matlab Toolbox which is provided by the Graphics and
Media Laboratory of the Computer Science Department at
Moscow State University [11] and Matlab 7.2 for
training/constructing our strong classifier. The positive
samples and negative samples are marked manually from
CC labeling images by users. We have 3,000 training
samples, including equal number of text samples and
non-text samples. Fig. 4 illustrates some of our training
samples.

(a)

(b)

Fig. 4 Part of training samples: (a) positive ones; (b) negative

ones.

4.2. Error estimation of different models

In the field of statistics, cross-validation is employed
to estimate a generalization error based on re-sampling.
The generalization errors of various models serve as

 5

choosing the best one among them. Cross-validation is to
partition a set of samples into many subsets such that
performance analysis is initially executed on a single
subset of samples. The remaining subsets of samples used
to validate the hypothesis are called validation (or test)
data. There are several common types of cross-validation;
for example, holdout cross-validation, K-fold
cross-validation, and leave-one-out cross-validation. In the
experiments, we utilize 5-fold cross-validation to estimate
the accuracy of different system models. Attempting to
find out the optimal numbers of splits and training
iterations is to prevent from the occurrence of over-fitting.

Figs. 5 and 6 show the error rates resulting from varied
training models with different numbers of CART splits,
feature types, and versions of AdaBoost algorithms. From
the model estimation, we can see that the best
performance is achieved while the Gentle AdaBoost
algorithm uses wavelet features and 16 CART splits. As
for the number of CART splits greater than 16, it does not
attain an obvious improvement in the classification
accuracy. Moreover, it becomes very time-consuming
while training and verification. Thus, we adopt the Gentle
AdaBoost algorithm employing wavelet features and 16
CART splits as our classification model for a tradeoff
between accuracy and efficiency. The training time on the
condition of 3,000 samples, 16 CART splits, 68 wavelet
features, and 200 iterations of the Gentle AdaBoost
algorithm takes 5 minutes approximately.

Fig. 5 The error rate resulting from the training model with
gray level features for 8 splits and 5-fold
cross-validation.

Fig. 6 The error rate resulting from the training model with
wavelet features for 16 splits and 5-fold
cross-validation.

4.3. System evaluation and data analysis
Before the exhibition of experimental results formally,

we first explain our notations and definitions listed in
Table 2 which will be used to measure our system
performance subsequently.

Table 2 Notations and Definitions Used for the Measurement

of System Performance
Notation Definition

Precision rate

True positive

True positive False positive+

Recall rate

True positive

True positive False negative+

True positive Result Ground TruthI

False positive Result Ground TruthI

False negative Result Ground TruthI

We apply both precision and recall rates to measure

the performance of our system; generally speaking, the
precision rate is inversely related to the recall rate, where
the true positive is the number of texts that are correctly
classified as texts, the false positive is the number of
non-texts that are incorrectly classified as texts, and the
false negative is the number of texts that are incorrectly
classified as non-texts.

Our testing image set has 100 pictures altogether, each
of which is retrieved from Internet or taken by ourselves.
The contents of the image set are signboards mainly. The
following demonstrates the classification accuracy of the
AdaBoost strong classifier and analyzes the experimental
results according to the above definitions. The basic unit is
a block of 16×16 pixels, from which 256 gray level
features and 68 wavelet features are extracted, respectively.
The total number of CCs is 36,612, including 1,938 text
blocks and 34,674 non-text ones. The accuracy of
classification is recorded in Table 3.

Table 3 The Overall Performance of Our System

Set Feature Precision rate Recall rate
wavelet 98.25% 99.14% Training

gray level 96.89% 97.73%
wavelet 95.27% 95.95% Testing gray level 90.56% 92.54%

Note that the meanings of the precision and recall rates

for the training and testing sets are slightly different. The
cardinality of the training set is the number of training
samples. The precision and recall rates of the training set
mean the classification accuracy of the AdaBoost strong
classifier when the validation is in progress directly. And
the cardinality of the testing set is the number of CCs
totally. We compute the numbers of true positives, false
positives, and false negatives from the final classification
results of the AdaBoost strong classifier. Table 4 shows the
execution time for each step on an average. It is easily
seen that the step of edge detection using the Canny
operator takes most of the execution time for processing
an image.

 6

Table 4 Average Execution Time for Processing an Image of
640×480 Pixels

Step Edge
detection

CC
labeling

Preliminary
filtering

Recognition
time

CC
fusion

Text
extraction

Time
(ms) 270 30 < 10 see Table 5 < 10 35

The recognition time for identifying a character block

of 16×16 pixels is revealed in Table 5 which includes the
duration of block resizing, wavelet transform (for taking
wavelet features), feature extraction, and text
identification by the AdaBoost strong classifier. Compared
to adopt raw gray level features, the recognition time
needs six more times when the wavelet features derived
from the wavelet transform are employed.

Table 5 Average Recognition Time for Identifying a Character

Block of 16×16 Pixels
Feature Wavelet Gray level

Recognition time
(ms/block) 1.257928 0.208485

The total execution time for an image of 640×480

pixels depends on the number of candidate character
blocks; in general, it is less than 1 second spent in the
processing steps from edge detection to text extraction.
Fig. 7 demonstrates some examples of text detection and
extraction results from the final strong classifier using the
Gentle AdaBoost algorithm with wavelet features and 16
CART splits in 200 iterations.

(a) (b)

(c) (d)

Fig. 7 Some examples of text detection and extraction results:

(a) & (b) the original images; (c) & (d) the extracted
texts from (a) & (b), respectively.

5. Conclusions and Future Works

In this paper, we have presented a robust text detection
and extraction method based on CC labeling and an
AdaBoost algorithm. Combining with the Canny edge
detection and CC labeling, we can find out candidate
character blocks precisely even in a noisy image. As the
experimental outcomes show, our proposed method
achieves a satisfactory result in most of different natural
scenes and the computational time is also appreciatively.

Compared to Chen and Yuille’s texture-based
AdaBoost text detection method [12], we manipulate an
image of 2,048×1,536 pixels by taking 2 seconds

approximately, while their system needs about 3 seconds.
Some future works are worth investigating to attain better
performance. We can choose other feature extraction
techniques; for example, multi-channel Gabor transform
coefficients, or we can mix up distinct types of features.

Acknowledgement

The authors are thankful for this work supported in
part by the National Science Council of Taiwan under
Grant NSC95-2218-E-011-009.

References
[1] K. Jung, K. I. Kim, and A. K. Jain, “Text information

extraction in images and video: a survey,” Pattern
Recognition, vol. 37, no. 5, pp. 977-997, 2004.

[2] J. Canny, “A computational approach to edge
detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 8, no. 6, pp. 679-698,
1996.

[3] C. S. Fahn, K. L. Lin, and K. Y. Chu, “An efficient
two-phase two-scan labeling connected components
algorithm,” Submitted to IEEE Transactions on
Image Processing, 2008.

[4] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time
connected-component labeling based on sequential
local operations,” Computer Vision and Image
Understanding, vol. 89, no.1, pp. 1-23, 2003.

[5] F. Chang, C. J. Chen, and C. J. Lu, “A linear-time
component-labeling algorithm using contour tracing
technique,” Computer Vision and Image
Understanding, vol. 93, no. 2, pp. 206-220, 2004.

[6] L. F. He, Y. Y. Chao, and K. Suzuki, “A run-based
two-scan labeling algorithm,” IEEE Transactions on
Image Processing, vol. 17, no. 5, pp. 749-756,
2008.

[7] Y. Freund and R. E. Schapire, “Experiments with a
new boosting algorithm,” in Proceedings of the 13th
International Conference on Machine Learning, pp.
148-156, Bari, Italy, 1996.

[8] J. Friedman, T. Hastie, and R. Tibshirani, “Additive
logistic regression: A statistical view of boosting,”
The Annals of Statistics, vol. 28, no. 2, pp. 337-407,
2000.

[9] L. Breiman, J. Friedman, R. Olshen, and C. Stone,
Classification and Regression Trees, Chapman and
Hall, New York, USA, 1984.

[10] J. Sauvola, T. Seppanen, S. Haapakoski, and M.
Pietikainen, “Adaptive document binarization,” in
Proceedings of the 4th International Conference on
Document Analysis and Recognition, Ulm, Germany,
vol. 1, pp. 147-152, 1997.

[11] A. Vezhnevets, GML Adaboost Matlab Toolbox,
Graphics and Media Laboratory, Computer Science
Department, Moscow State University, Moscow,
Russian Federation, http://research.graphicon.ru/.

[12] X. Chen and A. L. Yuille, “Detecting and reading text
in natural scenes,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, Washington, DC, USA, vol.
2, pp. 366-373, 2004.

