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Abstract-Logistics network related problems are 
usually associated with geographical locations, 
but most of evolutionary computing heuristics such 
as genetic algorithms (GA) in solving them have 
not given appropriate labeling for locations. By 
our experiments, it can introduce fatal failure 
sometimes. However, once we took the linkage 
information into consideration, we found the 
linkage learning genetic algorithm (LLGA) is a 
more stable solution method possessing the 
independence of coding schemes for facility 
location problems than the simple genetic 
algorithm. Except for what mentioned above and 
many parameter-setting experiments, we also 
address the way to improve the performance of the 
LLGA with more but limited interpretation points. 
All of these can be good guidelines for users 
interested in applying the evolutionary computing 
to solve logistics network related problems.  
 
Keywords: Linkage Learning, Genetic Algorithm, 
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1. Introduction  

Ever since Holland proposed the genetic 
algorithm (GA) to tackle combinatorial problems 
[6], the GA has been one of the most efficient 
solution methods for various challenging network 
design problems in supply chains. These problems 
include: vehicle routing problems, scheduling 
problems, bus network optimization, set covering 
problems, and location-allocation problems [17]. 
However, when the GA is applied to solve 
logistics network design problems, we usually 
assign each candidate location, modeled as a node 
in a graph, an integer number. Then the 
permutation encoding is applied further as a part of 
the design for the GA. In GA design, this almost 
has been the standard way to treat mentioned 
problems. Yet for the location or logistics network 
related problems, the simple GA (SGA) with 

integer coding scheme for nodes can cost more 
memory and time by our experiments. Moreover, 
we found that if nodes are not assigned with 
numbers probably, the GA may fail and converge 
to the local optimal no matter with the integer or 
binary encodings. Therefore, our question is: given 
a logistics network related problem, can we find a 
GA to solve it stably independent to the modeling 
scheme of problems? 

In fact, there have been many variants of the 
GA with miscellaneous designs. There is a good 
idea behind them is the tight linkage which has 
been thought evolutionarily advantageous [5]. We 
further found research in the past has shown that 
the GA with good ability in learning genetic 
linkage and exploiting good building-block (BB) 
linkage can solve bounded hard problems quickly, 
accurately, and reliably [1]. In contrast to the 
abundant studies about the concept of building 
block, the topic of linkage was less noticed. 
Therefore, having a good insight about the genetic 
linkage could be the key to make GA success. 
Fortunately, it seems that research in the linkage 
learning has been increasingly recent rich. Yu and 
Goldberg [15] have even sorted out linkage 
learning methods into implicit [5], explicit [10], 
probabilistic [13][7], and deterministic [16] ones. 
More detailed classification and survey can refer to 
[2]. One of them is called linkage learning GA 
(LLGA) which was first introduced by Harik [4]. 
About the applications of the LLGA to show its 
practicability, there are protein structure prediction 
problems and the design of withdrawal weighted 
SAW filters [3][14]. Except for these, most of 
related research is more focused on the theoretical 
studies. That being the case, we further like to 
know can the LLGA benefit other real-word 
problems such as the logistic network design 
problem. It was expected to have a better insight 
when applying the LLGA because of its inherent 
visual process such as shown in the [1]. One more 
thing we need to consider: can the LLGA be a 
stable solution method for the logistic network 
related problem often encountered in the supply 



chain design? If so, what are strong and weak 
points in using it? Also, can we understand the 
logistics network related problem more by the 
usage of the LLGA? 

For the following section, it introduces the 
coding problem when the logistics network related 
problem is considered. Section 3 gives a brief 
introduction to the LLGA. After that, section 4 
shows our results and analyses for many 
experiments. Finally, we provide our conclusions 
for this research.  

 
2. Logistics-Specific Coding Problems 

Facility location decisions play a critical role in 
the strategic design of logistics networks [8][12]. 
Operation research practitioners have developed a 
number of mathematical programming models to 
represent a wide range of location problems. 
Unfortunately, the resulting models can be 
extremely difficult to solve to optimality [12]. 
Thus, it seems being worthy to reexamine facility 
location problems with a visual way such as 
provided by the LLGA. The implementation of the 
LLGA is more complicated than the SGA, but the 
LLGA can provide more concrete evidence to 
show the evolutionary course than the SGA. 

The p-median, p-center, location set covering, 
and maximum covering location problems have 
been four core models for the facility location 
problem [12]. The p-median problem asks for 
selected p facilities can minimize the total (average) 
distances (or costs) for supplying customer 
demands. As the p-center problem, it is asked for 
selected p facilities can minimize the maximum 
distance between any customer and its nearest 
center. The location set covering problem locates 
the least number of centers to serve all customers. 

The maximum covering location problem seeks 
the maximum coverage with a given number of 
centers. 

To explain it in more detail, we first give an 
one-dimensional example as shown in Figure 1. 
All five nodes of that problem network are 
arranged alone the line. If we like to solve them 
with the SGA, the first step is to encode the 
problem into the chromosome by labeling nodes 
with integer numbers. We may label nodes in 
different ways. It is supposed that we get the four 
different encodings as shown in the Figure 1. In 
the Figure 1 (b), it means that the node on first 
physical location is labeled number 4. That is, it is 
encoded into the fourth position in the 
chromosome array and adjacent to the physical 
node 4 and 5. This adjacent relationship is 
incorrect. Worse, it can be the noise to mislead the 
solution method such as SGA possibly. If the 
guess about the genetic linkage was right, then the 
adjacent relationship between the first node and 
second node is disrupted. We may see the longer 
convergence time. It fact, its effect to the 
performance of the SGA is overlooked all the time.  

We give a very simple metric here. The total 
coding offset (TCO) is the sum of differences the 
labeled integer between adjacent nodes, that 
is,∑ −−k ji1 )1|(| , where k is the length (or number 
of nodes) of the coding and i and j are labels of 
adjacent nodes. Therefore, the TCO is 0, 3, 6, 7 for 
(a) to (d) separately. This is the relative 
measurement. For this simple example, we can 
also calculate the absolute offset easily by 
subtracting the labeled integers from their absolute 
positions. Then, we get 0, 6, 7, and 8 separately. If 
these TCOs can represent the genetic linkage, they 
show gene loci should be capable of being 
changed to get better evolutionary performance. 
However, by our experiments which will be 
introduced in the section 4, we found the coding 
offset is roughly in proportion to the convergence 
time. The key point is that we can label nodes with 
right number only if we know the answer. It is 
impossible for real-world problems.  

Finally, following the Harik’s theoretical works 
[4], the characteristics of logistics network specific 
coding could be the clue coming from the 
real-world problems to show the requirement of 
genetic linkage. Almost all models of facility 
location problems are mirrors of the real 
geography no matter adopting which kind of 
distance metric. Moreover, for the global logistics 
networks, the amount of nodes is quite huge in a 
big geographical 3-dimentional space. It is even 
not easy to label them well with all directions. If 

Figure 1. Four different encodings with different 

labeling for the same problem. 



solution methods can promise us the independence 
of coding schemes, things will be getting easier. 
 
3. Linkage Learning GA (LLGA) 

In general, the GA is referred to as a stochastic 
artificial intelligent technique whose solution 
search process mimics natural evolutionary 
phenomena: genetic inheritance and Darwinian 
strife for survival [9]. The GA works by 
discovering, emphasizing, and recombining good 
“building blocks” of solutions in a highly parallel 
fashion [6]. That is, good solutions tend to be made 
up of good building blocks - combinations of bit 
values that confer higher fitness on the strings in 
which they are present. Also, it has been assumed 
the structural representation would finally evolve 
tightly linked representations with dedicated 
designed genetic operators [5]. Harik hence 
proposed the LLGA which can learn genetic 
linkage in the evolutionary process with 
correspondence to the Holland’s call  for the 
evolution of tight linkage [4][1]. The key point is 
ability to identify or separate building blocks. 
After that, we may avoid the disruption of building 
blocks and link two or more good building blocks 
together to get higher fitness. However, the forces 
of selection usually are strong to choose deceptive 
or worse building blocks then the evolution by 
mutation can be too slow and fail. In another word, 
the evolution is possible to be successful only by 
pair-wise recombination with optimal or better 
building blocks if the chromosome contains all 
associated allele values for each locus and the 
diversity is reserved.  

Because that Harik picked the two-point 
crossover up to define and measure linkages 
among genes, he naturally collocated genes as 
circular chromosome representation [4]. He further 
introduced probabilistic expression (PE) where 
each chromosome represents not one solution, but 

a probability distribution over the range of possible 
solutions. For the PE, each chromosome will 
contain a fully-over-specified set of exons spaced 
by introns. Exons are coding or functional genes. 
The complement coding genes are used to 
conserve the diversity and actual genes will be 
expressed by the fitness function. Introns are 
instead non-coding genes do not participate in the 
fitness function but used to implement the 
probabilistic scheme. They facilitate the 
propagation of building blocks [14]. There is an 
interpretation point which is randomly chose to 
determine the canonical form with clockwise 
manner for each chromosome. 

Once encoding is done, the LLGA has two 
phases: selection and exchange. Usually the 
tournament selection is applied to pick the better 
one into the mating pool. The exchange is more 
complicated because of the circular forms of 
chromosomes. The exchange operator is defined 
on pairs of chromosomes. The segment randomly 
cut from donating chromosome is injected into the 
recipient chromosome on the grafting point. After 
the removal of duplications, the recipient 
chromosome becomes a new child chromosome 
stepping into the next generation.  

Leaving additional copies of the unexpressed 
allele in a chromosome increases the chance that 
allele being transferred in a subsequent exchange. 
This extended probabilistic expression, called 
EPE-n where n is the number of copies of genes, 
enhances the LLGA maintaining diversity for a 
longer time. It can actively resist an allele’s 
convergence through the propagation of its 
alternatives with increased probability. Thus, the 
building blocks can survive with lower possibility 
of disruption under higher selection rate. It is a 
good compromise between fast convergence and 
fast exploration. In this paper, we follow and use 
EPE-2. For more details, readers can refer to 
[4][1]. 
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Figure 2. The circular chromosome called EPE-2 

used in the LLGA with 5 genes where 1 and 2 are 

coding genes and 3, 4, and 5 are non-coding 

genes.  
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Figure 3. (a) The graph of the pmedcap1-1 problem. 

(b) One of its optimal solutions known so far. 



4. Experiments 
Our experiments will examine the effects of 

SGA and LLGA for different facility location 
problems including the p-median and p-center. 
Due to the space limitation, we may not provide 
too many details about testing problems here. 
However, to look after fairness, effectiveness, and 
time limitation, we refer some problems and 
known results of pmedcap1 which is available in 
the public OR-library [11] known as the 
benchmark. The testing problem set pmedcap1 
includes 20 problems with two scales: 50 and 120 
nodes. We assign the number for each of them one 
by one. Next, to tune the LLGA well, other 
experiments are made to find good parameter 
settings. For every test, statistics are made based 
on at least 25 runs and most 100 runs of the test. 
Without extra explanation, the population size is 
100 or 300 and the GA stops at the 100th or 
1000th generation for each testing run. If the SGA 
is used, the crossover rate is 0.8 and the mutation 
rate is 0.08. As the LLGA, the crossover rate is 1 
and the tournament size is 4. Also, there is only 
one interpretation point for the LLGA if without 
additional comments. Finally, the length of 
non-coding genes is 1000. 
 

Table 1.the number of optimal solutions for binary 
and permutation coding. 

Coding scheme Number of optimal solutions 
 Average 

fitness 
# of opt. solution  
within 25 runs 

Permutation 741.061 3 
Binary  711.326 22 

 

 
Figure 3. is the graph model of the pmedcap1-1 

problem. If p= 5, the SGA will choose 5 sites from 
50 nodes to be the median sites for serving 
customers. Both of the binary (with coding length 
50) and permutation (with coding length 5) 
encodings are used for this 5-median problem 
separately. By the experimental results of Table 1, 
it is easy to find that binary coding is much better 
than the permutation coding. This result may show 
the optimal 5 sites are not relevant to each other 
too much. After all, all of them are supported by 
the neighboring nodes not appeared in the coding. 
And the SGA can only apply its own searching 
mechanisms. Instead, let the SGA consider all of 
locations simultaneously, the linkage information 
may affect the evolutionary process.  
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Figure 4. (a) The average fitness comparison 

between the SGA and LLGA for different 

population size. The y-axis represents average 

fitness. It is better when the fitness is smaller. (b) 

The comparison of number of optimal solutions with 

different tournament size for 100 runs. The y-axis 

represents the number of optimal solutions. The tail 

mark (n) and (r) represent the restriction of 

interpretation points where n means only points in 

non-coding areas can be chose and r means chose 

randomly. 
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For what mentioned above, it is about the 
competition between binary and permutation 
encodings. For the binary coding itself, we 
examine three different encoding strategies: 
section, most important first, and random. Firstly, 
we surround the known optimal median sites with 
their true neighboring locations to form many 
sections. Secondly, we deliberately put the known 
optimal median sites in the front of the coding as 
the permutation encoding. Finally, we just 
randomly label the nodes and encode them into the 
chromosome. By the Figure 5, it tells us the 
sectional strategy is the best one. Again, the 
linkage among gene loci is important to the 
evolutionary performance. As the influence with 
different encodings to the LLGA, it is not 
significant as shown in Figure 5. For the p-center 
problem, our experiments show the similar results. 

The stable performance of the LLGA should be 
deserved much notice. As assumed in the Harik’s 
studies, the convergent process can be divided into 
both of gene locus and gene allele phases. This is 
also the reason why the LLGA has to slow down 
the convergence. That is, if we like to make the 
alleles converge to the global optimal, we have to 
make the gene loci in the right positions first. After 
the examination of the characteristic of logistics 
network specific coding in the SGA and LLGA. 
We conclude the LLGA is more stable and 
outperform the SGA.  

To apply the LLGA better, we hence perform 
other experiments for different population sizes 
and tournament sizes. This can be critical because 
that the selection pressure is a key to the LLGA. 
As shown in the Figure 4, the performance of the 
LLGA is in proportion to the population size and 
tournament size. We also can see the LLGA 
outperforms the SGA when the population size 
exceeding 300 and the tournament size exceeding 
50. This result should not be so surprise. But the 
other hand, to take care both of selection resistance 
and diversity preservation, the LLGA abandons the 
mutation. Moreover, the chromosome is only a 
distribution but not a deterministic mapping to the 
phenotype. That is, we think the population size 
and tournament size are two parts of the cost to 
maintain the diversity. 

Next, let’s go back to our main theme. What is 
the relationship between the coding scheme and 
the concept of building block? Does the building 

block really exist for logistics network related 
problems? Further, is the gene locus indeed 
influential? From the Figure 5., we could boldly 
conclude it that the LLGA is independent of 
coding schemes because it takes the gene locus, or 
more correctly is that the gene linkage, into 
consideration. Figure 6 shows convergent process 
for 3-median problems with 20 locations. We can 
see the formation of building blocks at the lowest 
side. Finally, all of coding genes are put together 
as a long building block with assumed ordering if 
possible. This is more concrete than the 
imagination. 

As mentioned, the LLGA must pay a lot of 
efforts to outperform the SGA. To gain a better 
control, Chen proposed the mechanism of 
promoters [1] to restrict the number and position of 
interpretation points. Same here! We also like to 
cool down the degree of uncertainty. Therefore, we 
modify the LLGA with neighborhood exploration 
and call it the nLLGA. We provide each 
chromosome more chances to sample other 
interpretations as candidate canonical 
chromosomes. We randomly choose different 
interpretation points n times where n is a 
parameter. The best one of them will be chose. 
This can be analogized to the tournament selection 
in its own class if that the circular chromosome 
represents a set of canonical chromosomes. By our 
experiments, it is indeed effective. We show the 
result as follows.  

If we randomly sample 50 interpretations from 
150 possible starting points, the LLGA can reach 
optimum each run for the testing 5-median 
problem pmedcap1-1 with 50 locations. There are 
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Figure 6. The convergent process of the LLGA for 3-median problems with 30 locations. 



50 genes with binary allele for 50 locations. The 
number150 is because that we apply EPE-2 to the 
LLGA. Within it, there are 3 copies for each gene. 
However, the best number of sampling points can 
be the 7 for this testing problem. This means it is 
not appropriate for picking only one interpretation 
point in the original LLGA. As how much is the 
best for other problems, more studies are needed to 
be done. 
 
5. Conclusion 

To our knowledge, there is none like us to 
address the characteristic of logistics network 
specific coding in genetic algorithms systemically 
as so. For this application domain, we also points 
out the importance of gene linkage often 
overlooked before. Excepting the demonstration of 
convergent process for the facility location 
problem, we might be the first one to apply the 
LLGA to the logistics network related problem, 
too. Meanwhile, once guidelines needed, interested 
users can refer our parameter-setting experiments 
for the LLGA including population size, 
tournament size, and the number of interpretation 
points which is never mentioned in other research. 
Also, while the global supply chain is booming, 
this exploratory research could be helpful to solve 
the increasing complex logistics network design 
problems. 
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