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Abstract-BIOSMILE Web Search (BWS), a 
web-based NCBI-PubMed search application, 
which can analyze articles for selected biomedical 
verbs and give users relational information, such 
as subject, object, location, time, etc. After 
receiving keyword query input, BWS retrieves 
matching PubMed abstracts, annotates named 
entities in abstracts and lists them along with 
snippets by order of relevancy to protein-protein 
interaction. BWS was assembled using the 
unstructured information management 
architecture. BWS is accessible free of charge at 
http://bioservices.cse.yzu.edu.tw/BWS. 
 
Keywords: named entity recognition, semantic 
role labeling, protein-protein interaction, 
unstructured information management architecture 
 
 
1. Introduction  

Taking advantage of the large, well-curated 
biomedical resources, today’s biologists are able to 
search through a massive volume of online articles 
in their research. For example, a user can retrieve 
from the PubMed database of over eighteen 
million articles. Unfortunately, users of basic 
search engines may need to further scan or read 
retrieved articles in more detail to pick out specific 
information of interest. Consider the sentence 
"KaiC enhanced KaiA-KaiB interaction in vitro 
and in yeast cells," which describes an 
enhancement relation. Needless to say, search 
services that can identify elements in this relation, 
such as the action "enhanced", the enhancer 
"KaiC", the enhanced "KaiA-KaiB interaction" 
and the location "in vitro and in yeast cells", as 
well as biomedical named entities (NEs), 
KaiA/B/C, can save biologists much time. 

Several advanced services have already been 
developed in biomedical community. iHOP [1] 
website searches sentences containing specified 
genes and identifies other genes in them with a 
graphic user interface. [2, 3] provide 
enhancements to PubMed's retrieval by organizing 
the results or highlighting specific information in 
text. MEDIE1 identifies subject-verb-object (SVO) 
relations and biomedical NEs in sentences. Our 
proposed system, BIOSMILE web search (BWS), 
has similar features to the above systems. It can 
label biomedical NEs in sentences, including DNA, 
RNA, cell, protein and disease names, and 
summarize recognized relations. 

This task of recognizing NEs is referred to 
named entity recognition (NER). NER in 
biomedical articles is a challenging task due to 
there is no community-wide agreement on how a 
particular biomedical NEs should be named [4]. 
To tackle this problem, our previous NER system, 
NERBio [3, 5], which was developed for the 
BioCreAtIvE II Gene Mention (GM) tagging task 
[6] is integrated. Furthermore, for researchers 
interested in protein-protein interaction (PPI), 
BWS classifies articles as PPI-relevant or 
-irrelevant using the system [3, 7], we developed 
for the BioCreAtIvE II PPI Article Sub-task [8]. 

After identifying NEs, a state-of-art semantic 
relation analysis technique, semantic role labeling 
(SRL) [9], is applied to extract complex semantic 
relations between biomedical verbs and sentence 
components, such as agent2, patient3 , time and 
location. These relations can be important for 
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precise definition and clarification of complex 

 
Figure 1. BWS search interface 

biomedical relations. 
To integrate above features into manageable 

processes, the Unstructured Information 
Management Architecture (UIMA) [10], originally 
developed by IBM, is adopted. UIMA enables 
BWS to be decomposed into components and 
transformed the natural language processing (NLP) 
processes into a manageable pipeline, for example, 
"document retrieval"→"sentence boundary 
detection"→"NE detection." The UIMA 
framework can facilitate developers to manage 
components and the data flow between them. 
 
2. Usage 

Figure 1 shows the BWS search interface. It 
accepts either PubMed identifier (PMID) or 
keyword input (Figure 1, No. 1), so BWS search 
queries are compatible with PubMed search. Upon 
entering a query, users will receive output sorted 
by PMID, including the title, authors and abstract. 
Recognized NEs, including DNA, RNA, cell, 
protein and disease, appear in different colored 
text in the search results (Figure 1, No. 2.) A 
graduated bar meter on the right-hand side of the 
abstract (Figure 1, No. 3) in the "Protein-Protein 
Interaction" column indicates PPI relevance. 

Once search results appear, users can perform 
relation analysis for a single abstract by clicking 
the "Analyze" button (Figure 1, No. 4), which 
appears below the abstract’s PubMed ID in the 
PMID column. For multiple abstracts, they can 
check off abstracts of interest and then click the 
"Analyze" button (Figure 1, No. 5) at the top of the 
search results pane. 

Figure 2 shows the results of relation analysis. 
Action verbs representing biomedical relations are 
marked red (Figure 2, No. 1). Clicking on the one 
of the verbs in the right-hand pane will open a list 

all the elements of the relation, including agent, 
patient, location, manner, time, etc. (Figure 2, No. 
2). 

 
Figure 2. Relation analysis 

In addition to displaying relations article by 
article, we provide an analysis summary table that 
contains all relations in abstracts. Figure 3 shows 
the simple version which lists six major elements 
in a relation, including subject, verb, object, 
location, and extent. This table provides users a 
brief summary of relations.  

 
Figure 3. Analysis summary table (simple) 
The summary table also provides an advanced 

display (Figure 4), which lists all elements in a 
relation. The description of each element 
corresponding to the verb is also displayed. 
Relations are classified by their main verbs, 
making it easy to browse through all the relations 
in an article verb by verb. 



 
Figure 4. Analysis summary table (advanced) 

 
3. Methods  

In the following section, we describe the core 
NLP components of BWS. Then we describe the 
UIMA framework which provides the platform for 
creating and integrating information on our BWS. 
 
3.1. The core components of BWS 

The BWS is composed of three NLP 
components: a NE recognizer, a PPI abstract 
classifier, and a relation analyzer. 

 
3.1.1. Component 1: NE Recognizer. The 
biomedical NE recognizer based on NERBio [3, 5] 
is employed to label NEs in all retrieved abstracts. 
NER is formulated as a word-by-word sequence 
labeling task, where the assigned tags delimit the 
boundaries of any NE names. The underlying 
machine learning (ML) model used by our NE 
recognizer is conditional random fields (CRF) [11] 
with a set of features selected by a sequential 
forward search algorithm. 

 
3.1.2. Component 2: PPI Abstract Classifier. 
The PPI abstract classifier assigns each retrieved 
abstract a score that indicates its relevance to PPI. 
This score ranges from -1 (least relevant) to +1 
(most relevant.) In PPI abstract classification, 
some words have different levels of information in 
different contexts. For example, "bind" is more 
informative when it appears in a sentence that has 
at least two protein names. Accordingly, we divide 
the general word bag into several contextual bags. 
The words in each sentence are bagged according 
to the number of NEs in the sentence. If there are 0 
NEs, the words are put into contextual bag 0; if 1 
NE, then bag 1; and if 2 or more NEs, then bag 2. 
We employ support vector machines (SVM) [12] 
as the machine learning model to build our PPI 
abstract classifier [13, 14]. 

 
3.1.3. Component 3: Relation Analyzer. The 

biomedical semantic relation analyzer extracts 
relations among selected biomedical verbs and 
phrases from sentences. 

The component was developed based on 
semantic role labeling (SRL) technology. In SRL, 
sentences are represented by one or more 

predicate-argument structures (PASs). Each PAS 
is composed of a predicate (e.g., a verb) and 
several arguments (e.g., noun phrases) that have 
different semantic roles, including main arguments 
such as agent or patient, as well as adjunct 
arguments, such as time, or location. Here, the 
term argument refers to a syntactic constituent of 
the sentence related to the predicate; and the term 
semantic role refers to the semantic relationship 
between a predicate and an argument of a sentence. 
For example, the sentence "KaiC enhanced 
KaiA-KaiB interaction in vitro and in yeast cells," 
describes an enhancement relation. It can be 
represented by a PAS as follows: 
 
[KaiC agent] [enhanced predicate] [KaiA-KaiB 
interaction patient] [in vitro and in yeast cells location] 
 
in which "enhanced" is the predicate, "KaiC" the 
agent in which its semantic role is "causer of 
greatness, agent", "KaiA-KaiB interaction" the 
patient in which its semantic role is "thing 
enhanced", and "in vitro and in yeast cells" the 
location. Thus, the agent, patient, and location are 
the arguments of the predicate. 

A collection of PASs forms a proposition bank, 
which is essential in building a ML based SRL 
system. In 2006, we constructed the first ever 
biomedical proposition bank, BioProp [15], by 
annotating semantic role information on GENIA’s 
full parse trees. The full lists of the BioProp’s 
predicates are available 
at http://bioservices.cse.yzu.edu.tw/BioProp/. 
Using BioProp as the training corpus, we 
constructed our biomedical semantic relation 
analyzer [16] which uses the maximum entropy 
model [17] as the underlying ML model. 
 
3.2. Using UIMA to Integrate and Manage 
Components 

Above three core components require 
processing and transferring data internally. For 
example, the NER process in named entity 
recognizer can simplify as follows: the abstract is 
firstly tokenized by a tokenizer and detected 
sentence boundary by the LingPipe [18] sentence 
model. For each detected sentence, the GENIA 
tagger [19] is applied to generate part-of-speech 
(POS) information. The information is then feed to 
CRF model to generate NE annotating result. 
Finally, the result will be transformed into 
human-readable format for displaying in BWS 
interface. In order to make the process easier, we 
adopt UIMA as a middleware layer to facilitate the 
smooth interaction of many NLP sub-components 
that may not be originally designed to interoperate 

http://bioservices.cse.yzu.edu.tw/BioProp/


with each other. In the following section, we 
describe three main UIMA components adopted in 
this paper. 

 
3.2.1. Common Analysis Structure. In UIMA, 
the original document, such as an abstract from 
PubMed, and its analysis are represented in a 
structure called the common analysis structure 
(CAS). The CAS is conceptually analogous to the 
annotations [20]. In general, annotations associate 
some metadata with a region in the original 
document. For example, the annotation associates 
a label with a span of text in the document by 
giving the span’s start and end positions. The label 
could be a NE tag in NER task, or a semantic role 
tag in SRL task. Such annotations are maintained 
separately from the document itself; this is a 
flexible strategy since the raw text in a document 
can keep unchanged during the analysis process. 

The analysis results represented by CAS may 
be thought of as a collection of metadata that is 
enriched as it passes through successive stages of 
analysis. At a specific stage of analysis, for 
example, the NER stage. The CAS may include 
the POS information (metadata) generated by the 
GENIA tagger. The NE recognizer receiving the 
CAS may consider the information to identify NEs. 
The enriched information then may be inputted to 
other analysis engines that produce the relation 
summaries or classifications of the document. For 
example, input the information to PPI abstract 
classifier to generate PPI ranking score. 
 
3.2.2. Analysis Engine. Once initialized, the CAS 
is sent down processing pipelines. Components 
that act on the contents of the CAS, and in 
particular, those that add content to the CAS, are 
known as analysis engines (AEs.) 

AE come in two forms: primitive and aggregate. 
An example of a primitive AE would be a 
tokenizer, which takes the raw text as its input and 
produces as output a set of annotations that 
describe the boundaries of tokens. Aggregate AEs 
consist of combinations of primitive AEs where 
downstream AEs may rely on annotations created 
during upstream processing. An example of an 
aggregate AE would be the GENIA tagger that 
uses token annotations created by a tokenizer as its 
input and adds POS tags to the tokens. 
 
3.2.3 CAS consumer. The final major component 
in UIMA is the CAS Consumer. A CAS Consumer 
is any program that takes in a CAS as part of its 
input, however, they are not assumed to update the 
CAS. CAS consumers represent the end of the 
process. An example CAS consumer, particularly 

relevant to this paper, would be the program which 
transforms the annotations into human-readable 
format. 
 
4. Results and Discussion 
4.1. Performance Evaluation  

In this section, the prediction performance, 
including NERBio, PPI abstract classifier and SRL, 
for our BWS system was reported. The 
performance is evaluated in terms of precision, 
recall, and F-measure, which are defined as 
follows: 

items recognized ofnumber  the
items recognizedcorrectly  ofnumber  thePrecision =  

items  trueofnumber the
items recognizedcorrectly  ofnumber  theRecall =  

( )RecallPrecision
RecallPrecisionmeasureF

+
××

=−
2  

The datasets provided by the BioCreAtIvE II 
GM tagging task [6] was used to evaluate the NER 
and PPI article classifier, respectively. The 
precision, recall and F-measure of NER are 
82.59%, 89.12% and 85.76%, respectively. Our 
PPI abstract classifier achieved an F-measure of 
80.85% (with a precision of 91.2% and a recall of 
78.4%). 

To evaluate the performance of our biomedical 
SRL on online retrieved sentences, our in-lab 
biologists annotated a gold-standard dataset which 
is composed of 100 randomly selected PubMed 
abstracts with 315 PASs. Table 1 shows the 
evaluation results. 

 
Table 1. SRL performance 

Semantic 
Role  

Precision 
(%)  

Recall 
(%)  

F-measure 
(%)  

Arg0  91.86  82.93  87.18  
Arg1  91.90  76.95  83.76  
Arg2  76.00  64.04  69.51  

ArgM-ADV 76.00  57.58  69.51  
ArgM-DIS 100.00 95.83  97.87  
ArgM-LOC 94.29  58.93  72.53  
ArgM-MNR 95.65  75.00  84.08  
ArgM-MOD 94.12  94.12  94.12  
ArgM-NEG 100.00 84.62  91.67  

Overall  90.06  74.85  81.75  
 
Table 2. Argument types and their descriptions 

Type Description 
Arg0 Agent 
Arg1  Direct object/theme/patient 
Arg2  Not fixed 

ArgM-ADV General-purpose 



ArgM-DIS Discourse connectives 
ArgM-LOC Location 
ArgM-MNR Manner 
ArgM-MOD Modal verb 
ArgM-NEG Negation marker 

 
As you can see in Table 1, our system achieved 

satisfactory F-measures (87.18% and 83.76%) for 
Arg0 and Arg1; in most cases, Arg0 is the subject 
and Arg1 is the object of a sentence. It shows that 
we can identify SVO relations with high accuracy. 
The description of each semantic role is described 
in Table 2. As to the overall performance, our 
biomedical SRL system achieved an F-measure of 
81.75%, with a precision of 90.06% and a recall of 
74.85%, which are slightly lower than the 
performance achieved by Tsai et al. [16] under the 
conditions in which gold-standard parses are given. 
This performance is close to state-of-the-art 
ML-based SRL systems in other specific domains 
[21]. 
 
4.2. The Benefits of adopting UIMA 

Adopting UIMA framework into system 
development is not a trivial work; UIMA is not a 
lightweight architecture, and it requires software 
developers with mature software engineering skill. 
Despite these costs, the use of UIMA in our work 
does provide gains in efficiency over time. 
Following UIMA to define standard application 
programming interfaces (API) between different 
NLP components promotes the sharing of NLP 
components and eases the workload typically 
involved with integrating third-party software. For 
example, the GENIA tagger [19] which can 
provide the POS information, and LingPipe [18] 
which provides the sentence detection function are 
integrated into our system with little effort even 
though they were not originally designed be 
interoperable. In the following paragraph, we point 
out some advantages of applying UIMA 
framework for developing large-scale NLP 
systems based on our experience.  

With the UIMA development paradigm, the 
common interface for passing data among 
components removes the need to write customized 
code for stitching together various processing 
modules. For software development, the 
processing modules can be isolated from the 
communications and data transfer mechanisms. 
This promotes more modular code and facilitates 
applying unit testing for individual components. 
For system integration, the standard API among 
components not only enables tools that were not 
originally designed to be integrated as a 

subcomponent integrable and interoperable, but 
also promotes the sharing of those components 
among developers, and perhaps more importantly, 
among the NLP community. In fact, there are 
already some research groups starting to use 
UIMA, such as Tsujii’s UIMA repository4, the 
JULIE Lab5 and the BioNLP UIMA component 
repository 6  and share their UIMA components 
with NLP community. We believe that by using 
UIMA framework, developers can focus on tuning 
the performance of their individual components 
and make use of disparate resources easier to build 
complex interconnecting workflows. 
 
5. Conclusion  

In this paper, we have described the features of 
BWS, which include (1) NER including DNA, 
RNA, cell, protein and disease names; (2) PPI 
relevance ranking for abstracts; (3) semantic 
relation analysis of abstracts for selected 
biomedical verbs and extraction of a wide variety 
of relational information between sentence 
components such as agent, patient, negation, 
location, and time; and our experiences in 
developing BWS with the UIMA framework. 

In the near future, BWS will allow users to 
specify the semantic role of each query term (agent, 
predicate, patient, etc.) to facilitate searching for 
specific biomedical relations. The system will also 
retrieve related sentences instead of entire 
abstracts to improve readability. In addition, the 
system will allow users to construct biomedical 
relation networks from single or multiple retrieved 
abstracts. Such networks will be presented in a 
navigable interface to allow visual browsing of 
complex relations such as biomedical pathways. 
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