
An Error Detection and Recovery Scheme for Dynamically
Downloadable Modules in Wireless Sensor Networks

Shian-Tai Chiou Hsung-Pin Chang
Department of Computer Science,

National Chung Hsing University, Taichung, Taiwan, R.O.C.
s9556045@cs.nchu.edu.tw hpchang@cs.nchu.edu.tw

Abstract- Some sensor network operating
systems support network reprogramming based on
the dynamically loadable modules. Nevertheless,
sensor nodes are resource-constrained and may
not have the memory management unit. As a result,
preventing memory access errors by the
downloadable modules from crashing the sensor
nodes pose a challenge in the design of wireless
sensor networks. In this paper, we propose a
software-based memory protection scheme that not
only detects memory access faults but can also
recovery from the faults.

Our fault detection scheme is based on the idea
of sandboxing. Each application module can only
access regions of memory that it resides or is
granted. A fault is detected when a module tries to
access an invalid memory region. The fault
recovery scheme is based on the idea of “n-version
programming”. When an error is detected in a
module, we recover from the error by replacing
the buggy module by another version having the
same functionality of the original module. We have
implemented our memory protection scheme on the
SOS operating system on the Mica2 mote.
According to the experimental results, our
proposed scheme consumes less memory overhead
under the sequential execution, which is the most
prevalent execution pattern.

Keywords: Software Fault Isolation, Memory
Protection, SOS, Sensor Networks.

1. Introduction
A wireless sensor network (WSN) consists of

hundreds or thousands of sensor nodes that
self-organize into a multi-hop wireless network.
The basic building block of a sensor node includes
a microprocessor, memory, RF transceiver, battery
and sensor modules. Due to the huge amounts of
sensor nodes, the cost of a sensor node must be
low. As a result, the sensor nodes are usually
resource-constrained and have a very simple
architecture. Thus, computer architectures, such as

memory management units (MMU) and dual
modes execution, that are common in desktop
computers do not appeared in sensor nodes. As a
result, all programs running on a node can access
the entire physical memory since they share the
same single address space.

This problem is getting serious since some
sensor network operating systems supports
network reprogramming based on dynamically
loadable modules. As a result, an ill-behaved
program or an accidental programming error
would access the memory belonging to other
modules or the kernel, and at worst, crash the
system.

There have been many approaches addressed
this problem by using the software-based
approaches to provide memory protection in
WSNs. One trivial approach is to use the
interpreters such as Mate [7] that provide a safe
environment to execute high-level application
scripts. Another approach such as Virgil [9] is to
use the type-safe language that can flag illegal
memory accessed at compiler time or run-time.
Sandboxing, which is also called software-based
fault isolation (SFI), that rewrites machine
instructions is also a common method to enforce
restrictions on memory accesses. For example,
Harbor is the well-known sandboxing scheme in
WSNs [6]. In fact, all these approaches have been
seen previously in the researches of extensible
operating systems. For example, “sandboxing”,
which is also called, is first proposed in [10].

In this paper, we also based on the idea of
sandboxing. Firstly, we offload some of the checks
at off-line time to eliminate the run-time checking
overhead. Furthermore, in Harbor, only three
memory access instructions are checked: st(store),
return, and icall (indirect call). In this paper, we
include the ld (load) instruction for checking to
improve the safety. Finally, we complete previous
memory protection scheme by implementing a
fault recovery mechanism. Once an invalid
memory access is detected, we identify the buggy
module and dynamically download another version
of the module having the same function to replace



the buggy one. This technique, first proposed by
Avizenis [2], is known as n-version programming.

We have implemented our system in the Mica2
Motes [3] on the SOS kernel [5]. According to the
experimental results, our proposed scheme our
scheme consumes less memory overhead under the
sequential execution, which is the most prevalent
execution pattern. Notably, the techniques
proposed in this paper could also be applied into
other systems.

The rest of the paper is organized as follows.
Section 2 describes the previous work on
software-based memory protection schemes in
WSNs. Section 3 presents the design and
implementation of our memory protection and
recovery schemes. The experiment results are
shown in Section 4. Finally, Section 5 gives
conclusions and future work.

2. Background
Since our work is based on the SOS operating

system, thus we introduce the SOS in Section 2.1.
Then, previous work on the software-based
memory protection schemes is shown in Section
2.2.

2.1. SOS Operating System
SOS consists of a common kernel and a set of

dynamic application modules. The common kernel
includes scheduling, messaging passing, dynamic
memory management, and module management.
An application module that implements a specific
task or function can be dynamically loaded or
unloaded at run time.

Interaction between application modules can be
achieved by either passing messages to a module
or by calling the exported functions of a module.
Message passing is asynchronous in that all
messages are queued and scheduled by the kernel
scheduler. By contrast, function invocations are
synchronous. A module can choose which of its
functions to export by explicitly registering these
functions to the SOS kernel. The kernel keeps
track of all the exported functions of a module in
the module’s function control block (FCB).Before
a module can call an exported function provided
by another module, it has to subscribe to the SOS
kernel. If the subscription succeeds, the kernel
returns a pointer to the function pointer of the
subscribed function, which can be de-referenced
by the subscriber to invoke the function. Thus,
function calls between application modules are
possible only after the function registration and
subscription procedures.

An application module can also request kernel

services. Nevertheless, each system call must go
through a system jump table. SOS adopts the jump
table to allow application modules to be loosely
coupled to the kernel. Thus, when an SOS kernel
needs to be upgraded, it does not require all SOS
application modules to be recompiled, assuming
the structure of the jump table unchanged

2.2. Related Work
Software-based memory protection scheme can

be achieved by a variety of ways. For example,
Virgil uses the type-safe language to catch
potential errors at compiler time or run time [9].
Nevertheless, most software is currently written in
C, which is an unsafe language. Another scheme is
to use interpreters or virtual machines (VM),
which can enforce a VM controlled memory such
as checking stack bound during the interpretation
of higher-level languages [4, 7]. Nevertheless,
similar to the type-safe language approach,
applications need to be programmed using another
new language. Furthermore, running applications
on the VM results in an extremely high overhead
due to the interpretation cost.

Harbor adopted another design path that uses
the idea of sandboxing and is based on the SOS. In
Harbor, the unit of protection is a protection
domain. In other words, a module in one
protection domain cannot access another
protection domain, except via calls to functions
exported by the kernel or modules in other
modules. The architecture of Harbor is shown
below.

Firstly, a compiled binary is rewritten by a
binary rewriter that inserts run-time checks to
sandbox them in the desktop system. Thus, the
output of a binary rewriter is a sandboxed binary,
which is then distributed to a network of sensor
nodes. After receiving the sandboxed binary, a
binary verifier running on each sensor node
verifies that the incoming binary is correctly
sandboxed or not. If the verification is successful,
the incoming binary is then admitted for execution.
During execution lifetime of the binary, a flow
control manager and a memory map manager
supervise the execution and catch potential
memory access errors. Following, we briefly
introduce the four components used in the Harbor:
binary rewriter, binary verifier, flow control
manager and memory map manager.

The memory map manager is used to provide
fine-grained memory protection scheme. It
maintains a memory map data structure that keeps
track of fine-grained ownership and layout
information for the entire address space. The
control flow manager ensures that the control can



only be transferred to other domains via function
calls exported by the kernel or modules in other
domains. Furthermore, the control flow manager
also supports run-time stack protection and safe
stack. The binary rewriter rewrites the binary to
protect memory from three kinds of accesses:
st(store), ret(return), and icall(indirect call). For
example, the store instruction: st Z, Rsrc, that
stores the content of register Rsrc into the memory
addressed by Z, i.e, [Z] = Rsrc. After the operation
of the rewriter, this instruction is replaced by a
sequence of instructions shown in Figure 1.

Figure 1. The store instruction is rewritten by a
sequence of instructions.

The write_access_check() function verifies that
the value of Z is legal or not, i.e, whether the
memory addressed by Z is allowed to be accessed
by the module. The return and indirect call
instructions are rewritten and verified in a similar
way.

The binary rewriter is an application in a
desktop computer. By contrast, the verifier is
usually performed at the sensor nodes. After
receiving a binary image, the verifier examines the
content of the image to ensure that the image is
sufficiently sandboxed by a writer to prevent any
possible protection violation.

Nevertheless, Harbor ignores the protection of
load instructions. Without proper protection, a load
instruction could access an unauthorized memory
to load sensitive data into a register. Furthermore,
we complete the protection scheme to incorporate
a fault recovery mechanism in this paper. Finally,
we incorporate an off-line checking scheme to
reduce the run-time checking overhead.

3. System Architecture
Figure 2 shows the system architectures

performed at a desktop computer. At the desktop
computer, the original module is first inspected by
an off-line checker to verify whether the static
absolute addresses, i.e., addresses that would not
be relocated during run-time, are legal or not. Then,
the checked module is modified by a modifier that
replaces all memory access instructions by a
sequence of instructions so as to sandbox them.
Then, the sandboxed module is distributed to a
network of sensor nodes.

Figure 2. The software architecture at PCs.

By contrast, Figure 3 shows the system
architectures performed at the sensor nodes.
Notably, the sequence of instructions inserted by
the modifier to replace the memory access
instruction would pass the target address of a
memory access instruction as a parameter to the
address checker. After receiving the target address,
the address checker verifies the address is valid or
not. If an invalid address is found, the address
checker invokes the recovery manager to recover
the fault by the idea of n-version programming.

sandboxed
module

address checker

recovery manager

pass address

valid

invalid

sensor node

sandboxed
module

address checker

recovery manager

pass address

valid

invalid

sensor node

Figure 3. The software architecture at nodes.

3.1. Off-Line Checking
As stated above, we introduce the off-line

checking that verifies the static addresses off-line
to reduce the run-time checking overhead.

The Atmega 128L, the micro-processor in the
Mica2 Mote, uses the AVR instruction set. In the
AVR instruction set, instructions that could accept
a static address as the operand are the direct call
and relative jump. Table 1 shows the syntax and
operations of these instructions.

Table 1. The syntax and operating of call and
jmp instructions.

Instruction Operation
call k PC = k
jmp .+k PC = PC + k
jmp .-k PC = PC–k

The direct call is used to invoke a system call in
SOS. As shown in Section 2.1, in SOS, each
system call must go through a system jump table.
Figure 4 shows a partial layout of the system jump
table. The number at the end of each row
represents the system call number. Since the
system jump table is stored at a fixed memory
address, thus, the addresses of all entries in the



table can be determined during assembly.

jmp ker_sys_codemem_read ; 21
jmp ker_sys_shm_open ; 22
jmp ker_sys_shm_update ; 23
jmp ker_sys_shm_close ; 24
jmp ker_sys_shm_get ; 25
jmp ker_sys_shm_wait ; 26
jmp ker_sys_shm_stopwait ; 27
jmp ker_sys_foo ; 28

Figure 4. A part of the system call jump table.

icall modified

push R25
push R24
movw R24, R30
call call_address_check
pop R24
pop R25
icall

icall modified

push R25
push R24
movw R24, R30
call call_address_check
pop R24
pop R25
icall

ld R12, Y modified

push R25
push R24
movw R24, R28
call mem_access_check
pop R24
pop R25
ld R12, Y

st X, R12 modified

push R25
push R24
movw R24, R26
call mem_access_check
pop R24
pop R25
st X, R12

ld R12, Y modified

push R25
push R24
movw R24, R28
call mem_access_check
pop R24
pop R25
ld R12, Y

ld R12, Y modified

push R25
push R24
movw R24, R28
call mem_access_check
pop R24
pop R25
ld R12, Y

st X, R12 modified

push R25
push R24
movw R24, R26
call mem_access_check
pop R24
pop R25
st X, R12

Figure 5. Modifications of the icall, ld, and st
instructions.

Assume that the starting address of the jump
table is x and the number of entries is i. Since each
entry in the system jump table occupies two bytes.
Thus, the end address of the jump table y = x + i x
2. Furthermore, assume that the value of the
memory address, i.e, k in Table 1, in a call
instruction is j. Consequently, to verify whether
the value of j is valid nor not, we only need to
check the following two conditions.

x <= j < y (1)
z = ((j - z) / 2) is an positive integer (2)
If the value of j satisfies the above two

conditions, then it must be a valid memory
operand.

Furthermore, in SOS, the function calls within
the same module uses the relative jump
instructions. Consequently, to verify whether the
offset value, i.e, k in Table 1, in the jmp instruction
is valid no not, we calculate the target address by
adding or subtracting k to or from the value of PC
(Program Counter). If the target address points the
first instruction following a code label in the same
module, then the target address, and thus the value
of k, must be valid.

Table 2. The syntax and operation of icall, ld,
and st instructions.

Instruction Operation
icall PC = Z(R31:R30)
ld Rd, X Rd = [X(R27:R26)]
ld Rd, Y Rd = [Y(R29:R28)]
ld Rd, Z Rd = [Z(R31:R30)]
st X, Rr [X(R27:R26)]=Rr
st Y, Rr [Y(R29:R28)]=Rr
st Z, Rr [Z(R31:R30)]=Rr

3.2. Module Modification
After passing the off-line checking, the module

is then modified by a modifier. The instructions
that are modified include: indirect call (icall), load
(ld), and store (st) instructions. The syntax and
operation of these instructions are shown in Table
2. Furthermore, the sequences of instructions that
are used to replace the original instructions are
shown in Figure 5. Notably, we now only support
the modification of an assembly program.
Consequently, a module that is programmed using
high-level languages such as C must be first
compiled into an assembly program. After
modification by the modifier, the sandboxed
program is then assembled into object files.

st X, R12
st X+1, R13
st X+2, R14
st X+5, R15
st X+6, R16
st X+7, R17
st X+8, R18

modified

push R25
push R24
movw R24, R26
call mem_access_check
adiw R26, 8
call mem_access_check
pop R24
pop R25
st X, R12
st X+1, R13
st X+2, R14
st X+5, R15
st X+6, R16
st X+7, R17
st X+8, R18

st X, R12
st X+1, R13
st X+2, R14
st X+5, R15
st X+6, R16
st X+7, R17
st X+8, R18

modified

push R25
push R24
movw R24, R26
call mem_access_check
adiw R26, 8
call mem_access_check
pop R24
pop R25
st X, R12
st X+1, R13
st X+2, R14
st X+5, R15
st X+6, R16
st X+7, R17
st X+8, R18

Figure 6. Optimizations for continuous memory
accesses.

Furthermore, for continuous memory accesses,
we introduce an optimization scheme to reduce the
run-time checking overhead. Figure 6 shows a
continuous of store instructions that store the
values of a set of registers, i.e, R12 to R18, into a
continuous memory region. If each store
instruction is replaced by a sequence of
instructions showed in Figure 4, it would results in
a total of 49 instructions. However, since all of the
memory operands in these store instructions are
continuous, thus we only need to check whether
the starting and end memory operands is legal or
not before the execution the first store instruction.

3.3. Run-Time Checking
As shown in Figure 5, we add two functions to

perform the run-time checking. One is the
call_address_check() that verifies the target



address of an indirect call instruction. The other is
the mem_access_check() that examines the target
address of a load or store instruction.

Firstly, we explain the operation of the
call_address_check() function. As stated in
Section 2.1, in SOS, a module can only invoke the
functions within itself, kernel functions exported in
the system call jump table, or the subscribed
functions belonging in other modules. Thus, the
target address of an indirect call instruction is valid
only when it belongs to the above any one region.
The details are discussed below.

 The system call jump table: In Section 3.1,
we have learned how to derive the starting
and end addresses of the system call jump
table. Depending on the value of the target
address, there are three different situations.
 If the target is smaller than the starting

address of the jump table, then this
indirect call instruction must be invalid.
Notably, in SOS, the memory before
the jump table is used to store the
kernel’s data structures and can only be
accessed by the kernel.

 If the target address falls between the
starting and end address of the jump
table and satisfies equation (2), then the
indirect call function invokes a system
call and is valid.

 If the target address larger than the end
of the jump table, then we perform the
following next checking.

 Functions that are subscribed: In SOS,
each module has a module header that
maintains the functions subscribed by this
module. Thus, when loading a module, we
modify the loader to read the module header
and record the addresses of functions that
are subscribed by this module in a checking
table. Thus, during the execution of this
module, the target address of an indirect call
is valid when the address is equal to one of
the addresses kept in the checking table.
Otherwise, we continue to the next
checking.

 Functions that within the module itself:
Since the starting address of a module is
determined by the loader, thus, we also
modify the loader to record the starting and
end address (by adding the starting address
with the module length) of a module in the
checking table. Then, whether a target
addressed is valid is verified by the
procedure shown above. Notably, if the
address is still invalid, no further checking

is needed since all three cases have been
verified. Thus, the call_address_check()
invoke the recovery manager to recovery
from the fault.

Secondly, we explain the operation of the
mem_access_check () function. In SOS, each
module can only access the data within itself.
Nevertheless, there are kinds of data: one is the
static allocated data in the data segment and the
other is the dynamically allocated data. Notably,
similar to the code segment shown above, the
starting address of a data segment is also
determined by a loader. Thus, to verify whether a
target address points to the static data, we also
modify the loader to record the starting and end
addresses of a data segment in the checking table.
For dynamically allocated data, we modify the
memory allocation code in the kernel to record the
starting and end address of the dynamically
allocated memory to the checking table. Then, the
validation of a target addressed is examined by the
procedure shown before.

3.4. Fault Recovery
We apply the n-version programming to recover

from memory protection fault. When a fault is
detected by the schemes shown in Section 3.3, we
stop the execution of the module, remove the
checking table from memory, and send a
MSG_REPLACE message to the server. After
receiving the message, the server first kills the
faulty module by removing the module from the
sensor node. Then, it uploads a different version
but has the same function of the faulty module to
the sensor nodes. The flow is shown in Figure 7.

sandboxed
module

address checker

recovery manager

sensor node

3.kill

another
version

PC

2.request

another
version

1.invalid

4.upload

sandboxed
module

address checker

recovery manager

sensor node

3.kill

another
version

PC

2.request

another
version

1.invalid

4.upload

Figure 7. The fault recovery procedure.

4. Experimental Results
We have implemented our system on the SOS

operating system running in the Mica2 Mote
sensor node.

4.1 Code Size
Table 3 compares the code size and memory

overhead of Harbor and our system with a native



SOS. From Table 3, our system has a smaller code
size compared to Harbor. Nevertheless, we have a
larger memory overhead due to the storage of the
checking table.

Table 3. Code and memory overhead for Blank
SOS kernel

Memory Raw Harbor
(2 domains)

Harbor
(8 domains)

Our
implementation

Flash 41796B
RAM(MAX) 2892B

+6146 B
+148B

+6228B
+276B

+3386B
+319B

Table 4. Code size increase of SOS modules
Module Raw Harbor Our Implementation
Blink 150B +48B +32% +60B +40%

Tree Routing 2820B +1658B +59% +1680B +60%
Surge 542B +350B +65% +372B +69%
DVM 13072B +6652B +51% +6512B +50%
FFT 3016B +894B +30% +716B +24%

Furthermore, since all memory access
instructions are replaced by a sequence of
instructions by the modifier, we also measure the
relative increase in size of modules. Table 4 shows
the experimental result. Generally, our system
obtains a better perform for modules that have
continuous memory accesses such as FFT and
DVM due to our optimization scheme. By contrast,
we would have a larger code size overhead in
non-continuous memory access.

4.2 Execution Overhead
Table 5 shows the performance impact of our

system compared to SOS. From Table 5, due to the
increased instructions inserted by the modifier, our
scheme results in a larger execution overhead.
Nevertheless, for a critical application, such an
increase of overhead is acceptable since safety is
the most important issue.

Table 5. Relative performance of applications
Module Time(ms) Slowdown
FFT 3.6 -
FFT-our implementation 20.5 5.7
Outlier Detector 0.18 -
Outlier Detector-our
implementation

1.67 9.3

4.3 The Fault Recovery Time
Finally, we measure the fault recovery time. We

divide the time into three parts: removing a faulty
module, processing in PCs, and uploading a new
version. The result is shown in Table 6. Notably,
the processing time in PCs have the smallest value
since the extremely high performance of the PCs
compared to the sensor nodes.

5. Conclusion
In this paper, we propose and implement a

software-based memory protection scheme on the
SOS operating system. We not only detect
memory access faults but also recovery from the
fault. Furthermore, all four memory access
instructions: st(store), return, icall (indirect call),
and ld (load) are checked to provide a complete
memory protection system. Finally, we also
introduce the off-line checking to reduce the
run-time checking overhead.

Nevertheless, not only memory access would
result faults, hardware would also be broken
during the execution. Consequently, our future
work would investigate how to detect and recovery
from hardware failures to further enhance the
safely of a sensor system.

Table 6. The fault recovery time
remove buggy

module
processing in

PCs
upload new

module
total

1.121 seconds 0.017 seconds 3.575 seconds 4.713

References
[1] A. Arora et al, “A Line in the Sand: A Wireless 

Sensor Network for Target Detection,
Classification and Tracking,” Computer Networks, 
vol. 46, no. 5, pp. 605-634, December 2004.

[2] A. Avizenis, “The N-Version Approach to
Fault-Tolerant Software,” IEEE Trans. on Software 
Engineering, vol. 11, no. 2, pp. 1491-1501, 1985.

[3] Berkeley mica motes, http://www.xbow.com/
[4] Rahul Balani, Chih Chieh Han, Ram Kumar

Rengaswamy, Ilias Tsigkogiannis, Mani
Srivastava, “Multi-level software reconfiguration
for sensor networks,” Proceedings of the 6th ACM 
& IEEE International conference on Embedded
software, pp. 112 - 121, 2006.

[5] C. C. Han, et. al., "SOS: A dynamic operating
system for sensor networks", the Third
International Conference on Mobile Systems,
Applications, And Services, Seattle, pp. 163-176,
June 2005.

[6] R. Kumar, E. Kohler, and M. Srivastava, ”Harbor: 
Software based memory protection for sensor
nodes,” Proceeding of the 6th International
Symposium on Information Processing in Sensor
Networks, pp. 340-349, 2007.

[7] P. Levis, D. Gay, and D. Culler, “Active sensor
networks,”Proc. 2nd Symposium on Networked
Systems Design and Implementation, 2005.

[8] Takahiro Shinagawa, Kenji Kono, and Takashi
Masuda, “Flexible and efficient sandboxing based 
on fine-grained protection domains,”Proceedings
of the 15th International Symposium on System
Synthesis, pp. 172-184, 2002.

[9] B. L. Titzer,“Virgil: Objects on the head of a pin,”
Proc. 21st ACM SIGPLAN Conference on
Object-Oriented Systems, Languages, and
Applications, 2006.

[10] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham,”Efficient software-based fault isolation,”
Proc. 14th ACM SOSP, pp. 203–216, 1993.


