
Design and Implementation of Multiprocessor System on a Chip
(MPSoC) Based on FPGA

Chia-Ying Tseng and Yen-Chih Chen
Department of Computer Science and Engineering

Tatung University
cytseng@ttu.edu.tw and jeter2048@yahoo.com.tw

Abstract- With the growing of multimedia codec
types, the huge amount of produced computing can
not be handled by a single processor now.
Therefore, we hope that the programs which
include many computations can be processed by
multiprocessors. In addition, the core operated in
embedded system platform also gradually becomes
multiprocessor from a single processor.

In this paper, we design a four-processor system
using NiosII soft-core and implement our MPSoC
architecture (includes 4K I-cache, 1MB SRAM,
32MB SDRAM, 16MB Flash) and design the
executable programs running in multiprocessor
via hardwire Mutex element. We use the hardwire
Mutex core to access the shared memory in the
program. The implemented result shows that the
quad-core system architecture that we proposed
can execute the program concurrently at the same
time.

Keywords: FPGA, Nios II, MPSoC, Soft-core,
Multi-core.

1. Introduction

The design goal of microprocessor is gradually
changing from higher-frequency computation to
lower-power consumption in recent years. For
satisfying the requests of better performance and
not increasing too much power consumption,
another obvious difference of microprocessor is
that the design goal transfers from increasing
frequency to adjusting multi-core architecture [1].

Utilizing the characteristics and techniques of
multi-core processors can flexibly implement a
small-size, low-cost, high-performance, and
reliable systems in many embedded applications.

Nowadays, the integrated multi-core processors
are changing the architectures of embedded system.
The new processors which aim at embedded
applications can implement a high-performance
system design that can increase the computation
density at specific frequency.

The development of SoC (System on a Chip) is
gradually changing from uni-processor to
multi-processor in recent years. However, the
advantages of using soft-core processor in
designing and implementing system on a chip are
avoiding the restriction of manufacturing process
in semi-conductor and more flexible than
hard-core processor [2][3].

At present, the development of multi-media
application in embedded system is requiring to
integrate a large number of programs and functions
into a single platform. By designing these
applications on a reconfigurable chip, we can not
only reach the goal of time-to-market [4] but also
carry out reusable soft-core in hardware
architecture. If the architecture we design initially
will be used in relative design process later, we can
refer to which by means of calling it directly.
Another advantage of adopting FPGA (Field
Programmable Gate Array) is that we can
constantly reconfigure the hardware architecture
that we want to design and implement it for some
specific applications. Hence, the importance of
FPGA in embedded system is gradually rising with
no doubt.

In this paper, we design a quad-core
multiprocessor system on Cyclone II FPGA chip
(4K I-cache, 512KB SRAM, 8 MB SDRAM and
4MB Flash are included) by adopting the soft-core
processor and the tool chain offers by Altera®
Corporation. And we use hardware Mutex core to
design the memory-sharing mechanism in
quad-core multiprocessor architecture. Finally we
also design the executable test programs running in
the quad-core multiprocessor by implementing the
Mutex core components [5][6].

2. Background

The most significant benefit of multi-processor
system is the improvement of performance, but the
complexity of designing the system will also
increase. Hence, the architectures of
multi-processor system are often restricted in
Workstation or complicated High-end PC. For

mailto:cytseng@ttu.edu.tw
mailto:jeter2048@yahoo.com.tw

multi-processor systems, there are various ways
for categorizing, and we divide this system into
two types in the paper. One is Autonomous
Multiprocessor System and the other is
Non-Autonomous Multiprocessor System. The
manner for identifying them is that if the
processors in each system are sharing the same
resources.

The meaning of Autonomous Multiprocessor
Systems is that the execution among processors is
absolutely independent without any
synchronization or communication. This type of
system is less complicated and fewer problems
while designing it. The main reason is that every
processor work solely and cannot interfere the
other processors’ operations.

In the Non-Autonomous Multiprocessor system,
resources can be shared among processors. It is
very useful to adopt resource-sharing mechanism
in multiprocessor architectures, but it should be
noticed the time which resource will be shared and
how to cooperate each other among different
processors while sharing the resources.

3. Design of Multiprocessor System on a

Chip (MPSoC)

3.1. System Architecture

To evaluate the characteristics of
high-performance and low-cost about
multiprocessor system in embedded SoC, we
improve the multiprocessor system architectures
from dual-core to quad-core and integrate our
system into a FPGA. Each processor has its own
4KB I-Cache but has no D-Cache. Figure 1 shows
the block diagram of our system architecture.

Figure 1. System block diagram

The system provides an independent timer for

every processor and the memory has 4MB FLASH,
8 MB SDRAM, and 512KB SSRAM; these
memories are allowed to be shared by four
processors in the system. However, SSRAM is
only permitted to be accessed by the data stream of
each processor, FLASH and SDRAM allow the
data stream and instruction stream in each
processor pass through. We utilize a Mutex Core
to implement the shared memory component in
multiprocessor system; the data stream in each
processor will pass it through but instruction
stream would not. By adopting this component, we
can design a multiprocessor system to access
memory devices.

3.2. Hardware/Software Specification

3.2.1. Hardware Specification

The development board that we use is Cyclone
II FPGA Nios II Starter Board [7-9], and the
hardware specification is as follows:

■ Altera Cyclone EP2C35F672C6 FPGA
● 35K logic elements (LEs)
● 105 M4K memory blocks
■ Memory subsystem
● 512-Kbyte standard synchronous SRAM
● 4-Mbyte Flash ROM
● 8-Mbyte DDR SDRAM

3.2.2. Software Specification
The software we use is a series of development
suites Altera® Corporation offers, and the
software specification is as follows:

■ Altera® Quartus® II v7.2 sp2
■ SoPC Builder tools
■ Nios II Embedded Design Suite v7.2 sp2
■ MegaCore® IP Library v7.2 sp2

4. Implementation

4.1. System Design Flow

A complete system design flow can be divided
into three parts, which are hardware design [10],
system design [11], and software design
respectively. At first, the section will describe how
to design hardware. We initially establish a project
via Quartus® II, and then we use SoPC Builder
[12] to build the system that we would like. The
overall hardware design also belongs to the system
integrated design. With extra parameters or
instructions, we can merge the required functions

to the system we design originally by means of
SoPC Builder. We import the completed system
into the project established in Quartus® II, and set
certain required parameters for some devices at
this time. The design flow chart of development
board is shown on Figure 2.

Figure 2. Design flow chart of development
board

When we want to attach some customized

hardware, we use the compiler Quartus® II offers
to develop the hardware we would like to
implement. After the simulation of hardware is
verified with no errors, we synthesize the hardware
with the completed system developed early in
Quartus® II. The last step is deploying all external
pins and compiling of overall system. Until now
the bottom system design has come to an end and
the section we describe and build in Quartus® II
above is called the integrated design of hardware
and system.

In the following section we use Nios II
Embedded Design Suite to design the software we
need and the software will be placed in our system
for execution. In the system design phase, we can
debug our programs by adding a JTAG UART; its
function is showing the execution result of our
programs in the control screen of PC terminal.
That there is one thing remained to be paid
attention to is which Debug Module you choose
for debugging and it must be decided in processor
configuration. When the design phase of hardware,
system and software is finished, we burn the
system file in the target board via the programmer
function Quartus® II offers; however, before this
step, we must set up the name and type of FPGA
(the target board that we use).

When the process of burning is over, Nios II

Embedded Design Suite offers the execution tool
for us to execute the software which is placed in
the system on the development board. The last
execution result will be displayed in our computer
screen.

4.2. System Implementation

There is a Message Buffer implemented by our
designed On-Chip RAM to receive the Message
generated by each processor in this system. When
processor grabs the hardwire Mutex core, it can
write the Message to Message Buffer. We have
four processors in this system. Then, the sequence
of their writing is the sequence of their grab.
Because UART is only connected to CPU1, the
CPU1 is responsible for entire system output. We
will detect the Message Buffer through CPU1 in
our design. If the Message Buffer has some new
Message write in, the CPU1 will show it in PC
console. Figure 3 is our program scheme.

Figure 3. The program scheme

At first, we establish a new project via
Quartus® II (illustrated in Figure 4) and use SoPC
Builder to design the overall system; after the
system architecture is finished, we import it into
the project established early and modify required
pins via Top Module. After compilation, our
system is already established.

Now we will test if our system works normally.
We design every project executed on each
processor via Nios II Embedded Design Suite.
Because our system has four processors, we must
establish four different programs placed on
separate processor for execution. Figure 5 shows
the design program with Nios II EDS.

Figure 4. Design system using SoPC
Builder

Figure 5. Design program with Nios II EDS

The program we execute is accessing an
On-Chip RAM via a Mutex Core, and we design a
shared data area in the On-Chip RAM. Every
processor that owned the Mutex Core will update
the count value (count++) and only the first one
processor is connected to JTAG_UART. As soon
as the data in shared data area change, the first one
processor will display it in the screen via the
JTAG_UART it connects. The operating principle
of processors is estimating different processors by
catching the cpuid that every processor owns.
Which processor can own the Mutex Core is
decided by its order of writing their cupid to the
owner of Mutex Core. The last execution result
will be displayed in the PC Nios II EDS.
console .The program result shows in Figure 6.

Figure 6. The program result in the PC
console

5. Performance Evaluation

We design two benchmarks via Nios II EDS
tools. The goal of our benchmark is evaluating and
analyzing the system performance.

5.1. Variable Computation in Order

We use single variables as operand in this
benchmark. The benchmark runs three variables
computation. They have some dependent
computation and must communicate in sequence.
Mutex core will decide who comes to the share
memory and accesses the share parameters. The
program is executed on six million times loops
consisting of eight multiplication instructions.
After these multiplications, we have some
additions or subtractions. The purpose of this way
is to hope that the processors execute the program
in order.

The program designed in mutex area gives three
flags to share memory. Assume that the CPU order
is two, three, four then one, and the flags default
are zero. When the CPU2 finish its work and grab
the Mutex Core, it will set the ”one” to flag2. The
CPU3 and CPU4 do the some work. After the
CPU1 grabs the Mutex, it will check three flags
whether they are equal to zero or not. The method
ensures that the processor communicate will
execute in order. The experiment result is shown in
Figure 7. The execution time for one processor
system is 99.78 seconds, two is 70.75 seconds,
three is 58.26 seconds and four is 54.95 seconds.

Figure 7. The execution time of VAR
benchmark

5.2. Array Computation Out of Order

There are two arrays to deal some operations
with each other. It was designed by mixing some
simple arithmetic operations (such as: plus, minus,
multiply, and divide). Each array has twenty
thousand elements and assigned with initial values.
The total operations contained about two million
instructions. In order to increase the amount of
array’s data storage we replace the On-Chip RAM
with SRAM in this experiment. Since the On-Chip
RAM only has 1K Bytes free memory space and
the SRAM has 512K Bytes.

In this case, the processors communicate out of
order. When CPU2, CPU3, and CPU4 finish their
work, they will grab the Mutex. For any one of
them grabs the Mutex then it will access the share
memory. We only need to ensure that the CPU1
access share memory last.

The experiment result for the array computation
out of order is shown in Figure 8. The execution
time for one processor system is 63.01 seconds,
two is 43.6 seconds, three is 34.32 seconds, and
four is 29.27 seconds.

Figure 8. The execution time of Array
benchmark

5.3. Performance Evaluation and Analysis

In our experiment, we use one, two, three, and
four processors system running the benchmark
program to measure the speedup. At the beginning,
we run benchmark program to one processor
system and test its execution time. Then, distribute
our benchmark program for two, three, and four
processors system independently. The speedup of
two benchmark programs is shown in Figure 9.
The figure shows that the slope of these two lines
becomes gradually small.

Figure 9. The speedup of two benchmarks

In VAR experiment, we make the one processor
system as the standard system. Its execution time
is about 99.78 seconds. When VAR benchmark
runs on two processors system, it spends 70.75
seconds. The speedup for two processors system is
1.41. When program runs in three and four
processors system, it spends 58.26 and 54.95
seconds. Their speedups are 1.71 and 1.82.

In Array experiment result, the execution time
for one processor system is 63.01 seconds, two is
43.6 seconds, three is 34.32 seconds and four is
29.27 seconds. The speedups are 1, 1.445, 1.836,
and 2.152.

The speedup of VAR experiment result is
increasing slower than Array’s. The reason of this
situation results from the processors
communication time. Because of communicating
in order, it will spend more execution time. The
VAR experiment is belong to this condition but
Array experiment is in other way round.

 The resource utilization in our system is
shown in Figure 10. In our design for four
processors uses 13327 LEs, 197376 bits memory,

and 16 embedded multiply blocks. The
percentages of these are about 40%, 41%, and
23%.

Figure 10. The resource utilization in our
system

6. Conclusion and future works

We proposed a customized multiprocessor
system via Tool Chain that Altera® Corporation
offers and had clear understanding in system
design process. Then we implemented two
benchmark programs for our multiprocessor
system. The result of our experiment shows that
the speedup in the non order case increases
rapidly.

For utilizing the shared memory resource in
multiprocessor system without causing any system
or data errors, we employ hardwire Mutex Core to
achieve the goal; however, though the mechanism
can protect multiprocessors from mutually
accessing memory, there are some problems
remained for us to discuss Mutex.

We discover that the Mutex spends a lot of time
in single communication. The later research tends
to how to communicate quickly and securely at the
same time. The improvement of accessing
mechanism of shared resource in multiprocessor
system will still be one of main research topics in
MPSoC field.

Another problem is that the same physical
program memory sharing by multiprocessors. In
multiprocessor system, the stored program
memory is in the same memory chip. The memory
only has one pair read/write port. When the code is
increasing, it may cause the performance going
down.

The future works we aim at are that the
operating system of multitasking and
multithreading, and how to utilize the
characteristics of multiprocessor to design relative
codec multimedia applications. We will also
attempt to port uCLinux or uC/OS-II in our
proposed multiprocessor system.

7. Acknowledgement

Financial support of this research by Tatung
University, Taipei, Taiwan, under the grant
B96-I02-028 is gratefully acknowledged.

References

[1] L. Benini and G. de Micheli, “Networks on chips: A
new SoC paradigm,” Proceedings of the IEEE
Computer, vol. 35, No. 8, pp. 70-78, Jan. 2002.

[2] Sheldon, D. Kumar, R. Vahid, F. Tullsen, D.
Lysecky, “Conjoining Soft-Core FPGA Processors,”
Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, Pages
694-701, Nov. 2006.

[3] K. Compton, “Reconfigurable Computing: A Survey
of Systems and Software,” Proceedings of the ACM
Computing Surveys, vol. 34, No. 2, Pages171-210,
June 2002.

[4] A. Jerraya and W. Wolf, “Guest Editors' Introduction:
Multiprocessor Systems-on-Chips,” Proceedings of
the IEEE Computer, vol. 38, No. 7, Pages 36-40, Jul.
2005.

[5] Chia-Ying Tseng, Liang-Teh Lee, Chun-Hung Chen,
and Yen-Chih Chen, “A Soft-Core Based
Reconfigurable Multiprocessor System,”
Proceedings of 2007 National Computer Symposium,
Vol. 2, pp. 437-443.

[6] Olli Lehtoranta, Erno Salminen, Ari Kulmala, Marko
Hännikäinen, and Timo D. Hämäläinen, “A parallel
MPEG-4 encoder for FPGA based multiprocessor
SoC,” International Conference on Field
Programmable Logic and Applications, 2005.

[7] Altera, “Cyclone II FPGA Starter Board Reference
Manual,” Altera Corporation, October 2007.

[8] Altera, “Nios II Processor Reference Handbook,”
Altera Corporation, October 2007.

[9] Altera, “Profiling Nios II Systems,” Altera
Corporation, February 2006.

[10]Altera, “Nios II Hardware Development Tutorial,”
Altera Corporation, October 2007.

[11]Altera, “Creating Multiprocessor Nios II Systems
Tutorial,” Altera Corporation, December 2007.

[12]Altera, “Quartus II Handbook Volume 4: SOPC
Builder,” Altera Corporation, October 2007.

