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Abstract- With the growing of multimedia codec 
types, the huge amount of produced computing can 
not be handled by a single processor now. 
Therefore, we hope that the programs which 
include many computations can be processed by 
multiprocessors. In addition, the core operated in 
embedded system platform also gradually becomes 
multiprocessor from a single processor.  

In this paper, we design a four-processor system 
using NiosII soft-core and implement our MPSoC 
architecture (includes 4K I-cache, 1MB SRAM, 
32MB SDRAM, 16MB Flash) and design the 
executable programs running in multiprocessor 
via hardwire Mutex element. We use the hardwire 
Mutex core to access the shared memory in the 
program. The implemented result shows that the 
quad-core system architecture that we proposed 
can execute the program concurrently at the same 
time. 
 
Keywords: FPGA, Nios II, MPSoC, Soft-core, 
Multi-core.  
 
1. Introduction  

The design goal of microprocessor is gradually 
changing from higher-frequency computation to 
lower-power consumption in recent years. For 
satisfying the requests of better performance and 
not increasing too much power consumption, 
another obvious difference of microprocessor is 
that the design goal transfers from increasing 
frequency to adjusting multi-core architecture [1].  

Utilizing the characteristics and techniques of 
multi-core processors can flexibly implement a 
small-size, low-cost, high-performance, and 
reliable systems in many embedded applications. 

Nowadays, the integrated multi-core processors 
are changing the architectures of embedded system. 
The new processors which aim at embedded 
applications can implement a high-performance 
system design that can increase the computation 
density at specific frequency. 

The development of SoC (System on a Chip) is 
gradually changing from uni-processor to 
multi-processor in recent years. However, the 
advantages of using soft-core processor in 
designing and implementing system on a chip are 
avoiding the restriction of manufacturing process 
in semi-conductor and more flexible than 
hard-core processor [2][3]. 

At present, the development of multi-media 
application in embedded system is requiring to 
integrate a large number of programs and functions 
into a single platform. By designing these 
applications on a reconfigurable chip, we can not 
only reach the goal of time-to-market [4] but also 
carry out reusable soft-core in hardware 
architecture. If the architecture we design initially 
will be used in relative design process later, we can 
refer to which by means of calling it directly. 
Another advantage of adopting FPGA (Field 
Programmable Gate Array) is that we can 
constantly reconfigure the hardware architecture 
that we want to design and implement it for some 
specific applications. Hence, the importance of 
FPGA in embedded system is gradually rising with 
no doubt. 

In this paper, we design a quad-core 
multiprocessor system on Cyclone II FPGA chip 
(4K I-cache, 512KB SRAM, 8 MB SDRAM and 
4MB Flash are included) by adopting the soft-core 
processor and the tool chain offers by Altera® 
Corporation. And we use hardware Mutex core to 
design the memory-sharing mechanism in 
quad-core multiprocessor architecture. Finally we 
also design the executable test programs running in 
the quad-core multiprocessor by implementing the 
Mutex core components [5][6].  
 
2. Background  

The most significant benefit of multi-processor 
system is the improvement of performance, but the 
complexity of designing the system will also 
increase. Hence, the architectures of 
multi-processor system are often restricted in 
Workstation or complicated High-end PC. For 
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multi-processor systems, there are various ways 
for categorizing, and we divide this system into 
two types in the paper. One is Autonomous 
Multiprocessor System and the other is 
Non-Autonomous Multiprocessor System. The 
manner for identifying them is that if the 
processors in each system are sharing the same 
resources. 

The meaning of Autonomous Multiprocessor 
Systems is that the execution among processors is 
absolutely independent without any 
synchronization or communication. This type of 
system is less complicated and fewer problems 
while designing it. The main reason is that every 
processor work solely and cannot interfere the 
other processors’ operations.  

In the Non-Autonomous Multiprocessor system, 
resources can be shared among processors. It is 
very useful to adopt resource-sharing mechanism 
in multiprocessor architectures, but it should be 
noticed the time which resource will be shared and 
how to cooperate each other among different 
processors while sharing the resources. 
 
3. Design of Multiprocessor System on a 

Chip (MPSoC)  
 
3.1. System Architecture 

To evaluate the characteristics of 
high-performance and low-cost about 
multiprocessor system in embedded SoC, we 
improve the multiprocessor system architectures 
from dual-core to quad-core and integrate our 
system into a FPGA. Each processor has its own 
4KB I-Cache but has no D-Cache. Figure 1 shows 
the block diagram of our system architecture. 
 

 
 

Figure 1. System block diagram 

 
The system provides an independent timer for 

every processor and the memory has 4MB FLASH, 
8 MB SDRAM, and 512KB SSRAM; these 
memories are allowed to be shared by four 
processors in the system. However, SSRAM is 
only permitted to be accessed by the data stream of 
each processor, FLASH and SDRAM allow the 
data stream and instruction stream in each 
processor pass through. We utilize a Mutex Core 
to implement the shared memory component in 
multiprocessor system; the data stream in each 
processor will pass it through but instruction 
stream would not. By adopting this component, we 
can design a multiprocessor system to access 
memory devices.  

 
3.2. Hardware/Software Specification 
 
3.2.1. Hardware Specification 

The development board that we use is Cyclone 
II FPGA Nios II Starter Board [7-9], and the 
hardware specification is as follows:  
 
■ Altera Cyclone EP2C35F672C6 FPGA 
● 35K logic elements (LEs) 
● 105 M4K memory blocks 
■ Memory subsystem 
● 512-Kbyte standard synchronous SRAM 
● 4-Mbyte Flash ROM 
● 8-Mbyte DDR SDRAM 
 
3.2.2. Software Specification 
The software we use is a series of development 
suites Altera® Corporation offers, and the 
software specification is as follows: 
 
■ Altera® Quartus® II v7.2 sp2 
■ SoPC Builder tools 
■ Nios II Embedded Design Suite v7.2 sp2 
■ MegaCore® IP Library v7.2 sp2 
 
4. Implementation  
 
4.1. System Design Flow 

A complete system design flow can be divided 
into three parts, which are hardware design [10], 
system design [11], and software design 
respectively. At first, the section will describe how 
to design hardware. We initially establish a project 
via Quartus® II, and then we use SoPC Builder 
[12] to build the system that we would like. The 
overall hardware design also belongs to the system 
integrated design. With extra parameters or 
instructions, we can merge the required functions 



to the system we design originally by means of 
SoPC Builder. We import the completed system 
into the project established in Quartus® II, and set 
certain required parameters for some devices at 
this time. The design flow chart of development 
board is shown on Figure 2. 
 

 
 

Figure 2. Design flow chart of development 
board 

 
When we want to attach some customized 

hardware, we use the compiler Quartus® II offers 
to develop the hardware we would like to 
implement. After the simulation of hardware is 
verified with no errors, we synthesize the hardware 
with the completed system developed early in 
Quartus® II. The last step is deploying all external 
pins and compiling of overall system. Until now 
the bottom system design has come to an end and 
the section we describe and build in Quartus® II 
above is called the integrated design of hardware 
and system.  

In the following section we use Nios II 
Embedded Design Suite to design the software we 
need and the software will be placed in our system 
for execution. In the system design phase, we can 
debug our programs by adding a JTAG UART; its 
function is showing the execution result of our 
programs in the control screen of PC terminal. 
That there is one thing remained to be paid 
attention to is which Debug Module you choose 
for debugging and it must be decided in processor 
configuration. When the design phase of hardware, 
system and software is finished, we burn the 
system file in the target board via the programmer 
function Quartus® II offers; however, before this 
step, we must set up the name and type of FPGA 
(the target board that we use). 

When the process of burning is over, Nios II 

Embedded Design Suite offers the execution tool 
for us to execute the software which is placed in 
the system on the development board. The last 
execution result will be displayed in our computer 
screen. 
 
4.2. System Implementation 

There is a Message Buffer implemented by our 
designed On-Chip RAM to receive the Message 
generated by each processor in this system. When 
processor grabs the hardwire Mutex core, it can 
write the Message to Message Buffer. We have 
four processors in this system. Then, the sequence 
of their writing is the sequence of their grab. 
Because UART is only connected to CPU1, the 
CPU1 is responsible for entire system output. We 
will detect the Message Buffer through CPU1 in 
our design. If the Message Buffer has some new 
Message write in, the CPU1 will show it in PC 
console. Figure 3 is our program scheme. 

 

 
 

Figure 3. The program scheme 
 

At first, we establish a new project via 
Quartus® II (illustrated in Figure 4) and use SoPC 
Builder to design the overall system; after the 
system architecture is finished, we import it into 
the project established early and modify required 
pins via Top Module. After compilation, our 
system is already established. 

Now we will test if our system works normally. 
We design every project executed on each 
processor via Nios II Embedded Design Suite. 
Because our system has four processors, we must 
establish four different programs placed on 
separate processor for execution. Figure 5 shows 
the design program with Nios II EDS. 



 
 

Figure 4. Design system using SoPC 
Builder 

 

 
 

Figure 5. Design program with Nios II EDS 
 

The program we execute is accessing an 
On-Chip RAM via a Mutex Core, and we design a 
shared data area in the On-Chip RAM. Every 
processor that owned the Mutex Core will update 
the count value (count++) and only the first one 
processor is connected to JTAG_UART. As soon 
as the data in shared data area change, the first one 
processor will display it in the screen via the 
JTAG_UART it connects. The operating principle 
of processors is estimating different processors by 
catching the cpuid that every processor owns. 
Which processor can own the Mutex Core is 
decided by its order of writing their cupid to the 
owner of Mutex Core. The last execution result 
will be displayed in the PC Nios II EDS. 
console .The program result shows in Figure 6. 
 
 

 
 

Figure 6. The program result in the PC 
console 

 
5. Performance Evaluation 

We design two benchmarks via Nios II EDS 
tools. The goal of our benchmark is evaluating and 
analyzing the system performance. 
 
5.1. Variable Computation in Order 

We use single variables as operand in this 
benchmark. The benchmark runs three variables 
computation. They have some dependent 
computation and must communicate in sequence. 
Mutex core will decide who comes to the share 
memory and accesses the share parameters. The 
program is executed on six million times loops 
consisting of eight multiplication instructions. 
After these multiplications, we have some 
additions or subtractions. The purpose of this way 
is to hope that the processors execute the program 
in order. 

The program designed in mutex area gives three 
flags to share memory. Assume that the CPU order 
is two, three, four then one, and the flags default 
are zero. When the CPU2 finish its work and grab 
the Mutex Core, it will set the ”one” to flag2. The 
CPU3 and CPU4 do the some work. After the 
CPU1 grabs the Mutex, it will check three flags 
whether they are equal to zero or not. The method 
ensures that the processor communicate will 
execute in order. The experiment result is shown in 
Figure 7. The execution time for one processor 
system is 99.78 seconds, two is 70.75 seconds, 
three is 58.26 seconds and four is 54.95 seconds. 



 
 

Figure 7. The execution time of VAR 
benchmark 

 
5.2. Array Computation Out of Order 

There are two arrays to deal some operations 
with each other. It was designed by mixing some 
simple arithmetic operations (such as: plus, minus, 
multiply, and divide).  Each array has twenty 
thousand elements and assigned with initial values. 
The total operations contained about two million 
instructions. In order to increase the amount of 
array’s data storage we replace the On-Chip RAM 
with SRAM in this experiment. Since the On-Chip 
RAM only has 1K Bytes free memory space and 
the SRAM has 512K Bytes.  

In this case, the processors communicate out of 
order. When CPU2, CPU3, and CPU4 finish their 
work, they will grab the Mutex. For any one of 
them grabs the Mutex then it will access the share 
memory. We only need to ensure that the CPU1 
access share memory last. 

The experiment result for the array computation 
out of order is shown in Figure 8. The execution 
time for one processor system is 63.01 seconds, 
two is 43.6 seconds, three is 34.32 seconds, and 
four is 29.27 seconds. 

 

 
 

Figure 8. The execution time of Array 
benchmark 

 
5.3. Performance Evaluation and Analysis 

In our experiment, we use one, two, three, and 
four processors system running the benchmark 
program to measure the speedup. At the beginning, 
we run benchmark program to one processor 
system and test its execution time. Then, distribute 
our benchmark program for two, three, and four 
processors system independently. The speedup of 
two benchmark programs is shown in Figure 9. 
The figure shows that the slope of these two lines 
becomes gradually small. 
 

 
 

Figure 9. The speedup of two benchmarks 
 

In VAR experiment, we make the one processor 
system as the standard system. Its execution time 
is about 99.78 seconds. When VAR benchmark 
runs on two processors system, it spends 70.75 
seconds. The speedup for two processors system is 
1.41. When program runs in three and four 
processors system, it spends 58.26 and 54.95 
seconds. Their speedups are 1.71 and 1.82. 

In Array experiment result, the execution time 
for one processor system is 63.01 seconds, two is 
43.6 seconds, three is 34.32 seconds and four is 
29.27 seconds. The speedups are 1, 1.445, 1.836, 
and 2.152. 

The speedup of VAR experiment result is 
increasing slower than Array’s. The reason of this 
situation results from the processors 
communication time. Because of communicating 
in order, it will spend more execution time. The 
VAR experiment is belong to this condition but 
Array experiment is in other way round. 

 The resource utilization in our system is 
shown in Figure 10. In our design for four 
processors uses 13327 LEs, 197376 bits memory, 



and 16 embedded multiply blocks. The 
percentages of these are about 40%, 41%, and 
23%. 
 

 
 

Figure 10. The resource utilization in our 
system 

 
6. Conclusion and future works  

We proposed a customized multiprocessor 
system via Tool Chain that Altera® Corporation 
offers and had clear understanding in system 
design process. Then we implemented two 
benchmark programs for our multiprocessor 
system. The result of our experiment shows that 
the speedup in the non order case increases 
rapidly. 

For utilizing the shared memory resource in 
multiprocessor system without causing any system 
or data errors, we employ hardwire Mutex Core to 
achieve the goal; however, though the mechanism 
can protect multiprocessors from mutually 
accessing memory, there are some problems 
remained for us to discuss Mutex. 

We discover that the Mutex spends a lot of time 
in single communication. The later research tends 
to how to communicate quickly and securely at the 
same time. The improvement of accessing 
mechanism of shared resource in multiprocessor 
system will still be one of main research topics in 
MPSoC field. 

Another problem is that the same physical 
program memory sharing by multiprocessors. In 
multiprocessor system, the stored program 
memory is in the same memory chip. The memory 
only has one pair read/write port. When the code is 
increasing, it may cause the performance going 
down. 

The future works we aim at are that the 
operating system of multitasking and 
multithreading, and how to utilize the 
characteristics of multiprocessor to design relative 
codec multimedia applications. We will also 
attempt to port uCLinux or uC/OS-II in our 
proposed multiprocessor system. 
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