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Abstract- This paper proposes a Distributed 
Hash Table-Based Metadata Server Cluster 
(DHT-MDSC), which provides an efficient 
routing strategy and an automatic 
reconfiguration protocol to eliminate the 
bottleneck of a centralized hash table. The 
design is based on a new concept merging p2p 
system with conventional metadata file system 
into a scalable and high performance distributed 
metadata server. A novel caching mechanism 
(LC-RIC) is implemented to improve the 
performance and scalability of the system. In 
addition, we have also implemented a reliable 
DHT-MDSC (RDHT-MDSC) which can tolerate 
the failure of multiple metadata servers. The 
system can reconstruct itself upon detecting any 
fault under normal operation. The time it takes 
to reconstruct the system is also short in our 
design.  
 
1. Introduction 

Researches on networked storage have 
received great attention recently due to explosive 
data growth and widespread high speed network. 
As a result, the size of metadata is also getting 
bigger and bigger. Therefore the maintenance of 
metadata has also become more and more 
important. Many researches focus on the 
distribution of metadata since a single metadata 
server can’t handle a very large number of 
metadata requests. Previous work has found that 
metadata operations can make up 50% traffic of 
file system communications [1]. Consequently 
metadata maintenance method must be carefully 
devised to improve the overall system 
performance.  

There have been many papers on metadata 
distribution. For example, static subtree 
partitioning, dynamic subtree partitioning, pure 
hashing [2], equipotent subtree partition [3], and 
dynamic dir-gran (DDG) [4] have been proposed. 
These methods focus much on performance and 
“hot-spot” problems but neglect the maintenance 
overhead of manual configuration among 
metadata servers. In order to achieve load 
balance on directories, pure hashing is wildly 
used in a distributed file system. Although it is 
efficient to access a file, its hash table is not 
distributed across multiple metadata servers 

(MDSes). For a distributed hash table, an 
efficient routing strategy can significantly affect 
performance in a large scale metadata server 
cluster (MDSC). Furthermore, a high 
performance system should also provide a fast 
process to recover from a broken system. None 
of the above papers have dealt with these issues.  

In this paper, we propose a Distributed Hash 
Table-Based Metadata Server Cluster 
(DHT-MDSC), which can provide an efficient 
routing strategy and an automatic 
reconfiguration protocol to eliminate the 
bottleneck of a centralized hash table. The 
communication protocol of DHT-MDSC is 
based on Chord [5, 12], a structured p2p 
implementation. Therefore, DTH-MDSC inherits 
the efficient routing strategy and the automatic 
reconfiguration from Chord [5, 12]. Besides, the 
hash table in DHT-MDSC is distributed to 
multiple metadata servers so that the accesses to 
metadata are no longer the performance 
bottleneck.  To improve the reliability of the 
system, we also implement a Reliable 
Distributed Hash Table-Based Metadata Server 
Cluster (RDHT-MDSC) by adding a reliable 
mechanism to the DHT-MDSC. RDHT-MDSC 
can tolerate failure of multiple metadata servers 
and recover automatically except when two side 
by side metadata servers fail simultaneously.  

The rest of this paper is organized as 
follows. Section 2 provides some related works. 
In section 3, we present the design and 
implementation of DHT-MDSC and 
RDHT-MDS. Performance evaluations of 
DHT-MDSC and RDHT-MDS are given in 
section 4. Finally, we make a conclusion in 
section 5. 
 
2. Related works 

There have been some researches studying 
the distribution of metadata. The most 
straightforward method is based on static subtree 
partitioning. For example, conventional network 
file systems like NFS[8], AFS[9] are based on 
static subtree partitioning. However, this policy 
suffers from overloading an individual server. 
Therefore, a smarter dynamic subtree portioning 
was proposed. However, dynamic subtree policy 
still suffers from the unbalance problem due to 
“hot spot” directories.  



Another different approach uses pure 
hashing. For instance, Vesta[10], Intermezzo [11] 
are based on pure hashing. Although the hashing 
approach resolves the load balance problem, the 
central hash table is a performance bottleneck 
and can render the entire system unusable when 
it fails.  

Both Equipotent subtree partition [3] and 
DDG [4] provide their own partition policy for 
directory hierarchy. They both make a uniform 
distribution of directories and files across 
metadata servers. However, scalability and 
reliability of metadata servers have not been 
addressed.  

 
3. Implementation of DHT-MDSC and  

RDHT-MDSC 
3.1 DHT-MDSC Architecture 
 DHT-MDSC can be divided into two parts, 
metadata servers and clients. Multiple metadata 
servers (MDS) form a metadata server cluster 
(MDSC) to service metadata requests. Clients 
send their requests to the metadata server they 
attach. Fig. 1 shows the MDSC architecture. 
Each server has an ID or hash key associated 
with it. The hash space is assumed to be 1024 in 
this example. A finger table and a hash table are 
also implemented on each metadata server as 
shown in the Figure. These metadata servers 
form a ring network by connecting two 
neighboring servers. In order to maintain the 
ring network, an MDS must record its two 
neighbors, predecessor (PD) and successor (SC). 
PD is the neighbor node in the counterclockwise 
direction and SC is the neighbor node in the 
clockwise direction. Following this rule, the next 
successor (N-SC) of an MDS is defined to be the 
successor of an SC, i.e. the second neighbor 
node in the clockwise direction. The front 
predecessor (F-PD) of an MDS is defined to be 
the predecessor of a PD, i.e. the second neighbor 
node in the counterclockwise direction. For 
example, the F-PD, PD, SC and N-SC of the 
MDS (ID = 5) are 761, 898, 135 and 273 
respectively. Every hash key in a hash space also 
has its F-PD, PD, SC and N-SC. For example, 
the F-PD, PD, SC and N-SC of any hash key 
between 899 and 5 are the same as the MDS (ID 
=5).  Hash functions like SHA1, SHA2, etc 
generate the hash key for a server according to 
its IP address and port. The finger table in each 
MDS contains part of the routing information for 
an MDSC. A finger table entry contains a hash 
key range and an MDS’ id called SC-F 
(successor of a finger table entry). SC-F is used 
to indicate which MDS a metadata operation 
within the hash key range should be forwarded 
to. The hash table is composed of a hash key 
array ranging between an MDS’ id and its PD’s 
id. Each array entry has a linked list to store the 

metadata of a file hashed to the same key. 
Clients surrounding the ring structure also 
connect to this local network. But they do not 
know the existence of any MDS at the beginning. 
They use a discovery message to find an MDS 
they can use. A discovery message is a broadcast 
type packet containing a client’s id, IP and port. 
A client broadcasts the discovery message to the 
network. It then picks the MDS with the shortest 
response time as its relayed server (RS). Once 
the RS is chosen, a client transmits all of its 
requests to this relayed server. Whenever a client 
issues a metadata command (such as read, write, 
delete, etc.) to its relayed server, the server will 
forward the command to a proper MDS 
according to the routing information contained 
in its finger table.  

Join and leave are two major methods for 
an MDS to join to or leave from an MDSC. Join 
method is used when a new MDS wants to join 
an MDSC. First, it must broadcast a discovery 
message to its subnet. It then chooses the first 
MDS which sends back a reply message as the 
candidate to help it complete the join process. 
There are four steps for a new MDS to join an 
MDSC: updating its neighbors, initializing its 
finger table, updating others’ finger table, and 
getting its own metadata from its PD. In step 1, 
the candidate is asked to find the two neighbors 
of the new MDS. After that, their neighbor 
relation is updated by the candidate.  In step 2, 
the candidate establishes the finger table for the 
new MDS. In step 3, the candidate sends update 
messages to update finger tables of other MDSes. 
The update messages are sent to those MDSes 
which are the PD of the following hash keys:  
 
N – 2i, i = 0, 1, 2, 3,. …, log(hash space) -1 
if the generated hash key < 0, 
generated hash key = generated hash key + hash 
space, where N is the hash key of the new MDS.  
 

After receiving the update message, an 
MDS forwards the update message to its PD. 
The process terminates when a PD has been 
updated by the same update message. Thus, 
update messages propagate counterclockwise on 
the ring network of the MDSC. In step 4, the 
new MDS receives the metadata that it should 
control from its PD. Once these four steps have 
been performed, the joining process of the new 
MDS is completed and it becomes a member of 
the MDSC.  

Leave message is used when an MDS must 
be shutdown or rebooted. Before one MDS can 
leave from an MDSC, it must move the metadata 
it controls to its SC and then sends a leave 
messages to notify those SC-Fs in its finger table. 
After receiving a leave message, an MDS relays 
this message to its SC. This process completes 



when any SC has been updated by the same 
leave message previously. Therefore, the leave 
message looks like walking clockwise on the 
ring network of the MDSC to update other 
MDSes. Although the system can be 
reconfigured with the above two methods, the 
unpredictable failure of an MDS can destroy the 
whole system. We will present a reliable solution 
in section 3.3 and discuss it in section 4. 

Although metadata delivering path is short, 
it still takes time to deliver on the network. The 
network speed is much slower than CPU and 
memory, so we need a mechanism to get desired 
metadata in one hop to achieve high 
performance. In section 3.2, we describe a 
caching method on a client side to improve the 
performance. 

Fig. 1 MDSC architecture 
 

3.2 Lazy Cache of Routing Information 
on Client End (LC-RIC) to Improve 
Performance 

Although DHT-MDS has an efficient 
routing policy, its performance and scalability 
can still be improved further. This is because an 
operation packet may need to propagate through 
more than one hop to reach destination MDS and 
the network communication time is still much 
larger than CPU time, especially for small 
packets. This problem may be relieved by client 
side caching. We devise a lazy cache mechanism 
called Lazy Cache of Routing Information on 
Client End (LC-RIC). Lazy means that we only 
update it on demand. LC-RIC caches the id, ip, 
and port of an MDS on clients. If the destination 
MDS could be found in a client’s cache table, 
only one hop is required to reach the destination 
MDS. Otherwise the request messages must go 
through routing processes described above. Once 
the request message returns, the destination 

MDS is found and added to the client’s cache 
table. From here on, only one hop is needed to 
reach the MDS.  

LC-RIC lazily updates a client’s cache 
table when any MDS joins or leaves. It means a 
client doesn’t update its cache table immediately 
when any MDS joins or leaves. For example, 
when the first time a client accesses its metadata 
on a new MDS, it can send the request to the 
closest MDS in its cache table. After that request 
returns, the new coming MDS will be added to 
its cache table. The new coming MDS is found 
now. If a client accesses an MDS which has left, 
a connection error exception will be returned to 
it. It deletes the MDS from its cache table and 
retransmits the unsuccessful request again to the 
closest MDS in its cache table. Thus, the client 
lazily deletes the leaving MDS from its cache 
table. 
3.3 Reliable DHT-MDSC (RDHT-MDSC) 

DHT-MDSC can become useless if any 
metadata server fails. In order to improve its 
reliability, we have also implemented a reliable 
DHT-MDSC (RDHT-MDSC). RDHT-MDSC 
can tolerate the failure of any metadata server. 
Our design replicates each MDS’ metadata to its 
successor and records some additional 
information to recover the ring structure of 
DHT-MDSC if broken. An MDS must record its 
N-SC and F-PD. Each successor of SC-F in its 
finger table also needs to be recorded. In the 
following we will illustrate how to reconstruct 
the ring structure when it is broken because of a 
failed MDS. If an MDS fails (no responses from 
ping message), its SC will receive a connection 
abort exception. These ping messages are 
maintained between two neighboring MDSes. 
There are two steps to handle the reconstruction 
process: reconstruct the neighboring relation and 
update the finger tables of affected MDSes. In 
the following, we call the SC of a failed MDS 
SF-MDS (successor of the failed MDS) and its 
PD PF-MDS (predecessor of the failed MDS). In 
step 1, the PD and F-PD of SF-MDS are 
changed to PF-MDS and its PD respectively. 
After that, SF-MDS sends an “update 
front-predecessor” message to its SC. Then, the 
F-PD of its SC is changed to PF-MDS. The same 
process is required for PF-MDS and its PD. In 
step2, SF-MDS sends failure messages to all 
affected MDSes stored in its finger table. When 
the failure message arrives at an MDS, it deals 
with the message (updating its finger table entry 
if needed) and forwards the message to its SC. 
The process terminates when any SC has 
received the same failure message previously. 
After all of the MDSes in SF-MDS’s finger table 
return acknowledgements, the ring structure has 
been reconstructed and the MDSC can handle 
new requests as usual again. The time it takes to 



reconstruct a ring is called “reconstruction time”.  
In order to tolerate future MDS failure, we need 
to duplicate each MDS’s metadata to its SC. The 
time taken to copy metadata depends on the size 
of metadata stored in an MDS. 
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Fig. 2 Reconstruction of RDHT-MDSC 
 

Fig. 2 shows the metadata relocation 
processes of our RDHT-MDS. Originally, there 
are nine MDSes with their metadata represented 
on top of them. Each metadata has a number that 
represents where it comes from. Now suppose 
MDS2, MDS4, MDS6 and MDS8 fail 
simultaneously, the metadata controlled by them 
can be found on MDS3, MD5, MDS7 and MD9 
respectively. Therefore the system can tolerate 
multiple failed MDSes and continue to function. 
However, currently the system can not tolerate 
the failure of two side-by-side metadata servers 
since their metadata can not be recovered 
elsewhere. We feel it is less likely that two 
neighboring nodes fail simultaneously. Finally, 
all of the survival MDSes will transmit their 
metadata to their SCs in order to tolerate future 
failure of metadata servers as shown in Fig. 2 (c). 
Therefore the system can tolerate not only the 
usual failure of one MDS but also the 
simultaneous failures of multiple MDSes as long 
as no side-by-side metadata servers fail 
simultaneously.  
 
4 Performance Evaluations 
 In this section we study the performance 
of DHT-MDSC and RDHT-MDSC. Even though 
we think that hash key based system has better 
performance than traditional subtree system, it is 
important to quantify their performance gap. We 
use five IBM e-servers as metadata servers 
(MDSes), five Supermicro 1UTwin servers as 
clients, and connect them with 3com Gigabit 
Ethernet. The hardware configuration of MDSes 
and clients is listed in Table 1. All of them use 
Windows Server 2003 operating system.  

Table 1 Hardware configuration of MDSs and 
clients 
Metadata 
Server 

CPU One Intel Xeon CPU 2.8G  
Memory 512MB DDR 266  
NIC Broadcom NetXtreme 

Gigabit Ethernet  
Client CPU Two Xeon CPU 2.33G 

(Core2 Quad)  
Memory 2GB DDR2-667 X 2  
NIC Intel(R) Pro/1000 EB 

Gigabit Ethernet  
Network 
connection 

Gigabit 
switch  

3C16479 3Com 4226T 
3C17300 Switch  

 
In order to select a suitable hash space for 

our tests, we measure read and write  latencies 
for a hash space ranging from 100 to 1300. We 
use one IBM e-server as an MDS and one 
Supermicro 1UTwin with eight physical CPU 
cores on it as clients. Therefore eight client 
threads can run on eight different physical CPU 
cores. Each client issues 25,000 metadata write 
requests (each with different file pathname), and 
then read them back. Once an operation is issued, 
the client must wait until the acknowledgement 
returns. The results are shown in Fig. 3. Fig. 3 (a) 
plots the write and read latency as a function of 
hash space size. Fig. 3 (b) plots the write and 
read latency as a function of average linked list 
length corresponding to each hash space size. 
The average linked list length is computed as 
total metadata numbers (8 x 25,000 = 200,000) 
divided by the specified hash space. Therefore, 
as shown in Fig. 3 (b), when the average length 
of each linked list is less than 500, the time 
required to search the linked list is insignificant. 
Hence, the length of linked lists used in all of the 
measurements is less than 500.  
 To study the performance and scalability 
of the system without caching, we disable 
LC-RIC on DHT-MDSC in the following 
measurements. The range of hash keys 
controlled by each server is the same. We run 
eight client threads on each Supermicro 1UTwin, 
so the number of clients in our test bench is 
between 8 and 40. Each client issues 12,500 
metadata write requests (each uses a different 
file pathname), and then read them back. We do 
the measurement 10 times and average the total 
time taken on each client. In this test the hash 
space is set to 1024 and the average length of 
each linked list is 488. As we can see from Fig 4, 
the result is disappointing and distressful since 
both write and read latencies increase as more 
metadata servers are used. This is opposite to 
what we see in Fig. 5 (to be described in the next 
paragraph) where caching (LC-RIC) is used. 
This is because every metadata request must go 
through the routing path to reach destination 
metadata server. Hence, metadata servers are 
always busy in relaying requests on the ring 
network. Furthermore, the more metadata 



servers we add, the longer routing path requests 
must go through. Therefore, the performance is 
negatively impacted as more metadata servers 
are used.  

The scalability for our DHT-MDSC and 
RDHT-MDSC are also studied as follows. All of 
the settings are the same as described in the 
previous paragraph except LC-RIC is turned on 
here. In Fig. 5, we can see that the performance 
of our DHT-MDSC scales very well as the 
number of metadata servers is increased. When 
the number of clients is 40, both write and read 
performances improve by a factor of about 4.5 as 
we increase the number of metadata servers from 
one to five. This is in contrast to the results 
shown in Fig. 4 where LC-RIC is turned off. 
Therefore, LC-RIC is a critical mechanism to 
make DHT-MDSC scale with the number of 
metadata servers. Both the write and read 
latencies of using only one MDS increase 
nonlinearly when more clients are added. As the 
number of clients is increased, more requesting 
packets are generated and sent to the MDS. 
However, the server interface card may not be 
able to handle all of them and some packets may 
get dropped. This is relieved when more MDSes 
are used. 

Fig. 6 shows the write and read 
performances of our RDHT-MDSC. For write 
performance using two metadata servers, the 
latency grows nonlinearly when the number of 
client is larger than 24. We can use this result to 
suggest the number of MDS that should be used 
in the system if write performance is a critical 
design factor. For example, if the number of 
clients is 24, then at least two metadata servers 
should be used if write performance is critical. 
The read performance is almost the same as in 
DHT-MDSC due to the same read mechanism.  
 

 
(a) 

 
(b) 

Fig. 3 (a) Write and read latency vs. hash space 
size, (b) latency vs. length of linked list 

 
Fig. 4 Write and read performance of 
DHT-MDSC without using LC-RIC 

 
Fig. 5 Write and read performance of 

DHT-MDSC using LC-RIC 

 

 
Fig. 6 Write and read performance of 

RDHT-MDSC using LC-RIC 



In order to measure the “reconstruction 
time” described in section 3.3, we use five 
IBM e-server as metadata servers (MDSes). 
One of them is shut down suddenly in the 
middle of processing requests. The 
reconstruction time is equal to end time minus 
start time. Start time is initialized in SF-MDS 
once the ping message is not returned by the 
failed MDS. After the process of updating the 
failed MDS’s neighbors, SF-MDS sends failure 
messages to those MDSes in its finger table. 
After all of them return acknowledgements to 
SF-MDS, the end time is recorded. The 
“reconstruction time” of recovering from one 
MDS failure in our RDHT-MDSC is shown in 
Fig. 7. It can be seen that the metadata server 
cluster can reconstruct itself in less than 18 
milliseconds and be ready to service requests 
from clients again.  

 

 
Fig. 7 The reconstruction time of RDHT-MDS 

when one MDS fails 
5 Conclusions 

In this paper we present the design and 
implementation of our DHT-MDSC and 
RDHT-MDSC. The architecture supports a 
scalable, reliable, and high performance 
metadata file system. The system is also very 
flexible to allow an MDS to join to or leave from 
the metadata server cluster (MDSC). Therefore, 
the system does not need to be shut down for 
hardware upgrade, periodical check or planned 
maintenance. LC-RIC is a smart and efficient 
caching mechanism to significantly improve the 
performance of RDHT-MDSC. The 
reconstruction time of RDHT-MDSC is less than 
18 milliseconds. The other advantage of 
RDHT-MDSC is that it can recover itself from 
the failure of multiple metadata servers as long 
as no two side-by-side metadata servers fail 
simultaneously. 
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