
A Reliable DHT-Based Metadata Server Cluster

Chang-Kuo Yeh, Tse-Ta Tseng, Yarsun Hsu
Department of Electrical Engineering,

National Tsing Hua University, HsinChu, 30013, Taiwan
{yachunggo, rogerable}hpcc.ee.nthu.edu.tw, yshsu@ee.nthu.edu.tw

Abstract- This paper proposes a Distributed
Hash Table-Based Metadata Server Cluster
(DHT-MDSC), which provides an efficient
routing strategy and an automatic
reconfiguration protocol to eliminate the
bottleneck of a centralized hash table. The
design is based on a new concept merging p2p
system with conventional metadata file system
into a scalable and high performance distributed
metadata server. A novel caching mechanism
(LC-RIC) is implemented to improve the
performance and scalability of the system. In
addition, we have also implemented a reliable
DHT-MDSC (RDHT-MDSC) which can tolerate
the failure of multiple metadata servers. The
system can reconstruct itself upon detecting any
fault under normal operation. The time it takes
to reconstruct the system is also short in our
design.

1. Introduction

Researches on networked storage have
received great attention recently due to explosive
data growth and widespread high speed network.
As a result, the size of metadata is also getting
bigger and bigger. Therefore the maintenance of
metadata has also become more and more
important. Many researches focus on the
distribution of metadata since a single metadata
server can’t handle a very large number of
metadata requests. Previous work has found that
metadata operations can make up 50% traffic of
file system communications [1]. Consequently
metadata maintenance method must be carefully
devised to improve the overall system
performance.

There have been many papers on metadata
distribution. For example, static subtree
partitioning, dynamic subtree partitioning, pure
hashing [2], equipotent subtree partition [3], and
dynamic dir-gran (DDG) [4] have been proposed.
These methods focus much on performance and
“hot-spot” problems but neglect the maintenance
overhead of manual configuration among
metadata servers. In order to achieve load
balance on directories, pure hashing is wildly
used in a distributed file system. Although it is
efficient to access a file, its hash table is not
distributed across multiple metadata servers

(MDSes). For a distributed hash table, an
efficient routing strategy can significantly affect
performance in a large scale metadata server
cluster (MDSC). Furthermore, a high
performance system should also provide a fast
process to recover from a broken system. None
of the above papers have dealt with these issues.

In this paper, we propose a Distributed Hash
Table-Based Metadata Server Cluster
(DHT-MDSC), which can provide an efficient
routing strategy and an automatic
reconfiguration protocol to eliminate the
bottleneck of a centralized hash table. The
communication protocol of DHT-MDSC is
based on Chord [5, 12], a structured p2p
implementation. Therefore, DTH-MDSC inherits
the efficient routing strategy and the automatic
reconfiguration from Chord [5, 12]. Besides, the
hash table in DHT-MDSC is distributed to
multiple metadata servers so that the accesses to
metadata are no longer the performance
bottleneck. To improve the reliability of the
system, we also implement a Reliable
Distributed Hash Table-Based Metadata Server
Cluster (RDHT-MDSC) by adding a reliable
mechanism to the DHT-MDSC. RDHT-MDSC
can tolerate failure of multiple metadata servers
and recover automatically except when two side
by side metadata servers fail simultaneously.

The rest of this paper is organized as
follows. Section 2 provides some related works.
In section 3, we present the design and
implementation of DHT-MDSC and
RDHT-MDS. Performance evaluations of
DHT-MDSC and RDHT-MDS are given in
section 4. Finally, we make a conclusion in
section 5.

2. Related works

There have been some researches studying
the distribution of metadata. The most
straightforward method is based on static subtree
partitioning. For example, conventional network
file systems like NFS[8], AFS[9] are based on
static subtree partitioning. However, this policy
suffers from overloading an individual server.
Therefore, a smarter dynamic subtree portioning
was proposed. However, dynamic subtree policy
still suffers from the unbalance problem due to
“hot spot” directories.

Another different approach uses pure
hashing. For instance, Vesta[10], Intermezzo [11]
are based on pure hashing. Although the hashing
approach resolves the load balance problem, the
central hash table is a performance bottleneck
and can render the entire system unusable when
it fails.

Both Equipotent subtree partition [3] and
DDG [4] provide their own partition policy for
directory hierarchy. They both make a uniform
distribution of directories and files across
metadata servers. However, scalability and
reliability of metadata servers have not been
addressed.

3. Implementation of DHT-MDSC and

RDHT-MDSC
3.1 DHT-MDSC Architecture
 DHT-MDSC can be divided into two parts,
metadata servers and clients. Multiple metadata
servers (MDS) form a metadata server cluster
(MDSC) to service metadata requests. Clients
send their requests to the metadata server they
attach. Fig. 1 shows the MDSC architecture.
Each server has an ID or hash key associated
with it. The hash space is assumed to be 1024 in
this example. A finger table and a hash table are
also implemented on each metadata server as
shown in the Figure. These metadata servers
form a ring network by connecting two
neighboring servers. In order to maintain the
ring network, an MDS must record its two
neighbors, predecessor (PD) and successor (SC).
PD is the neighbor node in the counterclockwise
direction and SC is the neighbor node in the
clockwise direction. Following this rule, the next
successor (N-SC) of an MDS is defined to be the
successor of an SC, i.e. the second neighbor
node in the clockwise direction. The front
predecessor (F-PD) of an MDS is defined to be
the predecessor of a PD, i.e. the second neighbor
node in the counterclockwise direction. For
example, the F-PD, PD, SC and N-SC of the
MDS (ID = 5) are 761, 898, 135 and 273
respectively. Every hash key in a hash space also
has its F-PD, PD, SC and N-SC. For example,
the F-PD, PD, SC and N-SC of any hash key
between 899 and 5 are the same as the MDS (ID
=5). Hash functions like SHA1, SHA2, etc
generate the hash key for a server according to
its IP address and port. The finger table in each
MDS contains part of the routing information for
an MDSC. A finger table entry contains a hash
key range and an MDS’ id called SC-F
(successor of a finger table entry). SC-F is used
to indicate which MDS a metadata operation
within the hash key range should be forwarded
to. The hash table is composed of a hash key
array ranging between an MDS’ id and its PD’s
id. Each array entry has a linked list to store the

metadata of a file hashed to the same key.
Clients surrounding the ring structure also
connect to this local network. But they do not
know the existence of any MDS at the beginning.
They use a discovery message to find an MDS
they can use. A discovery message is a broadcast
type packet containing a client’s id, IP and port.
A client broadcasts the discovery message to the
network. It then picks the MDS with the shortest
response time as its relayed server (RS). Once
the RS is chosen, a client transmits all of its
requests to this relayed server. Whenever a client
issues a metadata command (such as read, write,
delete, etc.) to its relayed server, the server will
forward the command to a proper MDS
according to the routing information contained
in its finger table.

Join and leave are two major methods for
an MDS to join to or leave from an MDSC. Join
method is used when a new MDS wants to join
an MDSC. First, it must broadcast a discovery
message to its subnet. It then chooses the first
MDS which sends back a reply message as the
candidate to help it complete the join process.
There are four steps for a new MDS to join an
MDSC: updating its neighbors, initializing its
finger table, updating others’ finger table, and
getting its own metadata from its PD. In step 1,
the candidate is asked to find the two neighbors
of the new MDS. After that, their neighbor
relation is updated by the candidate. In step 2,
the candidate establishes the finger table for the
new MDS. In step 3, the candidate sends update
messages to update finger tables of other MDSes.
The update messages are sent to those MDSes
which are the PD of the following hash keys:

N – 2i, i = 0, 1, 2, 3,. …, log(hash space) -1
if the generated hash key < 0,
generated hash key = generated hash key + hash
space, where N is the hash key of the new MDS.

After receiving the update message, an
MDS forwards the update message to its PD.
The process terminates when a PD has been
updated by the same update message. Thus,
update messages propagate counterclockwise on
the ring network of the MDSC. In step 4, the
new MDS receives the metadata that it should
control from its PD. Once these four steps have
been performed, the joining process of the new
MDS is completed and it becomes a member of
the MDSC.

Leave message is used when an MDS must
be shutdown or rebooted. Before one MDS can
leave from an MDSC, it must move the metadata
it controls to its SC and then sends a leave
messages to notify those SC-Fs in its finger table.
After receiving a leave message, an MDS relays
this message to its SC. This process completes

when any SC has been updated by the same
leave message previously. Therefore, the leave
message looks like walking clockwise on the
ring network of the MDSC to update other
MDSes. Although the system can be
reconfigured with the above two methods, the
unpredictable failure of an MDS can destroy the
whole system. We will present a reliable solution
in section 3.3 and discuss it in section 4.

Although metadata delivering path is short,
it still takes time to deliver on the network. The
network speed is much slower than CPU and
memory, so we need a mechanism to get desired
metadata in one hop to achieve high
performance. In section 3.2, we describe a
caching method on a client side to improve the
performance.

Fig. 1 MDSC architecture

3.2 Lazy Cache of Routing Information
on Client End (LC-RIC) to Improve
Performance

Although DHT-MDS has an efficient
routing policy, its performance and scalability
can still be improved further. This is because an
operation packet may need to propagate through
more than one hop to reach destination MDS and
the network communication time is still much
larger than CPU time, especially for small
packets. This problem may be relieved by client
side caching. We devise a lazy cache mechanism
called Lazy Cache of Routing Information on
Client End (LC-RIC). Lazy means that we only
update it on demand. LC-RIC caches the id, ip,
and port of an MDS on clients. If the destination
MDS could be found in a client’s cache table,
only one hop is required to reach the destination
MDS. Otherwise the request messages must go
through routing processes described above. Once
the request message returns, the destination

MDS is found and added to the client’s cache
table. From here on, only one hop is needed to
reach the MDS.

LC-RIC lazily updates a client’s cache
table when any MDS joins or leaves. It means a
client doesn’t update its cache table immediately
when any MDS joins or leaves. For example,
when the first time a client accesses its metadata
on a new MDS, it can send the request to the
closest MDS in its cache table. After that request
returns, the new coming MDS will be added to
its cache table. The new coming MDS is found
now. If a client accesses an MDS which has left,
a connection error exception will be returned to
it. It deletes the MDS from its cache table and
retransmits the unsuccessful request again to the
closest MDS in its cache table. Thus, the client
lazily deletes the leaving MDS from its cache
table.
3.3 Reliable DHT-MDSC (RDHT-MDSC)

DHT-MDSC can become useless if any
metadata server fails. In order to improve its
reliability, we have also implemented a reliable
DHT-MDSC (RDHT-MDSC). RDHT-MDSC
can tolerate the failure of any metadata server.
Our design replicates each MDS’ metadata to its
successor and records some additional
information to recover the ring structure of
DHT-MDSC if broken. An MDS must record its
N-SC and F-PD. Each successor of SC-F in its
finger table also needs to be recorded. In the
following we will illustrate how to reconstruct
the ring structure when it is broken because of a
failed MDS. If an MDS fails (no responses from
ping message), its SC will receive a connection
abort exception. These ping messages are
maintained between two neighboring MDSes.
There are two steps to handle the reconstruction
process: reconstruct the neighboring relation and
update the finger tables of affected MDSes. In
the following, we call the SC of a failed MDS
SF-MDS (successor of the failed MDS) and its
PD PF-MDS (predecessor of the failed MDS). In
step 1, the PD and F-PD of SF-MDS are
changed to PF-MDS and its PD respectively.
After that, SF-MDS sends an “update
front-predecessor” message to its SC. Then, the
F-PD of its SC is changed to PF-MDS. The same
process is required for PF-MDS and its PD. In
step2, SF-MDS sends failure messages to all
affected MDSes stored in its finger table. When
the failure message arrives at an MDS, it deals
with the message (updating its finger table entry
if needed) and forwards the message to its SC.
The process terminates when any SC has
received the same failure message previously.
After all of the MDSes in SF-MDS’s finger table
return acknowledgements, the ring structure has
been reconstructed and the MDSC can handle
new requests as usual again. The time it takes to

reconstruct a ring is called “reconstruction time”.
In order to tolerate future MDS failure, we need
to duplicate each MDS’s metadata to its SC. The
time taken to copy metadata depends on the size
of metadata stored in an MDS.

MDS1
MDS2

MDS3

MDS4

MDS5MDS6

MDS7

MDS8

MDS9

9 1
1 2

2 3

3 4

4 55 6

6 7

7 8

8 9 MDS1

MDS3

MDS5

MDS7

MDS9

9 1

2 3

4 5

6 7

8 9

MDS1

MDS3

MDS5

MDS7

MDS9

9 1

2 3

4 5

6 7

8 9

9 1

2 3

4 5

6 7

8
(a) (b)

(c)

Fig. 2 Reconstruction of RDHT-MDSC

Fig. 2 shows the metadata relocation
processes of our RDHT-MDS. Originally, there
are nine MDSes with their metadata represented
on top of them. Each metadata has a number that
represents where it comes from. Now suppose
MDS2, MDS4, MDS6 and MDS8 fail
simultaneously, the metadata controlled by them
can be found on MDS3, MD5, MDS7 and MD9
respectively. Therefore the system can tolerate
multiple failed MDSes and continue to function.
However, currently the system can not tolerate
the failure of two side-by-side metadata servers
since their metadata can not be recovered
elsewhere. We feel it is less likely that two
neighboring nodes fail simultaneously. Finally,
all of the survival MDSes will transmit their
metadata to their SCs in order to tolerate future
failure of metadata servers as shown in Fig. 2 (c).
Therefore the system can tolerate not only the
usual failure of one MDS but also the
simultaneous failures of multiple MDSes as long
as no side-by-side metadata servers fail
simultaneously.

4 Performance Evaluations
 In this section we study the performance
of DHT-MDSC and RDHT-MDSC. Even though
we think that hash key based system has better
performance than traditional subtree system, it is
important to quantify their performance gap. We
use five IBM e-servers as metadata servers
(MDSes), five Supermicro 1UTwin servers as
clients, and connect them with 3com Gigabit
Ethernet. The hardware configuration of MDSes
and clients is listed in Table 1. All of them use
Windows Server 2003 operating system.

Table 1 Hardware configuration of MDSs and
clients
Metadata
Server

CPU One Intel Xeon CPU 2.8G
Memory 512MB DDR 266
NIC Broadcom NetXtreme

Gigabit Ethernet
Client CPU Two Xeon CPU 2.33G

(Core2 Quad)
Memory 2GB DDR2-667 X 2
NIC Intel(R) Pro/1000 EB

Gigabit Ethernet
Network
connection

Gigabit
switch

3C16479 3Com 4226T
3C17300 Switch

In order to select a suitable hash space for

our tests, we measure read and write latencies
for a hash space ranging from 100 to 1300. We
use one IBM e-server as an MDS and one
Supermicro 1UTwin with eight physical CPU
cores on it as clients. Therefore eight client
threads can run on eight different physical CPU
cores. Each client issues 25,000 metadata write
requests (each with different file pathname), and
then read them back. Once an operation is issued,
the client must wait until the acknowledgement
returns. The results are shown in Fig. 3. Fig. 3 (a)
plots the write and read latency as a function of
hash space size. Fig. 3 (b) plots the write and
read latency as a function of average linked list
length corresponding to each hash space size.
The average linked list length is computed as
total metadata numbers (8 x 25,000 = 200,000)
divided by the specified hash space. Therefore,
as shown in Fig. 3 (b), when the average length
of each linked list is less than 500, the time
required to search the linked list is insignificant.
Hence, the length of linked lists used in all of the
measurements is less than 500.
 To study the performance and scalability
of the system without caching, we disable
LC-RIC on DHT-MDSC in the following
measurements. The range of hash keys
controlled by each server is the same. We run
eight client threads on each Supermicro 1UTwin,
so the number of clients in our test bench is
between 8 and 40. Each client issues 12,500
metadata write requests (each uses a different
file pathname), and then read them back. We do
the measurement 10 times and average the total
time taken on each client. In this test the hash
space is set to 1024 and the average length of
each linked list is 488. As we can see from Fig 4,
the result is disappointing and distressful since
both write and read latencies increase as more
metadata servers are used. This is opposite to
what we see in Fig. 5 (to be described in the next
paragraph) where caching (LC-RIC) is used.
This is because every metadata request must go
through the routing path to reach destination
metadata server. Hence, metadata servers are
always busy in relaying requests on the ring
network. Furthermore, the more metadata

servers we add, the longer routing path requests
must go through. Therefore, the performance is
negatively impacted as more metadata servers
are used.

The scalability for our DHT-MDSC and
RDHT-MDSC are also studied as follows. All of
the settings are the same as described in the
previous paragraph except LC-RIC is turned on
here. In Fig. 5, we can see that the performance
of our DHT-MDSC scales very well as the
number of metadata servers is increased. When
the number of clients is 40, both write and read
performances improve by a factor of about 4.5 as
we increase the number of metadata servers from
one to five. This is in contrast to the results
shown in Fig. 4 where LC-RIC is turned off.
Therefore, LC-RIC is a critical mechanism to
make DHT-MDSC scale with the number of
metadata servers. Both the write and read
latencies of using only one MDS increase
nonlinearly when more clients are added. As the
number of clients is increased, more requesting
packets are generated and sent to the MDS.
However, the server interface card may not be
able to handle all of them and some packets may
get dropped. This is relieved when more MDSes
are used.

Fig. 6 shows the write and read
performances of our RDHT-MDSC. For write
performance using two metadata servers, the
latency grows nonlinearly when the number of
client is larger than 24. We can use this result to
suggest the number of MDS that should be used
in the system if write performance is a critical
design factor. For example, if the number of
clients is 24, then at least two metadata servers
should be used if write performance is critical.
The read performance is almost the same as in
DHT-MDSC due to the same read mechanism.

(a)

(b)

Fig. 3 (a) Write and read latency vs. hash space
size, (b) latency vs. length of linked list

Fig. 4 Write and read performance of
DHT-MDSC without using LC-RIC

Fig. 5 Write and read performance of

DHT-MDSC using LC-RIC

Fig. 6 Write and read performance of

RDHT-MDSC using LC-RIC

In order to measure the “reconstruction
time” described in section 3.3, we use five
IBM e-server as metadata servers (MDSes).
One of them is shut down suddenly in the
middle of processing requests. The
reconstruction time is equal to end time minus
start time. Start time is initialized in SF-MDS
once the ping message is not returned by the
failed MDS. After the process of updating the
failed MDS’s neighbors, SF-MDS sends failure
messages to those MDSes in its finger table.
After all of them return acknowledgements to
SF-MDS, the end time is recorded. The
“reconstruction time” of recovering from one
MDS failure in our RDHT-MDSC is shown in
Fig. 7. It can be seen that the metadata server
cluster can reconstruct itself in less than 18
milliseconds and be ready to service requests
from clients again.

Fig. 7 The reconstruction time of RDHT-MDS

when one MDS fails
5 Conclusions

In this paper we present the design and
implementation of our DHT-MDSC and
RDHT-MDSC. The architecture supports a
scalable, reliable, and high performance
metadata file system. The system is also very
flexible to allow an MDS to join to or leave from
the metadata server cluster (MDSC). Therefore,
the system does not need to be shut down for
hardware upgrade, periodical check or planned
maintenance. LC-RIC is a smart and efficient
caching mechanism to significantly improve the
performance of RDHT-MDSC. The
reconstruction time of RDHT-MDSC is less than
18 milliseconds. The other advantage of
RDHT-MDSC is that it can recover itself from
the failure of multiple metadata servers as long
as no two side-by-side metadata servers fail
simultaneously.

6 Acknowledgements
The authors would like to thank the support from
National Science Council under grant
96-2221-E-007-131-MY3.

References

[1] D.Roselli, J.Lorch, and T.Anderson, “A
Cmparison of File System Workloads,”
Proceedings of the 2000 USENIX Annual
Techical Conference, pp. 41-54, Jun 2000.

[2] Scott Brandt, Ethan L. Miller, Darrell D. E.
Long, and Lan Xue, “Efficient Metadata
Management in Large Distributed File
Systems,” NASA/IEEE Symposium on Mass
Storage Systems and Technologies (MSST
2003), pp. 290–298, San Diego, California,
April 7–10, 2003.

[3] Zhou Gongye, Lan Qiuju and Chen Jincai, “A
Dynamic Metadata Equipotent Subtree
Partition Policy for Mass Storage System,”
Frontier of Computer Science and Technology
FCST, 1-3 November, 2007. Los Angeles:
IEEE Computer Society, 2007.29-34

[4] Jin Xiong, Rongfeng Tang, Sining Wu, Dan
Meng, Ninghui Sun, “An Efficient Metadata
Distribution Policy for Cluster File Systems,”
IEEE International Conference on Cluster
Computing (Cluster2005), September 26-30,
2005, Boston, USA.

[5] Ion Stoica, Robert Morris, David Liben-Nowell,
David R. Karger, M. Frans Kaashoek, Frank
Dabek, Hari Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Protocol for Internet
Applications,“ IEEE/ACM Transactions on
Networking, Vol. 11, No. 1, pp. 17-32, February
2003.

[6] Carns, P.H., Ligon III, W.B., Ross, R.B.,
Thakur, “PVFS: A parallel file system for linux
clusters,” 4th Annual Linux Showcase and
Conference, Atlanta, GA, pp. 317–327, 2000

[7] Mesnier, M., Ganger, G.R., Reidel, E.,
“Object-Based Storage,” IEEE
Communications Magazine 41(8), 84–90, 2003

[8] B. Pawlowski, C. Juszczak, P. Staubach, C.
Smith, D. Lebel, and D. Hitz, “NFS version 3:
Design and implementation,” Preceedings fo
the Summer 1994 USENIX Technical
Conference, pp. 137-218, Apr. 2003.

[9] J. H. Morris, M. Satyanarayanan, M. H. Conner,
J. H. Howard, D. S. H. Rosenthal, and F.D.
Smith, “Andrew: A distributed personal
computing environment,” Communications of
the ACM, 29(3):184-201, Mar, 1986.

[10] P. F. Corbett and D. G. Feitelson, “The Vesta
parallel file system,” ACM Transactions on
Computer Systems, 14(3)225-264, 1996.

[11] P. Braam, M. Callahan, and P. Schwan, “The
intermezzo file system,” Proceedings of the 3rd
of the Perl Conference, O’Reilly Open Source
Convention, Monterey, CA, USA, Aug, 1999.

[12] Chord: http://pdos.csail.mit.edu/chord/

