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Abstract-In this paper, we propose a new
framework for data stream mining, called the
weighted sliding window model. The proposed
model allows the user to specify the number of
windows for mining, the size of a window, and the
weight for each window. Thus, users can specify a
higher weight to a more significant data section,
which will make the mining result closer to user’s
requirements. Based on the weighted sliding
window model, we propose a single pass algorithm,
called WSW(Weighted Sliding Window mining), to
efficiently discover all the frequent itemsets from
data streams. By analyzing data characteristics,
an improved algorithm, called WSW-Imp, is
developed to further reduce the time of deciding
whether a candidate itemset is frequent or not.
Empirical results show that WSW-Imp outperforms
WSW under the weighted sliding windows.
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1. Introduction

Data mining has attracted much attention in
database communities because of its wide
applicability [1-3,11,18,19]. One of the major
applications is mining association rules in large
transaction databases [2]. With the emergence of
new applications, the data we process are not again
static, but the continuous dynamic data stream
[4,7-9,13,14,16,17]. Examples include network
traffic analysis, Web click stream mining, network
intrusion detection, and on-line transaction
analysis.

Because the data in streams are continuous and
unbounded, generated at high speed rate, there are
three challenges for data stream mining [20]. First,
each item in a stream should be examined only
once. Second, although the data are continuously
generated, the memory space could be used is
limited. Third, the new mining result should be

presented as fast as possible. In the process of
mining association rules, traditional methods for
static data usually read the database more than
once. However, due to the consideration of
performance and storage constraints, on-line data
stream mining algorithms are restricted to make
only one pass over the data. Thus, traditional
methods cannot be directly applied to data stream
mining.

There are many researches on mining frequent
itemsets in a data stream environment [5-6,13].
The time models for data stream mining mainly
include the landmark model [15], the tilted-time
window model [10] and the sliding window model
[6]. Manku and Motwani [15] proposed the Lossy
Counting algorithm to evaluate the approximate
support count of a frequent itemset in data streams,
based on the landmark model. Giannella et al. [10]
proposed techniques for computing and
maintaining all the frequent itemsets in data
streams. Frequent patterns are maintained under a
tilted-time window framework in order to answer
time-sensitive queries. Chang and Lee [5]
developed a method to discover frequent itemsets
from data streams. The effect of old transactions
on the current mining result is diminished by
decaying the weight of the old transactions as time
goes by. It can be considered as a variation of the
tilted-time window model.

Chi et al. [6] introduced a novel algorithm,
Moment, to mine closed frequent itemsets over
data stream sliding windows. An efficient
in-memory data structure, the closed enumeration
tree (CET), is used to record all closed frequent
itemsets in the current sliding window. Ho et al.
[12] proposed an efficient algorithm, called
IncSPAM, to maintain sequential patterns over a
stream sliding window. The concept of bit-vector,
Customer Bit-Vector Array with Sliding Window
(CBASW), is introduced to efficiently store the
information of items for each customer.

In the traditional sliding window model, only
one window is considered for mining at each time
point. In this paper, we propose a new flexible
framework, called the weighted sliding window



model, for continuous query processing in data
streams. The time interval for periodical queries is
defined to be the size of a window. The proposed
model allows users to specify the number of
windows for mining, the size of a window, and the
weight for each window. Thus, users can specify a
higher weight to a more significant data section,
which makes the mining result closer to user’s 
requirements. Based on the weighted sliding
window model, we propose a single pass algorithm,
called WSW, to efficiently discover all the
frequent itemsets from data streams. Moreover, by
data characteristics, an improved algorithm, called
WSW-Imp, is explored to further reduce the time
of deciding whether a candidate itemset is frequent
or not. Empirical results show that WSW-Imp
outperforms WSW for mining frequent itemsets
under the weighted sliding windows.

The rest of this paper is organized as follows.
Section 2 describes the motivation for developing
the weighted sliding window model. In Section 3,
the algorithm WSW is proposed for efficient
generation of frequent itemsets. The improved
WSW-Imp is explored to reduce the time of
deciding whether a candidate itemset is a frequent
itemset or not in Section 4. Comprehensive
experiments of the proposed algorithms are
presented in Section 5. Finally, conclusions are
given in Section 6.

2. Motivation

The framework of the weighted sliding window
model is as shown in Figure 1. The model has the
following two features:
(1) In traditional sliding window model, the size

of a window is usually defined to be a given
number of transactions, say T. In our proposed
model, the size of a window is defined by time.
The purpose is to avoid the case where
intervals that cover T transactions at different
time points may vary dramatically.

(2) The number of windows considered for
mining is specified by the user. Moreover, the
user can assign different weights to different
windows according to the importance of data
in each section.

We give examples to explain the essence of the
weighted sliding window model. Assume that the
current time point for mining is T1, the number of
sliding windows is 4 and the time covered by each
window is t. (We call t the size of a window.) The
weight j assigned for window jw1 is as

follows: 1 = 0.4, 2 = 0.3, 3 = 0.2, 4 = 0.1,
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j . Assume the support counts of item a in

11w , 12w , 13w and 14w are 10, 20, 50 and 100,
respectively. The support counts of item b in 11w ,

12w , 13w and 14w are 80, 50, 20, and 20,
respectively. We define the weighted support
count of an itemset x to be the summation of the
product of the weight and its support count in each
sliding window. Thus, the weighted support count
of item a is
100.4+200.3+500.2+1000.1=30, and the
weighted support count of item b is
800.4+500.3+200.2+200.1=53. Suppose
that the numbers of transactions contained in 11w ,

12w , 13w and 14w are 300, 200, 200 and 300,
respectively, and the minimum support is 0.2.
Then the minimum support counts for 11w , 12w ,

13w and 14w are 60, 40, 40 and 60, respectively.
We define the minimum weighted support count to
be the summation of the product of the weight and
the minimum support count for each sliding
window. In the given example, the minimum
weighted support count is 600.4 + 400.3 +
400.2 + 600.1=50. Observe item a and item
b：
 The summation of the support counts for

item a in 11w , 12w , 13w and 14w is 180.
But its weighted support count is 30 which is
less than the minimum weighted support
count. Thus, it would not be considered as a
frequent item in the weighted sliding
window model.

 The summation of the support counts for
item b in 11w , 12w , 13w and 14w is
170. But its weighted support count is 53
which is greater than the minimum weighted
support count. Thus, it would be considered
as a frequent item in the weighted sliding
window model.

From the above example, we can see that the
weights of windows will affect the determination
of frequent items. Even if the total support count
of an item is large, if its support count in the
window with a high weight is very low, it may not
become a frequent item. Thus the consideration of
weights for windows is reasonable and significant.
We believe that the mining result will be closer to
user’s requirementsusing the weighted sliding
window model.
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Figure 1. The weighted sliding window model

3. Mining Frequent Itemsets over
Weighted Sliding Windows

In this section, we propose algorithm WSW to
discover all the frequent itemsets in the transaction
data stream over weighted sliding windows.

An itemset is the set of items. If the weighted
support count of an itemset is greater than or equal
to the minimum weighted support count, it is
called a frequent itemset. An itemset of size k is
called a k-itemset. Assume the number of windows
is n, the size of a window is t, the current time
point is Ti, and x1,x2,...,xk are items. The
transactions considered are those within the time
range of Ti and (Ti - nt ). Let SPij({x1,x2,...,xk})
be the set of identifiers of transactions containing
itemset {x1,x2,...,xk} in window Wij )1( nj  and

j the weight of Wij. |SPij({x1,x2,...,xk})| represents

the number of transaction identifiers in
SPij({x1,x2,...,xk}).

Definition 1: If
1

n

j
 |SPij ({x1,x2,...,xk})| j is

greater than or equal to the minimum weighted
support count, {x1,x2,...,xk} is a frequent k-itemset。

Lemma 1：If itemset {x1,x2,...,xk} is a frequent
k-itemset, then any proper subset of {x1,x2,...,xk} is
also a frequent itemset.

Similar to the method of Apriori[3], we use
frequent (k-1)-itemsets to generate candidate
k-itemsets. Suppose Lk-1 is the set of all frequent
(k-1)-itemsets. X[1],X[2],…,X[k-1] represent the
k-1 items in the frequent (k-1)-itemset X and
X[1]<X[2]<…<X[k-1].

Definition 2: The set of candidate k-itemsets(k2),
Ck, is defined as
Ck={{Xp[1],Xp[2],…,Xp[k-1],Xq[k-1]}|XpLk-1

and XqLk-1 and Xp[1]=Xq[1],
Xp[2]=Xq[2],…,and Xp[k-2]=Xq[k-2],
and Xp[k-1]<Xq[k-1]}

Different from the method of Apriori, the
database is scanned only once. When a candidate
itemset is generated, we can determine whether it
is a frequent itemset or not by evaluating its SPij

value. The detailed algorithm is shown in Figure 2.
Besides, we can easily maintain all the frequent
itemsets by WSW algorithm. For example,
consider Figure 1. Assume we have all the
frequent itemsets in window W1j at time point T1.
At time point T2, for each item x, SP24({x}) =
SP13({x}), SP23({x}) = SP12({x}), SP22({x}) =
SP11({x}). We only need to scan the data in W21

once in order to get SP21({x}). Once SP2j value of
each item is obtained, all the frequent 1-itemsets

input: the number of windows: n,
the minimum support: S,
the size of a window: t,
the weight of window Wij(1jn): j

Step 1: Assume the current time point is Ti.
i=1; .
Scan window Wij(1jn) once and
evaluate SPij({x}) for each item x.

Step 2: Assume the number of transactions
contained in Wij is Nij. The minimum
weighted support count is

 


n

j
ijj NS

1
)( .

Step 3: L1={{x} | the weighted support count of
item x the minimum weighted
support count};

Step 4: for (k=2;|Lk-1|＞1;k++) do begin
Step 5: Generate candidate k-itemset Ck by Lk-1 ;
Step 6: for each candidate itemset cCk

do begin
Step 7: Assume c is generated by Xp and Xq.

SPij(c)=SPij(Xp)SPij(Xq)
(1jn) ;

Step 8: If the weighted support count of c
the minimum weighted support
count

Step 9: then Lk= Lk{c}
Step 10: end
Step 11: end
Step 12: i=i+1 ; Ti = Ti-1 + t;
Step 13: for (j=1;jn-1;j++) do begin

SPi(j+1)({x})=SP(i-1)j({x}) for each
item x;

end
Step 14: Scan Wi1 once.

Evaluate SPi1({x}) for each item x.
Step 15: Go to Step 2

Figure 2. Algorithm WSW



can be generated. According to Step 4 in the
algorithm, we can discover all the frequent
k-itemsets (k2) at time point T2.

Figure 3. Algorithm WSW-Imp

4. An Improved Algorithm WSW-Imp

In this section, we propose a technique to
improve the efficiency of algorithm WSW.
Assume the number of windows is n, the current
time point is Ti and the weight of window
Wij )1( nj  is j .

Let Xp and Xq be frequent (k-1)-itemsets.
Suppose they are joined to generate a candidate
k-itemset c according to Definition 2.

Lemma 2: Let Sp and Sq be the weighted support
counts of Xp and Xq, respectively, and Sc the
weighted support count of candidate k-itemset c. Sc

is less than or equal to the minimum of Sp and Sq

(denoted as min{Sp,Sq}).

Let S’be min{Sp,Sq} and Sm the minimum
weighted support count. If the weighted support
count Sc of candidate k-itemset c is greater than or
equal to Sm, c is a frequent k-itemset. Assume c is a
frequent k-itemset. γ represents the maximum
difference of the weighted support count of c and
the minimum weighted support count. The initial
value of γis S’Sm. According to the definition of
SPij, SPij(c)=SPij(Xp)SPij(Xq), and
|SPij(c)|min{|SPij(Xp)|,|SPij(Xq)|}. Let y be
min{|SPij(Xp)|,|SPij(Xq)|}. y-|SPij(c)| represents the
difference of the maximum number and the real
number of transactions containing itemset c in

window Wij. If (y-|SPij(c)|)  j > γ, then the

assumption that c is a frequent itemset is
contradicted. Thus the process of evaluating the
weighted support count of c stops. Otherwise, if
(y-|SPij(c)|) j γ, c may be a frequent itemset.

Then the process of evaluating the weighted
support count of c in the next window continues
and γis updated to γ-(y-|SPij(c)|) j . In the last

window, if (y-|SPij(c)|) j is still less than or

equal to γ, then itemset c is truly a frequent
itemset.

Based on the above discussion, we design an
improved method to reduce the time of
determining whether a candidate itemset is
frequent or not. In Section 3, when a candidate
itemset is considered, algorithm WSW needs to
evaluate its weighted support count in each
window. However, the improved algorithm, called
WSW-Imp as shown in Figure 3, may decide
whether it is a frequent itemset or not in early
windows. In other words, if we cannot decide
whether it is frequent or not in the present window,
then the data in the next window is considered.
The process continues until the candidate itemset
is judged not to be a frequent itemset or the last
window is considered. Thus the number of
windows needed to be considered is within the
range 1 to n by algorithm WSW-Imp.

We replace Step 7 ~ Step 9 in algorithm WSW
with these steps in Figure 3. The initial value of
flag is 0, indicating that itemset c may be a
frequent itemset. When flag becomes -1, it
represents that itemset c is not a frequent itemset.
Algorithm WSW-Imp may gain better
performance by reducing the number of windows
to be considered.

5. Experimental Results
To assess the performance of WSW and

WSW-Imp, we conducted several experiments on
1.73GHz Pentium-M PC machine with 1024 MB
memory running on Windows XP Professional. All
the programs are implemented using Microsoft
Visual C++ Version 6.0. The method used to
generate synthetic transactions is similar to the one
used in [3]. Table 1 summarizes the parameters
used in the experiments. The dataset is generated
by setting N=1,000 and |L|=2,000. We use
Ta.Ib.Dc to represent that |T|=a, |I|=b and
|D|=c×1,000.

To simulate data streams in the weighted sliding
window environment, the transactions in the

Assume the candidate itemset c is generated by
frequent itemsets Xp and Xq ;
flag = 0; j = 1; Sc = 0; = S’- Sm;
Step 1: while (flag=0 and jn) do {

// n is the number of windows
Step 2: SPij(c)= SPij(Xp) SPij(Xq);
Step 3: y = min{|SPij(Xp)|,|SPij(Xq)|};
Step 4: if ((y-|SPij(c)|) j >γ) then

Step 5: flag = -1
// It indicates that c is not a frequent itemset.

Step 6: else {Sc=Sc+|SPij(c)| j ;

γ=γ-(y-|SPij(c)|) j ;

Step 7: j++; }} //Go to Step 1 for
evaluating the weighted
support count of c in the
next window.

Step 8: if flag=0 then Lk= Lk{c}



synthetic data are processed in sequence. For
simplicity, we assume that the number of
transactions in each window is the same. In the
following experiments, the number of windows is
4 and the weights for windows w1, w2, w3 and w4

are 0.4, 0.3, 0.2 and 0.1, respectively, where w1 is
the window closest to the current moment.

Figure 4 and Figure 5 compare the efficiency of
algorithms WSW and WSW-Imp. The total
number of transactions is 100K and the number of
transactions in each window is 10K. (We call it the
window size in experiments.) Because the number
of windows is 4, the number of time points for
mining is 7. The execution time in the experiment
is the total execution time at seven different time
points. Figure 4 shows the execution times for
WSW and WSW-Imp, respectively, over various
minimum supports. We can see that as the
minimum support decreases, the superiority of
WSW-Imp is more apparent. In Figure 5, the
minimum support is 0.5%. It can be seen that the
execution times for these two algorithms grow
when the average size of transactions increases.
However, WSW-Imp is still superior to WSW in
all the cases.

Table 1. Parameters

Parameter Description
N Number of items
L Number of maximal potentially

frequent itemsets
D Number of transactions
T Average size of the

transactions
I Average size of the maximal

potentially frequent itemsets

In the scale-up experiment of Figure 6, the
minimum support is 0.1%. It shows that the
average ratio of WSW-Imp outperforming WSW
maintains about 12% in all the cases. Figure 7
shows the effect of various window sizes from 1K
to 20K transactions. The minimum support is 0.5%.
It can be seen that when the window size increases,
the difference of the execution times for WSW and
WSW-Imp decreases. This is because when the
window size is small, the number of transactions
containing frequent itemsets in each window is
small. Thus, the probability of judging a candidate
itemset to be not a frequent itemset at early
windows is high. In general, the performance of
WSW-Imp is still better than that of WSW.

6. Conclusions

In this paper, we propose the framework of the
weighted sliding windows for data stream mining.
Based on the model, users can specify the number
of windows, the size of a window, and the weight
for each window. Thus, a more significant data
section can be assigned a higher weight, which
will make the mining result closer to user’s
requirements. Based on the weighted sliding
window model, an efficient single pass algorithm,
WSW, is developed to discover all the frequent
itemsets from data streams. By data characteristics,
an improved algorithm, WSW-Imp, is explored to
further reduce the time of deciding whether a
candidate itemset is frequent or not. Experimental
results show that the performance of WSW-Imp
significantly outperforms that of WSW over
weighted sliding windows.
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Figure 4. Execution times of WSW and WSW-Imp
over various minimum supports (T5.I4.D100)
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