
Improving Performance of Linux File System with Adaptive File Rearrangement

Kai-Yu Cheng, Chung-Wei Tsai, Mei-Ling Chiang

Department of Information Management, National Chi-Nan University, Puli, NanTou 545, Taiwan,

Republic of China

henry0311@gmail.com, nightfly0205@gmail.com, joanna@ncnu.edu.tw

Abstract-Though computer devices are innovated

continuously with the evolution of the technology, hard disk

is still the bottleneck of the system performance. In this

paper, we propose an adaptive file rearrangement

mechanism to reduce disk seek times in accessing files to

improve file system performance. Basically, frequently

accessed files will be dynamically migrated to the space

located at the center of the hard disk during the

manipulation of disk files. Besides, we exploit application

provided data access behavior to create hot files in the

central disk. Furthermore, for the cost-effective concern,

we also propose a method to reduce the file migration

overhead. If the original disk location of a file to be

migrated is close enough to the central disk, the file will not

be migrated.

We have implemented the proposed adaptive file

rearrangement mechanism by modifying the Ext3 file

system of Linux kernel 2.6. Experimental results show that

our modified Ext3 file system can effectively decrease disk

access time and improve file system performance.

Keywords: File System, Seek Time, Cylinder

1. Introduction
Many computer devices are innovated continuously with

the evolution of the technology. However, hard disk is still

the bottleneck of the system performance. The data access

time of the hard disk includes seek time, rotation latency,

and transfer time. Among them, the seek time occupies most

of the time in the access time. The seek time is the disk

head movement time needed to read and write the sector in

the target cylinder. When the data is stored discontinuously

in the disk, the disk head needs to move more distances in

order to access the data. Therefore, it will decrease the hard

disk transfer rate and affect the system performance. Thus,

lots of researches [1-6] focus on reducing the seek time in

access files.

On the other hand, when a disk has been accessed for a

long time, lots of data are inserted, deleted, and modified in

the disk. The store of files in the disk may become vary

chaotic and the way of data allocation will affect the system

performance. There are researches exploring how to

allocate data effectively, such as the organ pipe heuristic [5]

and the adaptive block rearrangement [1]. Adaptive block

rearrangement will put hot data blocks (i.e. frequently

accessed data blocks) toward the central cylinders of the

disk because hot data blocks have higher access frequencies.

In this way, system can decrease the disk head movement

distance and the seek time to improve the system

performance.

Because the seek time for accessing files in disk will

spend most of the time, therefore, in this research we will

focus on how to reduce the seek time of the hard disk and

how to store hot files in the central cylinders of the disk. By

doing this, the disk head can move inside the central

cylinders of the disk which can shorten the disk head

movement distance and improve the access speed for

accessing frequently accessed files. Basically, we will store

the hot files into the central cylinders of the disk. The

storage area of the central cylinders in the disk is named

Reserved Area. When a file is accessed, the system will

count the number of reading and writing times of this file.

The system will check the storage space in the central

cylinders of disk regularly and move the old articles

according to LRU (Least Recently Used) strategy to ensure

that there are enough free space for storing hot articles in

the central cylinders of the disk. Besides, number of the

access times of reading and writing a file is counted to

determine whether an article becomes hot. The hot file will

be moved to the central cylinders of the disk to improve the

speed of accessing. However, if the storage location of this

article in the disk is near the central cylinders of the disk,

this article will not be moved to decrease the system

overhead.

We take BBS system an example in this research

because files will be read and written frequently in this

system and the access frequencies of them are different.

Besides, BBS system provides the information of hot

boards or hot articles. Every board is a directory and every

article is stored a file. The frequently accessed articles are

stored in the ten hot boards. We modify the route of

accessing files to dispose hot files in the central cylinders of

the disk using the information provided by the application.

We hope to improve the performance of file system by

decreasing the movement of disk head to decrease the seek

time.

We have implemented our work in Linux 2.6. We

modify the EXT3 file system [7] and design a test program

to imitate the characteristic of reading and writing of a BBS

system. The result of experiments shows that files access in

the modified Exts3 files system has effective performance

improvement over the original Ext3 files system. Besides, if

the original disk location of a file to be migrated is close

enough to the central disk, the file will not be migrated.

This method can further improve the file system

performance.

2. Background and Related Work
Section 2.1 describes the optimization of disk layout.

Section 2.2 introduces the adaptive block rearrangement.

Section 2.3 describes restructuring based on seek time.

2.1 Organ Pipe Heuristic
According to the research of C. K. Wong, organ pipe

heuristic [1,5] can be used to achieve the best allocation for

files when the access frequencies of the files are different.

Organ pipe heuristic puts the frequently accessed files to the

cylinders at the center of the disk, and the next most

frequently accessed data in either side of the center. On the

other hand, the least frequently accessed files will be put in

the border cylinders of the disk. The total distance of the

disk head movement could be shortened effectively and the

seek time will be decreased to improve the performance of

file system.

2.2 Adaptive Block Rearrangement
Adaptive Block Rearrangement [1] was proposed by

Akyurek and Salem to decrease seeks time effectively. This

technique creates several cylinders at the center of disk to

reserve some space to store the recently frequently access

blocks. The system can analyze access frequencies and

distinguish data blocks which dynamically copied from

their original disk locations to a reserved space near the

central of disk. When a data block is being accessed, the

system will look up the block-remapping table [1] to see it

is in the reserved space. This technique can decrease seek

time effectively when the disk head mostly accesses the

frequently accessed data blocks.

2.3 Dynamically Restructuring Disk Space
McDonald and Bunt [2] proposed a new method that

can dynamically restructure the disk space and restructure a

few parts of crucial files to decrease the seek time. The

author provides a restructuring based on seek time method

(seek time expansion factor, STEF) to select the candidate

file. Experiments show that this method can effectively

increase the disk performance by restructuring a few parts

of crucial files.

3. System Design and Implementation

We first present the system architecture and overview.

We then describe the implementation of our system that is

based on the modification of the EXT3 file system.

3.1 Architecture Overview
We create a space from the center of the disk to be the

Reserved Area (RA) which contains several cylinders in the

center of the disk. And we modify the EXT3 file system of

the Linux kernel. When the application reads/writes the file,

the system will determine the file is a cold file or hot. If it is

a hot file, it will be accessed in the Reserved Area. If it is a

cold file, we will accumulate the frequency of accessing.

Figure 1 shows system architecture. When the access

frequency of the file is over the system set threshold, this

file becomes hot. This file will be moved to the Reserved

Area to decrease the disk head movement distance.

Therefore we can reduce the seek time to improve the

system performance.

Figure 1. Systems architecture

Because moving a file to the Reserved Area will

increase the overhead to the system, for this reason, we

create a new Move_in kernel thread for managing how the

file is moved to the Reserved Area. When a file is

determined to become a hot file, the system will check

whether the storage location of this file in disk is near the

central cylinders. If the location of the file in disk is not

near the central cylinders, it will be moved to the Reserved

Area. If the location of the file in disk is near the central

cylinders, it will be not moved.

Two other kernel threads are created. One is used to

maintain the Reserved Area. When the storage space of the

Reserved Area becomes full, some old files will be moved

from the Reserved Area to outside of this Reserved Area.

The other is used to maintain the total number of entries and

storage space which are in the non-Reserved Area.

The whole system has several functions, such as

managing files in the Reserved Area, managing files in the

non-Reserved Area, reading/writing files, and deleting files.

3.2 Managing files in the Reserved Area
In order to decrease the movement distance of the disk

head, hot files are put in the central cylinders of disk,

because hot files have been accessed frequently. But first of

all we need to know whether the file is in the Reserved Area.

Thus, a table is maintained in RAM to keep track of all of

the files in Reserved Area. The system must access hot files

by the table called hot table which records what files are

stored in Reserved Area. It could be determined that how

many file entries can be stored in the hot table according to

the number of inodes in disk from the Reserved Area.

Because the hot table must be stored in RAM when the

system is booted, we modify Linux kernel source code to

create the hot table in RAM by Linux kernel function

kmalloc() in system booting procedure. Therefore, the

system can access the file in the Reserved Area

conveniently. When the system is accessing files in the

Reserved Area, the entries in the hot table are ordered by

LRU. That is the entry which has been accessed most

recently will be at the head of linked list and the entry

which has not been accessed for the longest time will be at

the tail of linked list.

3.3 Managing files not in the Reserved Area
When the system determines the file is not a hot file, the

file will be accessed on the disk through the original path.

Besides, a table named cold table is allocated in RAM using

the Linux kernel kmalloc() function during the system

booting procedure to record file information about files

which are not hot files. The fields of this table are like those

of the hot table. Besides, we create a “count” field in the

cold table and the value is increased with the counts of

accessing files. If the count value is greater than the system

set threshold, the file becomes hot and the system will

determine whether the file should be moved into Reserved

Area. So the file access frequency can be quickly searched

from the cold table by searching the entry’s “count” field.

3.4 Writing files in the disk
We modify the sys_openat() function of the Linux

kernel 2.6. When system is writing the file by the function,

the system will intercept the file in the function and

determine whether the file is hot. If it is a hot file, the file

will be written into the Reserved Area. We modify the

original path name of this file to concatenate it with

“/reserved” to be the near pathname. Therefore, the file can

be written in the Reserved Area.

Some applications can provide information of hot files.

When the system boots, they will load the log file into RAM.

When the application writes a file, the system will

determine whether it is a hot file by this hot file information.

The file needs to be written in the Reserved Area if it is a

hot file. Otherwise, it will be written in the original storage

space outside the Reserved Area and be counted with the

number of writing times.

If the file is to be written in the Reserved Area, it needs

to add an entry in the hot table. The hot table is maintained

in the least recently used (LRU) order. That is, the most

recently used entry is at the head of the hot table and the

least recently used entry is at the tail of the hot table. If the

hot table already has the file’s information, it means that the

file is to be overwritten. The file’s entry is updated directly

and this entry will be moved to the head of the hot table. It

means that the file is accessed most recently.

If the file is a cold file, it will be written in the disk

using the original pathname. Then, an entry is added in the

cold table which contains the entries for files not written in

the Reserved Area and the “count” field of the entry is set to

1. If there is an entry for the file in the cold table, it means

the file is to be overwritten. Then the number in the count

field of this entry is increased by 1, and the entry is moved

to the head in the cold table. When the number of the count

field is greater than the system set threshold, the system will

determine whether the cold file will become hot and wake

up the Move_in kernel thread to move the file to Reserved

Area. Figure 2 shows the diagram of writing a file in disk.

Figure 2. Writing/reading a file in/from the disk

3.5 Reading files from the disk
We modify the sys_openat() function in Linux kernel.

When applications are reading files, the system will loop up

the hot table whether the file is stored in the Reserved Area.

If the file is in the Reserved Area, the system will

concatenate the “/reserved” with the original pathname.

According to this new pathname, the system will open and

read the target file in the Reserved Area. The file’s

corresponding entry will be moved to the head of the hot

table. It means the article has been read most recently.

If the file is not in the Reserved Area, the system will

read it with the original pathname and update the number of

the “count” field in the cold table. At the same time, the

file’s corresponding entry will be moved to the head of the

cold table. It means that this file has been read most

recently. When the number of the count field of a file is

greater than the system set threshold, the system will

determine that this file has become hot and wake up the

kernel thread Move_in to move the file into the Reserved

Area. Figure 6 shows the diagram of reading a file in disk.

3.6 Deleting files in the disk
Since all the hot files will be written into the Reserved

Area in the disk, so when we want to delete a hot file, we

can not use the original pathname to delete a hot file. We

then modify sys_unlinkat() function in namei.c in Linux

Kernel. When the system wants to delete a file, it will look

up the hot table. If the entry of the file is not in the hot table,

it means that the file is not stored in the Reserved Area.

Otherwise, the file is stored in the Reserved Area. We

modify the original pathname of the file which we want to

delete. Therefore, we can delete the file in the Reserved

Area. Meanwhile, we must delete the information about the

file in the hot table.

Figure 3. Deleting a file in the disk

When the system determines that the file is not in the

Reserved Area, it then checks whether the entry of the file is

in the cold table. If yes, this entry is deleted. Finally, the

file is deleted using the original pathname. Figure 3 shows

the diagram of deleting a file in the disk.

3.7 System maintenance
Because the capacity of the Reserved Area is limited,

we must establish a mechanism to ensure there is enough

available space of the Reserved Area for adding new hot

files and move out the least recently used files in the

Reserved Area. In order to ensure the hot files can be

written in the Reserved Area, the system must check

whether there is enough available space in the Reserved

Area and whether there is enough number of entries

available in the hot table before writing new files every time.

The kernel thread (Move_in) is created and started during

system initialization. It always sleeps to wait for being

woken up by the kernel to move out the least recently used

files until there are enough number of entries and spaces

available in the Reserved Area.

We create a kernel thread (Move_out) which is in

sleeping status to wait for being woken up by the kernel.

When the hot file is in the Reserved Area, the system will

check the number of entries in the hot table and the

available space in the Reserved Area. If there is enough

space, the file is written in the Reserved Area directly.

Otherwise, the kernel thread (Delete_entry) will be woken

up to move the least recently used file out of the Reserved

Area until there is enough space and number of entries.

Then, the thread will sleep again to wait for being woken up

by the kernel at next time.

When the system determines that the file is not a hot file

and writes it outside the Reserved Area, an entry about the

information of this file is added in the cold table. To ensure

there is enough number of entries available to add the new

entry in the cold table, every time when a cold file is written

in disk, a kernel thread (Delete_entry) would maintain the

number of the entries available in cold table.

The kernel thread (Delete_entry) is created and started

during system initialization and it sleeps immediately to

wait for to being woken up by the system. The system will

check that whether there is enough number of entries in the

cold table when writing a cold file every time. If there is

enough space, the file will be written immediately in the

disk. If not, this thread will be woken up to delete the entry

which has not been accessed for the longest time in the cold

table by LRU strategy. Besides, because the cold file is

written in the disk in the original pathname. So the entry of

the file in the cold table only needs to be deleted.

Every time when a file is read or written, the system will

check whether the file’s entry is in the cold table. If not, a

new entry is added into it. If it has been in the cold table,

the same operations would be performed as in Section 3.3.

If the file’s location is near the center of disk, it is not

moved. If not, the system will move the file into Reserved

Area. Figure 4 shows moving a file outside Reserved Area.

1. Select a file with LRU /home/bbs/brd/GH/dir13/11111.txt

2. Modify the pathname /reserved/home/bbs/brd/GH/dir13/11111.txt

4. Write this file outside the Reserved Area

/home/bbs/brd/GH/dir13/11111.txt
Move out

Cold Table

ADD

Hot Table

3. Delete this file in the Reserved Area

path_name size

delete

path_name count

NEW

Figure 4. Moving a file outside he Reserved Area

4. Performance Evaluation

4.1 Experimental Environment
Table 1 shows our experimental environment. We

partition the data disk which installs the BBS system into

three partitions. The first partition is used to store articles of

BBS boards. The second partition is used as the Reserved

Area and stores the BBS TOP 10 Hot Boards. The third

partition is used to install the MapleBBS-3.10-20 system.

Besides, the Reserved Area is about 2.5% of the total hard

disk storage space.

Table 1. Experimental Environment

CPU Pentium 4 1.6GHz

Memory 256MB DDR-266

System Disk

and Data Disk

Seagate BARRACUDA ATA IV 40G

(Model ST240016A), Ultra ATA-100,

7200rpm, 2MB cache

Operating

System

Fedora Core 5（kernel 2.6.18.6）

BBS MapleBBS-3.10.20

To demonstrate that our modified EXT3 file system can

effectively improve the system performance, we design a

benchmark which will simulate the BBS system operation

behaviors, such as: writing, deleting, and reading files.

Finally, this benchmark will recode the elapsed time of the

whole processes and compare it with the time that the same

process spends on the original un-modified file system.

Our designed user-level benchmark can randomly

perform wiring, reading, and deleting operations. We adjust

their ratios in different experiments. We store ten

directories in the Reserved Area as the TOP 10 Hot Boards.

There will be 40 directories in each of them, and it is

convenient for the files management. The non-Reserved

Area which has 400 directories represents that BBS system

has 400 boards, and each of them has 40 directories. The

benchmark can decide the reading ratio of the hot files and

will randomly write files into directories, each file is

4Kbytes. Beside, it will randomly read files or delete files

from those directories. Initially, it will randomly write files

into the hard disk which represents the situation that the

hard disk has been used for reading and writing for a long

time. The experiment will totally perform 204,800 times of

files reading, writing, and deleting operations and record

the elapsed of time the whole processes in the unit of

microseconds.

4.2 Performance Comparison under Various

Access Rates
We compare the performance of the original Linux

EXT3 (O-Ext 3) file system with that of our modified EXT3

file system (M-Ext3). Our benchmark performs 204,800

times of files writing, reading, and deleting. The ratios of

hot files and cold files written in the disk are 9:1. Besides,

we adjust the rate of writing in the benchmark and dividedly

write 10-30% files into the hard disk.

Besides, in order to test whether the long time access of

the disk will affect the time needed to access files, the data

disk is initially written randomly with file for 0-95% of disk

space. Besides, because files might be cached in the RAM,

which may affect the measured performance, the benchmark

also executes “sync” command after finish all the read/write

operations. In the following figures, the y-axis represents

the total execution time of our user level benchmark and the

x-axis refers to the disk utilization which represents the

percentage of disk space occupied with file data.

Through our experiments above, even at the increasing

ratio of the disk utilization, our modified files system still

has significantly performance improvement over the

original Ext3 file system. Figures 5 and 6 show our

experiment results.

delete:write:read(5%:20%:75%)

0

50

100

150

200

250

300

350

50% 60% 70% 80% 90%

Disk utilization

E
la

p
se

d
 t
im

e
(s

ec
)

(a
ft

er
 s

y
n
c

ti
m

e)

O-Ext3

M-Ext3

Figure 5. Experiment results (delete: 5%, write:

20%, read: 75%)

delete:write:read(5%:30%:65%)

0

200

400

600

800

1000

1200

1400

50% 60% 70% 80% 90%

Disk utilization

E
la

ps
ed

 ti
m

e
(s

ec
)

(a
ft

er
 s

yn
c

tim
e)

O-Ext3

M-Ext3

Figure 6. Experimental results (delete: 5%, write:

30%, read: 65%)

4.2.2 Analysis of Accessed Files
When hot files are accessed in the disk, they will be

accessed in the Reserved Area by the modified Ext3 file

system. We calculate how many files are accessed and the

total size of files accessed in the Reserved Area.

Through above experiments, it shows that the original

Linux files system (i.e. O-Ext3) stores files randomly and

sparsely in different disk sectors and files are rarely stored

in the Reserved Area so files are scattered in the disk. When

the system needs to read the hot files, the disk head needs to

move among different cylinders. Whereas, our modified file

system will always keep the movement of the disk head in

the Reserved Area in the central disk. By doing this, we can

dramatically decrease the distance of the disk head

movement to effectively decrease the seek time, and thus

improve the system performance. Figures 7 and 8 show our

comparing results.

delete:write:read(5%:20%:75%)

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 85% 90% 95%

disk utilization

N
um

be
r

of
 a

cc
es

s
fi

le
s

O-Ext3

M-Ext3

Figure 7. Comparing the number of access files

delete:write:read(5%:20%:75%)

0

20000

40000

60000

80000

100000

120000

0% 20% 40% 60% 80% 85% 90% 95%

disk utilization

T
o
ta

l
si

ze
 o

f
ac

ce
ss

 f
il
es

(K
 b

y
te

s)

O-Ext3

M-Ext3

Figure 8. Comparing the total size of access files

5. Conclusion and Future Works
 In our research, we store hot files (i.e. frequently

accessed files) in the Reserved Area located at the center of

the hard disk by modifying Linux Ext3 file system. Because

the access frequencies of hot files are higher, the disk head

will access files inside the Reserved Area when the system

accesses hot files. The purpose is to decrease seek time for

accessing hot file in the hard disk by shortening the disk

head movement distance to improve the file system

performance. Besides, we also propose a method to

determine whether the cold file when it becomes hot should

be moved to the Reserved Area. When the cold file is

accessed frequently, the system will determine the file has

become hot. The system will also determine whether the

location of file in the hard disk is close to the Reserved

Area. If the location of the data is closed to the Reserved

Area, the data will not be moved, because the benefit is less

than the system overhead of file moving.

We have implemented this system by modifying the

Ext3 file system of Linux kernel 2.6 and created a

performance benchmark to simulate the operation behaviors

of the BBS system. The result of experiments shows that the

modified Ext3 file system can effectively shorten the disk

access time. Besides, when the cold file becomes hot, the

file will be moved to the Reserved Area. If the location of

this file is close to the Reserved Area, the system will

determine whether the file needs to be moved into the

Reserved Area. This method can further improve file

system performance.

In the future, we hope to certainly research different

applications in determining cold and hot files and the

method of writing files to effectively increase the accessing

performance of every application in Linux. This research is

to simulate the BBS system to test the benchmark by

ourselves. We hope to chronically monitor the BBS system

to understand and record the behavior of reading and

writing in the BBS system. Therefore, the access time in the

hard disk can be accurately decreased to increase the

performance of the file system.

References
[1] S. Akyurek and K. Salem, “Adaptive Block Rearrangement

Under UNIX,” Software-Practice and Experience, 27, (1),

pp.1-23, January 1997.

[2] M. McDonald and R. Bunt, “Improving File System

Performance by Dynamically Restructuring Disk Space,”

Phoenix Conference on Computers and Communication, pp.

264-269, Mar. 1989.

[3] Wenguang Wang, Yanping Zhao, and Rich Bunt, “HyLog: A

High Performance Approach to Managing Disk Layout”, 3rd

USENIX Conference on File and Storage Technologies, pp.

144-158, March 2004.

[4] C. Ruemmler and J. Wilkes, “Disk Shuffling,” Technical

Report HPL-91-156, Hewlett-Packard Laboratories, Palo

Alto, CA, October 28, 1991.

[5] C. K. Wong, “Minimizing expected head movement in one-

dimensional and two-dimensional mass storage systems”,

ACM Comput. Surv. 12, 2, pp. 167-178, 1980.

[6] D. D. Grossman and H. F. Silverman, “Placement of records

on a secondary storage device to minimize access time,”

Journal of ACM, vol. 20, no.3, pp. 429-438, 1973.

[7] Daniel P. Bovet and Marco Cesati, Understanding the

LINUX Kernel, 3rd edition, O’Reilly, December 2006.

