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Abstract 

Based on the previous observation that many 

files are short-lived, some advanced file systems 

delay the block allocation of their files until the file 

data needs to be written back to disk. Such delayed 

allocation feature can reduce the IO traffic as well 

as the degree of file fragmentation, and thus results 

a better IO performance. However, a file system 

can enjoy the benefit of delayed allocation only 

when it explicitly implements the feature.  

In this paper, we design and implement a 

temporary-file file system called TempFFS to allow 

all the existing file systems to enjoy the benefit of 

delayed allocation. Based on the concept of 

stackable file system, TempFFS places all 

newly-created files in memory and transfers these 

files to their original file systems as needed. We 

implement TempFFS in the Linux kernel. 

Performance results show that, with the help of 

TempFFS, both the disk IO traffic and the degree of 

file fragmentation can be largely reduced, resulting 

a performance improvement of 34% to 69% under 

a file system benchmark, Postmark. 
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1. Introduction 

 Disk performance has become the major 

bottleneck of most computer systems for a long 

time. Following the Moore’s Law, the performance 

of processors improves by about 60% per year. 

However, the performance improvement of disks is 

only about 10%, resulting in an increasing 

performance gap between processors and disks.  

To improve system performance, disk IO 

should be avoided as far as possible. For example, 

most operating systems use buffer cache to reduce 

the number of disk IO operations. If a data block is 

cached, disk access can be avoided. Moreover, 

when disk access is needed, it should be done 

efficiently. Specifically, the accessed blocks should 

be as contiguous as possible (i.e., less fragmented) 

in order to minimize the disk seek time, which 

dominates the disk access latency. 

Delayed allocation [3] improves the system 

performance by reducing both the disk IO traffic 

and the degree of file fragmentation. The main idea 

of delayed allocation is to delay the block 

allocation of a newly-created file until the file data 

needs to be written to disk. According to the 



previous studies [13][16][19], many files are 

short-lived, meaning that they are deleted soon after 

their creation. Allocating disk space for these files, 

which involves disk IO operations for reading the 

file system metadata (e.g. block allocation map), is 

unnecessary. Moreover, frequent creation/deletion 

of these short-lived files can cause a file system 

become fragmented, leading to IO performance 

degradation due to longer seek time. Some 

advanced file systems such as XFS [18], Resier4 

[12], and Ext4 [7] support delayed allocation. The 

limitation of file system specific implementations is 

that each file system should explicitly implement 

delayed allocation so as to enjoy the benefit. 

In this paper, we design and implement a 

Temporary-File File System (TempFFS) to apply 

delayed allocation simultaneously on all existing 

file systems. Different from file system specific 

implementations that maintain newly-created files 

on their own, TempFFS maintains newly-created 

files for all the file systems. Upon memory pressure 

or sync operations, the files are transferred to their 

original file systems and block allocation of these 

files takes place. Therefore, an existing file system 

can enjoy the benefit of delayed allocation without 

any code modifications. We have implemented 

TempFFS by modifying a RAM based file system 

in the Linux kernel. According to the performance 

evaluation, a traditional Linux file system, ext2, can 

have a performance improvement of 34% to 69% 

with the help of TempFFS.  

The remainder of this paper is organized as 

follows. Section 2 describes the related work. 

Section 3 presents the design and implementation 

details of TempFFS. The performance results are 

shown in Section 4. Finally, we give conclusions in 

Section 5. 

2. Related Work 

In this Section, we describe some research 

efforts related to improving file system 

performance. To reduce disk IO operations, most 

file systems do not write updated data immediately 

to disk but cache the data in memory and propagate 

it to disk later. This is called delayed write [2][9]. 

Delayed write can group several write operations 

into a single disk IO operation. Moreover, if the 

delay is longer than the lifetime of a file, no further 

disk IO is needed. Rio [4] provides a persistent file 

cache so as to delay IO writes until memory 

pressure. Although delayed write can reduce disk 

IO traffic, they cannot reduce the degree of file 

fragmentation because a disk block is still allocated 

during the time when new file data is written to the 

file cache. 

Some advanced file systems such as XFS [18], 

Resier4 [12] and Ext4 [7] support delayed 

allocation [3]. They delay the disk block allocation 

of a newly-created file until the data is needed to be 

flushed back to the disk due to memory pressure or 

sync operations. However, the delayed allocation 

feature is not shared among all file systems. Only 

the file systems that implement the feature can 

benefit from it. 

Log-Structured file systems [8][14][15][17] 

treat a file system as a log and write data and 

metadata updates into the end of the log. File 

system changes are buffered in the cache and then 

written into the disk sequentially in single disk IO 

operation. Therefore, it can improve the 

performance of write operations by eliminating 

costly seek and rotation delays. File system 

performance can also be improved by using higher 

performance disks or disk arrays [10]. Moreover, 

using non-volatile as disk cache [1][5] has also 



been investigated. 

3. Design and Implementation 

3.1 System Overview 

As mentioned in the Introduction, instead of 

integrating the delayed allocation feature into a 

specific file system, we implement a RAM-based 

file system named TempFFS in order to apply the 

feature simultaneously on existing file systems such 

as ext3 and NTFS. Based on the concept of 

stackable file systems, TempFFS sits between 

Virtual File System (VFS) and file system 

implementations and is transparent to the latter. As 

shown in Figure 1, all new files are initially written 

to TempFFS and associated with their original file 

systems when they are created. TempFFS uses page 

cache as the file store, and the files are transferred, 

which is called file transformation in this paper, 

into their corresponding file systems upon memory 

pressure or sync operations. In this way, existing 

file systems can benefit from delayed allocation 

without code modifications. 

 

Figure1. Architecture of the TempFFS 

3.2 File Transformation 

TempFFS stores files in kernel memory, which 

cannot be paged out in traditional UNIX operating 

systems (including Linux). Upon memory pressure, 

an OS usually writes back the dirty pages that 

belong to the buffer cache or user processes to the 

storage device so as to release more memory space. 

In this situation, TempFFS checks if its size is 

larger than a specific threshold. If it is, TempFFS 

shrinks its size by evicting pages of the least 

recently used files. All the evicted files are 

transformed into their original file systems so that 

the corresponding data can be written back. In 

addition, we transform files whose sizes are larger 

than a specific threshold (currently, 1MB) due to 

the following two reasons. First, according to 

previous research [13][16][19], most short-lived 

files are small ones. Second, placing a huge file in 

TempFFS may cause the transformation of a large 

number of short-lived small files before they are 

deleted, reducing the benefit of delay allocation. 

We manage the files in TempFFS in an LRU 

list. The number of pages that should be evicted 

from TempFFS, say N, is proportional to the 

number of pages in TempFFS. Specifically, N is 

calculated according to the following equation: 

 N = NR_WB * NR_TempFFS / NR_Dirty,  

In the equation, NR_WB represents the target 

number of pages that need to be written back, 

which is determined by the operating system. 

NR_TempFFS represents the number of (dirty) 

pages in TempFFS, and NR_Dirty represents the 

number of dirty pages in the system. As shown in 

Figure 2, transforming a file involves the following 

three steps. First, the file create operation of the 

original file system is invoked to produce the 

metadata (inode) of the file. Second, several inode 

fields such as timing information, access rights and 

file size, are copied to the new inode. Third, a 

sequence of disk block allocation operations of the 

original file system are invoked for allocating the 

disk space for the file. In the figure, block 5, 6, and 
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7 are allocated, where block 5 is an indirect block. 

Because the operations are invoked consecutively, 

the resulting data blocks tend to be contiguous. 

After the allocation, the data is associated with the 

allocated blocks and the metadata in the TempFFS 

is deleted. 

 

Figure 2. File Transformation 

3.3 Implementation of TempFFS 

For ease of implementation, the 

implementation of TempFFS was achieved by 

modifying the code of an existing RAM file system 

(i.e., the Resizable simple ram File System, RamFS 

[11]). As mentioned before, TempFFS sits between 

the VFS layer and the file system implementation 

layer. It intercepts the invocation of the VFS file 

creation function (i.e., vfs_create()), records the 

original file system for the created file, and directs 

the invocation to the file creation function of 

RamFS. After the creation, the file resides in 

RamFS and accesses to the file will through the file 

operations of RamFS. 

Upon memory pressure, TempFFS transforms 

the LRU files into their corresponding file systems. 

In addition, when the size of a specific file is larger 

than a threshold, TempFFS also transforms the file 

into the corresponding file system. After the 

transformation, accesses to the files will through 

the file operations of the original file systems of the 

file. 

4. Performance Evaluations 

4.1 Experimental Environment 

In this section, we present the performance 

improvements of TempFFS by comparing the 

performance of the ext2 file system with and 

without the presence of TempFFS. Table 4.1 shows 

the experimental environment. We evaluate the 

performance of TempFFS under a popular file 

system benchmark, Postmark [6], which is a 

macro-benchmark that emulates the access pattern 

of an email server. During the execution, Postmark 

first creates a number of files as the initial file set. 

Then, it performs a specific number of transactions, 

which include file creation, deletion, reading, and 

appending. Finally, it deletes all the files. 

Table 1. Evaluation Environment 
CPU AMD Athlon 64 3000+ 
Memory 1 GB DDR 400 Hardware 
Disk Maxtor 80G 7200 RPM 
OS Linux 2.6.12 Software Workloads Postmark 1.5 

4.2 Performance Results  
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Figure 3. Performance Improvements with 

TempFFS 

In this experiment, we measure the 

performance improvements of TempFFS under 

Postmark. In this experiment, 200k transactions 

were performed and the file size ranges from 512 

bytes to 10 Kbytes. We measure the performance 
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under various numbers of files in the initial file set. 

As shown in Figure 3, TempFFS effectively 

improves the system performance. Specifically, the 

performance improvement ranges from 34% to 

69%. This is because a number of files have been 

deleted before they are transformed to ext2, 

reducing both the I/O traffic and the degree of file 

fragmentation. We demonstrate this in the 

following experiments. 

As mentioned before, Postmark deletes all the 

files at the end of its execution. Figure 4 shows the 

percentage of the number of files deleted in 

TempFFS and ext2, with the presence of TempFFS. 

As shown in the figure, at least 44% of the files are 

deleted in TempFFS. In the cases of 5000 and 

10000 files, all files are deleted in TempFFS 

because the capacity of TempFFS is enough to 

contain all the files. When the number of files 

increases further, a number of files are transformed 

to ext2, because of memory pressure, and finally 

deleted in ext2. For each file deleted in TempFFS, 

all its file operations are done in memory and 

involve no disk IO. 
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Figure 5 shows the reduction of IO traffic with 

the presence of TempFFS. In the cases of 5000 and 

10000 files, nearly 100% of the IO traffic can be 

eliminated since almost all file operations are done 

in TempFFS. For the other cases, about 31% of the 

IO traffic can be eliminated. 
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Figure 6. Average File Span 

In the last experiment, we show that TempFFS 

can reduce the degree of file fragmentation, which 

is evaluated by using the file span, the distance 

between the first block and the last block of a file. 

During the execution of Postmark, we record the 

file span of each file upon the deletion of the file. 

Figure 6 shows the average file span of all the files. 

As shown in the figure, the degree of file 

fragmentation is largely reduced. Especially, in the 

cases of 5000 and 10000 files, the average file span 

is zero because all the files are deleted in TempFFS 

and do not have corresponding blocks on the disk. 

5. Conclusions 

Delayed allocation can reduce both disk IO 

traffic and degree of file fragmentation. In this 

paper, we design and implement TempFFS so as to 

allow existing file systems to enjoy the benefit of 



delayed allocation. 

Based on the concept of stackable file system, 

TempFFS sits between VFS and file system 

implementations. It intercepts VFS file creation 

operation so as to place the data of newly-created 

files temporarily in memory. Files are transformed 

into their original file systems when needed (i.e., 

memory pressure, sync, or exceeding file size 

limitation). We implemented TempFFS by 

modifying a RAM based file system in the Linux 

kernel. Performance results show that, an 

unmodified ext2 file system can have a 

performance improvement of 34% to 69% with the 

help of TempFFS. 
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