
TempFFS: Enabling Delayed Allocation for Existing File Systems

Chih-Wen Hsiao and Ting-Chang Huang
Institute of Computer Science and

Engineering
National Chiao Tung University

kenn@os.nctu.edu.tw,
tchuang@os.nctu.edu.tw

Da-Wei Chang
Department of Computer Science and

Information Engineering
National Cheng Kung University

davidchang@csie.ncku.edu.tw

Abstract

Based on the previous observation that many

files are short-lived, some advanced file systems

delay the block allocation of their files until the file

data needs to be written back to disk. Such delayed

allocation feature can reduce the IO traffic as well

as the degree of file fragmentation, and thus results

a better IO performance. However, a file system

can enjoy the benefit of delayed allocation only

when it explicitly implements the feature.

In this paper, we design and implement a

temporary-file file system called TempFFS to allow

all the existing file systems to enjoy the benefit of

delayed allocation. Based on the concept of

stackable file system, TempFFS places all

newly-created files in memory and transfers these

files to their original file systems as needed. We

implement TempFFS in the Linux kernel.

Performance results show that, with the help of

TempFFS, both the disk IO traffic and the degree of

file fragmentation can be largely reduced, resulting

a performance improvement of 34% to 69% under

a file system benchmark, Postmark.

Keywords: File Systems, Delayed Allocation, File

Fragmentation, Disk IO

1. Introduction

 Disk performance has become the major

bottleneck of most computer systems for a long

time. Following the Moore’s Law, the performance

of processors improves by about 60% per year.

However, the performance improvement of disks is

only about 10%, resulting in an increasing

performance gap between processors and disks.

To improve system performance, disk IO

should be avoided as far as possible. For example,

most operating systems use buffer cache to reduce

the number of disk IO operations. If a data block is

cached, disk access can be avoided. Moreover,

when disk access is needed, it should be done

efficiently. Specifically, the accessed blocks should

be as contiguous as possible (i.e., less fragmented)

in order to minimize the disk seek time, which

dominates the disk access latency.

Delayed allocation [3] improves the system

performance by reducing both the disk IO traffic

and the degree of file fragmentation. The main idea

of delayed allocation is to delay the block

allocation of a newly-created file until the file data

needs to be written to disk. According to the

previous studies [13][16][19], many files are

short-lived, meaning that they are deleted soon after

their creation. Allocating disk space for these files,

which involves disk IO operations for reading the

file system metadata (e.g. block allocation map), is

unnecessary. Moreover, frequent creation/deletion

of these short-lived files can cause a file system

become fragmented, leading to IO performance

degradation due to longer seek time. Some

advanced file systems such as XFS [18], Resier4

[12], and Ext4 [7] support delayed allocation. The

limitation of file system specific implementations is

that each file system should explicitly implement

delayed allocation so as to enjoy the benefit.

In this paper, we design and implement a

Temporary-File File System (TempFFS) to apply

delayed allocation simultaneously on all existing

file systems. Different from file system specific

implementations that maintain newly-created files

on their own, TempFFS maintains newly-created

files for all the file systems. Upon memory pressure

or sync operations, the files are transferred to their

original file systems and block allocation of these

files takes place. Therefore, an existing file system

can enjoy the benefit of delayed allocation without

any code modifications. We have implemented

TempFFS by modifying a RAM based file system

in the Linux kernel. According to the performance

evaluation, a traditional Linux file system, ext2, can

have a performance improvement of 34% to 69%

with the help of TempFFS.

The remainder of this paper is organized as

follows. Section 2 describes the related work.

Section 3 presents the design and implementation

details of TempFFS. The performance results are

shown in Section 4. Finally, we give conclusions in

Section 5.

2. Related Work

In this Section, we describe some research

efforts related to improving file system

performance. To reduce disk IO operations, most

file systems do not write updated data immediately

to disk but cache the data in memory and propagate

it to disk later. This is called delayed write [2][9].

Delayed write can group several write operations

into a single disk IO operation. Moreover, if the

delay is longer than the lifetime of a file, no further

disk IO is needed. Rio [4] provides a persistent file

cache so as to delay IO writes until memory

pressure. Although delayed write can reduce disk

IO traffic, they cannot reduce the degree of file

fragmentation because a disk block is still allocated

during the time when new file data is written to the

file cache.

Some advanced file systems such as XFS [18],

Resier4 [12] and Ext4 [7] support delayed

allocation [3]. They delay the disk block allocation

of a newly-created file until the data is needed to be

flushed back to the disk due to memory pressure or

sync operations. However, the delayed allocation

feature is not shared among all file systems. Only

the file systems that implement the feature can

benefit from it.

Log-Structured file systems [8][14][15][17]

treat a file system as a log and write data and

metadata updates into the end of the log. File

system changes are buffered in the cache and then

written into the disk sequentially in single disk IO

operation. Therefore, it can improve the

performance of write operations by eliminating

costly seek and rotation delays. File system

performance can also be improved by using higher

performance disks or disk arrays [10]. Moreover,

using non-volatile as disk cache [1][5] has also

been investigated.

3. Design and Implementation

3.1 System Overview

As mentioned in the Introduction, instead of

integrating the delayed allocation feature into a

specific file system, we implement a RAM-based

file system named TempFFS in order to apply the

feature simultaneously on existing file systems such

as ext3 and NTFS. Based on the concept of

stackable file systems, TempFFS sits between

Virtual File System (VFS) and file system

implementations and is transparent to the latter. As

shown in Figure 1, all new files are initially written

to TempFFS and associated with their original file

systems when they are created. TempFFS uses page

cache as the file store, and the files are transferred,

which is called file transformation in this paper,

into their corresponding file systems upon memory

pressure or sync operations. In this way, existing

file systems can benefit from delayed allocation

without code modifications.

Figure1. Architecture of the TempFFS

3.2 File Transformation

TempFFS stores files in kernel memory, which

cannot be paged out in traditional UNIX operating

systems (including Linux). Upon memory pressure,

an OS usually writes back the dirty pages that

belong to the buffer cache or user processes to the

storage device so as to release more memory space.

In this situation, TempFFS checks if its size is

larger than a specific threshold. If it is, TempFFS

shrinks its size by evicting pages of the least

recently used files. All the evicted files are

transformed into their original file systems so that

the corresponding data can be written back. In

addition, we transform files whose sizes are larger

than a specific threshold (currently, 1MB) due to

the following two reasons. First, according to

previous research [13][16][19], most short-lived

files are small ones. Second, placing a huge file in

TempFFS may cause the transformation of a large

number of short-lived small files before they are

deleted, reducing the benefit of delay allocation.

We manage the files in TempFFS in an LRU

list. The number of pages that should be evicted

from TempFFS, say N, is proportional to the

number of pages in TempFFS. Specifically, N is

calculated according to the following equation:

 N = NR_WB * NR_TempFFS / NR_Dirty,

In the equation, NR_WB represents the target

number of pages that need to be written back,

which is determined by the operating system.

NR_TempFFS represents the number of (dirty)

pages in TempFFS, and NR_Dirty represents the

number of dirty pages in the system. As shown in

Figure 2, transforming a file involves the following

three steps. First, the file create operation of the

original file system is invoked to produce the

metadata (inode) of the file. Second, several inode

fields such as timing information, access rights and

file size, are copied to the new inode. Third, a

sequence of disk block allocation operations of the

original file system are invoked for allocating the

disk space for the file. In the figure, block 5, 6, and

Read / Write

Transform Transform

Create

General File System Operation

VFS

TempFFS

User Process

VFAT

Page Cache

EXT2

7 are allocated, where block 5 is an indirect block.

Because the operations are invoked consecutively,

the resulting data blocks tend to be contiguous.

After the allocation, the data is associated with the

allocated blocks and the metadata in the TempFFS

is deleted.

Figure 2. File Transformation

3.3 Implementation of TempFFS

For ease of implementation, the

implementation of TempFFS was achieved by

modifying the code of an existing RAM file system

(i.e., the Resizable simple ram File System, RamFS

[11]). As mentioned before, TempFFS sits between

the VFS layer and the file system implementation

layer. It intercepts the invocation of the VFS file

creation function (i.e., vfs_create()), records the

original file system for the created file, and directs

the invocation to the file creation function of

RamFS. After the creation, the file resides in

RamFS and accesses to the file will through the file

operations of RamFS.

Upon memory pressure, TempFFS transforms

the LRU files into their corresponding file systems.

In addition, when the size of a specific file is larger

than a threshold, TempFFS also transforms the file

into the corresponding file system. After the

transformation, accesses to the files will through

the file operations of the original file systems of the

file.

4. Performance Evaluations

4.1 Experimental Environment

In this section, we present the performance

improvements of TempFFS by comparing the

performance of the ext2 file system with and

without the presence of TempFFS. Table 4.1 shows

the experimental environment. We evaluate the

performance of TempFFS under a popular file

system benchmark, Postmark [6], which is a

macro-benchmark that emulates the access pattern

of an email server. During the execution, Postmark

first creates a number of files as the initial file set.

Then, it performs a specific number of transactions,

which include file creation, deletion, reading, and

appending. Finally, it deletes all the files.

Table 1. Evaluation Environment
CPU AMD Athlon 64 3000+
Memory 1 GB DDR 400 Hardware
Disk Maxtor 80G 7200 RPM
OS Linux 2.6.12 Software Workloads Postmark 1.5

4.2 Performance Results

0

50

100

150

200

250

5000 10000 15000 20000 25000 30000

Files

Ex
ec

ut
io

n
tim

e
(s

ec
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Ext2 Ext2 with TempFFS
Figure 3. Performance Improvements with

TempFFS

In this experiment, we measure the

performance improvements of TempFFS under

Postmark. In this experiment, 200k transactions

were performed and the file size ranges from 512

bytes to 10 Kbytes. We measure the performance

Ram FS

Block5

Block6 Block7

Original FS
(2)Copy Some

Inode Fields

(3)Allocate Blocks

Data Block

(1)Create a File System Inode

NULL

Inode fields

under various numbers of files in the initial file set.

As shown in Figure 3, TempFFS effectively

improves the system performance. Specifically, the

performance improvement ranges from 34% to

69%. This is because a number of files have been

deleted before they are transformed to ext2,

reducing both the I/O traffic and the degree of file

fragmentation. We demonstrate this in the

following experiments.

As mentioned before, Postmark deletes all the

files at the end of its execution. Figure 4 shows the

percentage of the number of files deleted in

TempFFS and ext2, with the presence of TempFFS.

As shown in the figure, at least 44% of the files are

deleted in TempFFS. In the cases of 5000 and

10000 files, all files are deleted in TempFFS

because the capacity of TempFFS is enough to

contain all the files. When the number of files

increases further, a number of files are transformed

to ext2, because of memory pressure, and finally

deleted in ext2. For each file deleted in TempFFS,

all its file operations are done in memory and

involve no disk IO.

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
s o

f F
ile

s (
%

)

5000 10000 15000 20000 25000 30000

Files

Deleted in TempFFS Deleted in Ext2
Figure 4. Percentages of Files Deleted in

TempFFS

Figure 5 shows the reduction of IO traffic with

the presence of TempFFS. In the cases of 5000 and

10000 files, nearly 100% of the IO traffic can be

eliminated since almost all file operations are done

in TempFFS. For the other cases, about 31% of the

IO traffic can be eliminated.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

5000 10000 15000 20000 25000 30000

Files

IO
 T

ra
ffi

c
(re

qu
es

ts)

0%

20%

40%

60%

80%

100%

120%

R
ed

uc
tio

n
of

 IO
 T

ra
ffi

c

Ext2 Ext2 with TempFFS Reduction of IO traffic
Figure 5. Reduction of IO Traffic with TempFFS

0
2000
4000
6000
8000

10000
12000
14000

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Files

A
ve

ra
ge

 F
ile

 S
pa

n
(b

lo
ck

s)

Ext2

Ext2 with
TempFFS

Figure 6. Average File Span

In the last experiment, we show that TempFFS

can reduce the degree of file fragmentation, which

is evaluated by using the file span, the distance

between the first block and the last block of a file.

During the execution of Postmark, we record the

file span of each file upon the deletion of the file.

Figure 6 shows the average file span of all the files.

As shown in the figure, the degree of file

fragmentation is largely reduced. Especially, in the

cases of 5000 and 10000 files, the average file span

is zero because all the files are deleted in TempFFS

and do not have corresponding blocks on the disk.

5. Conclusions

Delayed allocation can reduce both disk IO

traffic and degree of file fragmentation. In this

paper, we design and implement TempFFS so as to

allow existing file systems to enjoy the benefit of

delayed allocation.

Based on the concept of stackable file system,

TempFFS sits between VFS and file system

implementations. It intercepts VFS file creation

operation so as to place the data of newly-created

files temporarily in memory. Files are transformed

into their original file systems when needed (i.e.,

memory pressure, sync, or exceeding file size

limitation). We implemented TempFFS by

modifying a RAM based file system in the Linux

kernel. Performance results show that, an

unmodified ext2 file system can have a

performance improvement of 34% to 69% with the

help of TempFFS.

References

[1] M. Baker, S. Asami, E. Deprit, J. Ousterhout,
and M. Seltzer, “Non-Volatile Memory for
Fast, Reliable File Systems”, Proceedings of
the Fifth International Conference on
Architectural Support for Programming
Languages and Operation Systems, October
1992

[2] P. M. Chen, “Optimizing Delay in
Delayed-Write File Systems”, Proceedings
of the Architectural Support for
Programming Languages and Operating
Systems, October 1994.

[3] M. Cao, T. Y. Tso, B. Pulavarty, S.
Bhattacharya, “State of the Art: Where We
Are with the Ext3 Filesystem”, Proceedings
of 2005 Linux Symposium, July 2005.

[4] P. Chen, W. T. Ng, G. Rajamani, C. M.
Aycock and D. Lowell “The Rio File Cache:
Surviving Operating System Crashes”,
Proceedings of the International Conference
on Architectural Support for Programming
Languages and Operating Systems, pp.
74-83, October 1996.

[5] J. W. Hsieh, T. W. Kuo, P. L. Wu, and Y. C.
Huang, “Energy-Efficient and
Performance-Enhanced Disks Using
Flash-Memory Cache”, The International
Symposium on Low Power Electronics and
Design, August 2007.

[6] J. Katcher, “Postmark: A New File System
Benchmark”, Technical Report TR3022
Network Appliance Inc, October 1997.

[7] A. Mathur, M. Cao and S. Bhattacharya,
“The New Ext4 File System: Current Status

and Future Plans”, Proceedings of the Linux
Symposium, June 2007.

[8] J. Matthews, D. Roselli, A. Costello, R.
Wang, and T. Anderson, “Improving the
Performance of Log-Structured File Systems
with Adaptive Methods”, Proceedings
Sixteenth ACM Symposium on Operating
System Principles, October 1997.

[9] D. A. Muntz, P. Honeyman and C. J.
Antonelli, “Evaluating Delayed Write in a
Multilevel Caching File System”,
Proceedings of the IFIP/IEEE International
Conference, pp. 415-429, June 1996.

[10] D. A. Patterson, G. A. Gibson, and R. Katz,
“A Case for Redundant Arrays of
Inexpensive Disks (RAID)”, Proceedings of
the ACM SIGMOD International Conference
on Management of Data, pp. 109-116, June
1988.

[11] “Ramfs”, http://lwn.net/Articles/156098/.

[12] H. Reiser, “Reiser4 Transaction Design
Document”, Technical Report, Namesys,
2002.

[13] D. Roselli, J. Lorch, and T. Anderson, “A
Comparison of File System Workloads”,
Proceedings of the USENIX Annual
Technical Conference, pp. 41–54, June 2000.

[14] M. Rosenblum, and J. Ousterhout, “The LFS
Storage Manager”, Proceedings of the
Summer 1990 USENIX Technical Conference,
June 1990.

[15] M. Rosenblum, and J. Ousterhout, “The
Design and Implementation of a
Log-Structured File System”, ACM
Transactions on Computer Systems, Vol. 10,
No. 1, pp. 26–52, February 1992.

[16] C. Ruemmler and J. Wilkes, “UNIX Disk
Access Patterns”, Proceedings of the Winter
1993 USENIX Conference, pp. 405–20,
January 1993.

[17] M. Seltzer, K. Bostic, M. McKusick, and C.
Staelin, “An Implementation of a
Log-Structured File System for UNIX”,
Proceedings of the 1993 USENIX Winter
Technical Conference, pp. 307-326, January
1993.

[18] A. Sweeney, D. Doucette, W. Hu, C.
Anderson, M. Nishimoto, and G. Peck,
“Scalability in the XFS File System”,
Proceedings of the USENIX 1996Annual
Technical Conference, January 1996.

[19] W. Vogels, “File System Usage in Windows
NT 4.0”, Proceedings of the 17th Symposium
on Operating Systems Principles, pp.93-109,
December 1999.

