
Designing Parallel Loop Self-Scheduling Schemes by the Hybrid MPI and

OpenMP Model for Grid Systems with Multi-Core Computational Nodes

Chao-Chin Wu, Chao-Tung Yang*, Kuan-Chou Lai**, Syun-Sheng Jhan***, Po-Hsun Chiu

Department of Computer Science and Information Engineering

 National Changhua University of Education, Taiwan

*Department of Computer Science and Information, Engineering, Tunghai University, Taiwan

**Department of Computer and Information Science, National Taichung University, Taiwan

***Department of Information Management, Ling Tung University, Taiwan

ccwu@cc.ncue.edu.tw, *ctyang@thu.edu.tw, **kclai@mail.ntcu.eud.tw

***janss@mail.ltu.edu.tw, s94610032@mail.ncue.edu.tw

Abstract

Loop scheduling on parallel and distributed systems

has been thoroughly investigated in the past. However,

none of them considers the feature of multicore

architecture dominating the current markets of desktop

computers, laptop computers, servers, etc. On the

other hand, although there have been many studies

proposed to employ the hybrid MPI and OpenMP

programming model to exploit different levels of

parallelisms for the distributed system with multicore

computers, none of them aimed at the design of

parallel loop self-scheduling. Therefore, this paper

investigates how to employ the hybrid MPI and

OpenMP model to design parallel loop self-scheduling

scheme to adapt to the feature of multicore

architecture for emerging grid systems. The proposed

scheduling approach is based on our previous work

adopting the pure MPI model. Preliminary

experimental results show that the proposed approach

outperforms the previous work with the average

speedup of 3.39.

Keywords: Grid computing, Self-scheduling, Loop

scheduling, MPI, OpenMP.

1. Introduction

As computers become more and more inexpensive

and powerful, computational grids which consist of

various computational and storage resources have

become promising alternatives to traditional

multiprocessors and computing clusters [1, 2].

Basically, grids are distributed systems which share

resources through the Internet. Users can access more

computing resources through grid technologies.

However, bad management of grid environments might

result in using grid resources in an inefficient way.

Moreover, the heterogeneity and dynamic changing of

the grid environment make it different from

conventional parallel and distributed computing

systems, such as multiprocessors and computing

clusters. Therefore, it becomes more difficult to utilize

the grid efficiently.

Loop scheduling on parallel and distributed systems

is an important problem, and has been thoroughly

investigated on traditional parallel computers in the

past [3-6]. Traditional loop scheduling approaches

include static scheduling and dynamic scheduling. The

former is not suitable in dynamic environments. The

latter, especially self-scheduling, has to be adapted to

be applied to heterogeneous platforms. Therefore, it is

difficult to schedule parallel loops on the

heterogeneous and dynamic grid environments. In

recent years, several pieces of work has been devoted

to parallel loop scheduling for cluster computing

environments [7-11], addressing the heterogeneity of

computing power.

For grid systems, we have revised known loop self-

scheduling schemes to fit Grid computing

environments [12]. The HINT Performance Analyzer

[13] is used to determine whether target systems are

relatively homogeneous or relatively heterogeneous.

We then partition loop iterations into four classes,

based on typical cluster system cases to achieve good

performance in any given computing environment.

Finally, a heuristic approach based upon α-based self-

scheduling scheme to solve parallel regular loop

mailto:*ctyang@thu.edu.tw
mailto:s94610032@mail.ncue.edu.tw

scheduling problem on an extremely heterogeneous

Grid computing environment.

Intuitively, we would partition the total workload

according to CPU clock speed. However, the CPU

speed is not the only factor which affects node

performance. Many other factors also have dramatic

influences in this respect, such as the amount of

memory available, the cost of memory accesses, and

the communication bandwidth between nodes, etc.

Using this intuitive approach, the result will be

degraded if the performance estimation is not accurate.

To address this problem, we also proposed a general

approach called PLS (Performance-based Loop

Scheduling) [14]. This approach utilizes performance

functions to estimate the performance of each node.

Although our previous approaches improve the

system performance, they did not take the feature of

multicore architecture into account. Recently, more and

more cluster systems include multicore computers

because almost all the commodity personal computers

are multicore architecture. The primary feature of

multicore architecture is that multiple processors on the

same chip can communicate with each other by directly

accessing the data in shared memory. Unlike multicore

computers, each computer in the distributed system has

its own memory system and thus it relies on the

message-passing mechanism to communicate with

other computers. The MPI library is usually used for

parallel programming in the grid system because it is a

message-passing programming language. However,

MPI is not the best programming language for

multicore computers. Instead, OpenMP is very suitable

for multicore computers because it is a shared-memory

programming language. Therefore, in this paper we

propose to use hybrid MPI and OpenMP programming

mode to design the loop self-scheduling scheme for the

grid system with multicore computers. Preliminary

experimental results show that the proposed approach

outperforms the previous work with the average

speedup of 3.39.

2. Related Work

Pure self-scheduling (PSS) is the first

straightforward dynamic loop scheduling algorithm [3].

Whenever a processor becomes idle, the master will

assign a loop iteration to it. This algorithm achieves

good load balancing because the maximum waiting

time for the last processor is the execution time of a

loop iteration. However, it induces excessive runtime

overhead because it requires N times to dispatch the

iterations one by one by the master if there are N

iterations totally.

Chunk self-scheduling (CSS) assigns k consecutive

iterations each time [3]. The chunk size, k, is fixed and

must be specified by either the programmer or by the

compiler. A large chunk size will cause load imbalance

because the maximum waiting time for the last

processor is the execution time of k loop iterations. In

contrary, a small chunk size is likely to result in too

much runtime overhead. If k is equal to 1, CSS will be

degraded to PSS. Thus, it is important and difficult to

choose the proper chunk size.

Guided self-scheduling (GSS) dispatches iterations

decreasingly [4]. More specifically, the next chunk

size is calculated by dividing the number of the

remaining iterations by the number of available

processors. It aims at reducing the dispatch frequency

to minimize the scheduling overhead and reducing the

number of iterations assigned to the last few processors

to achieve better load balancing.

Factoring Self-Scheduling (FSS) assigns loop

iterations to processors in phases [5]. During each

phase, only the half of remaining loop iterations is

equally divided among available processors. FSS can

prevent from assigning too much workload to the first

few processors. As a result, it balances workloads

better than GSS when loop iteration computation times

vary substantially.

Trapezoid Self-Scheduling (TSS) reduces the

scheduling frequency while still providing reasonable

load balancing [6]. Two parameters have to be

specified either by the programmer or by the compiler:

the number of the first iterations to be assigned to the

processor starting the loop, Ns; and the number of the

last iterations to be assigned to the processor

performing the last fetch, Nf. According to the values of

Ns and Nf, the number of iterations to be assigned in

each step is decreased in a constant ratio.

3. The proposed method

A grid system is comprised of multiple computational

nodes connected by the Internet. Each computational

node has its own memory system and the address space.

Parallel processes running in different computational

nodes communicate with each other by explicit

message transmissions. Therefore, message-passing

programming languages, such as the MPI de facto

standard, are used to design parallel programs for grid

systems. On the other hand, a multicore computer is a

shared-memory multiprocessor. Because all the cores

share the same physical main memory modules,

parallel processes communicate with each other by

accessing to data in the shared memory. In addition,

because every process has completely separate program

with its own variables and memory allocation while

threads share the same memory space and global

variables between routines, it is more cost effective if

processes are replaced with threads. Therefore, it is

more suitable to use shared-memory programming

languages, such as the OpenMP library, to develop

parallel programs for multicore computational nodes.

Therefore, we propose to adopt the hybrid parallel

programming model to combine both the advantages of

message-passing programming and shared-memory

programming for the grid system with multicore

computational nodes. MPI message-passing

programming is adopted for the communications

among different computational nodes and OpenMP

shared-memory programming is adopted for the

communications among different cores in the same

computational node.

Scheduler Scheduler

Four-core computer Four-core computer

(a) Single-level Scheduling (b) Two-level Scheduling

Shared memory Master core

Slave core

MPI routine

OpenMP routine Iteration

Fig. 1. Single-level and two-level scheduling schemes

We give an example to explain the idea more

detailed as shown in Figure 1. Assume that we have a

4-core computational node. In the pure MPI

programming model, there will be four parallel MPI

processes running on the four cores as shown in Figure

1(a). Every process has to request the iterations from

the scheduler directly. The iterations assigned to a

process cannot be shared by the other three processes

although the assigned iterations are in the shared

memory. On the other hand, if the hybrid MPI and

OpenMP programming model is employed, there will

be only one MPI process running in one of the four

processor cores as shown in Figure 1(b). The MPI

process will communicate with the scheduler to request

new iterations. Whenever receiving the assigned

iterations, the MPI process will fork four parallel

OpenMP threads to process the assigned iterations. The

four parallel threads will adopt the OpenMP built-in

self-scheduling function to process the iterations. As

soon as the assigned iterations have been processed by

OpenMP threads, the MPI process returns the result to

the scheduler and asks for new iterations.

Because only one MPI process will be created for

each multicore computational and the assigned

iterations will be processed by all the processor cores

in parallel using OpenMP threads, the number of

iterations assigned at each scheduling step must be

modified. We describe how to extend our previous

work [14] for the hybrid MPI and OpenMP

programming model.

Let M denote the number of computing nodes, P

denote the total number of processor cores. Computing

node i is represented by mi, and the total number of

processor cores in computing node mi is represented by

pi, where 1 ≦ i ≦ M. In consequence, P =



M

i

ip
1

. The j
th

processor core in computing node i is represented by cij,

where 1 ≦ i ≦ M and 1 ≦ j ≦ pi. N denotes the total

number of iterations in some application program and

f() is an allocation function to produce the chunk-size at

each step. The output of f is the chunk-size for the next

iteration. At the s
th

 scheduling step, the global

scheduler computes the chunk-size Cs for the

computing node i and the remaining number of tasks Rs,

R0 = N, Cs = f(s, i), Rs = Rs-1 − Cs , (1)

where f() possibly has more parameters than just s

and i, such as Ri−1. The concept of performance ratio is

previously defined in [10–12] in different forms and

parameters, according to the requirements of

applications. In this work, a different formulation is

proposed to model the heterogeneity of the dynamic

grid nodes.

The purpose of calculating performance ratio is to

estimate the current capability of processing for each

node. With this metric, we can distribute appropriate

workloads to each node, and load balancing can be

achieved. The more accurate the estimation is, the

better the load balance is.

 To estimate the performance of each computing

node, we define a performance function (PF) for a

computing node i as

PFi (V1, V2, . . . , VX), (2)

where Vr , 1 ≦ r ≦ X, is a variable of the

performance function. In this paper, our PF for a

computing node i is defined as

PFi =

 



 



M

q

p

k

p

k

i

i

L

L

1 1
qk

qk

1
ik

ik

C

CS

C

CS

, (3)

where CSij is the CPU clock speed of processor core j

in computing node i, and it is a constant attribute. The

value of this parameter is acquired by the MDS service;

CLij is the CPU loading of processor core j in

computing node i, and it is a variable attribute. The

value of this parameter is acquired by the Ganglia tool.

The performance ratio (PR) is defined to be the ratio

of all performance functions. For instance, assume the

values of PFs of three nodes are 1/2, 1/3 and 1/4.

Then, the PR is 1/2:1/3:1/4; i.e., the PR of the three

nodes is 6:4:3. In other words, if there are 13 loop

iterations, 6 iterations will be assigned to the first node,

4 iterations will be assigned to the second node, and 3

iterations will be assigned to the last one.

We propose to use a parameter, SWR (Static-

Workload Ratio), to alleviate the effect of irregular

workload. In order to take advantage of static

scheduling, SWR percentage of the total workload is

dispatched according to Performance Ratio. If the

workload of the target application is regular, SWR can

be set to be 100. However, if the application has

irregular workload, it is efficient to reserve some

amount of workload for load balancing. We propose to

randomly take five sampling iterations, and compute

their execution time. Then, the SWR of the target

application i is determined by the following formula.

SWRi =

i

i

MAX

min (4)

where mini is the minimum execution time of all

sampled iterations for application i; MAXi is the

maximum execution time of all sampled iterations for

application i. For example, for a regular application

with uniform workload distribution, the five sampled

iterations are the same. Therefore, the SWR is 100%,

and the whole workload can be dispatched according to

Performance Ratio, with good load balance. However,

or another application, the five sampling execution

time might be 7, 7.5, 8, 8.5 and 10 seconds,

respectively. Then the SWR is 7/10, i.e. a percentage

of 70. Therefore, 70 percentages of the iterations would

be scheduled statically according to PR, while 30

percentages of the iterations would be scheduled

dynamically by any one of the well known self-

scheduling scheme such as GSS. In the second phase,

when an MPI process requests for new iterations at

each scheduling step, we have to take the number of

processor cores into consideration when the master

process determines the number of iterations to be

allocated for the process because the assigned iterations

will be processed by parallel OpenMP threads. If there

are pi processor cores in the computational node i, the

master will base on the applied well known self-

scheduling scheme to calculate the total number of

iterations by adding up the next pi allocations. For

instance, if there are 4 processor cores in a

computational node and the CSS scheme with the

chunk size of 128 iterations is adopted, the master will

assign 512 iterations whenever the MPI process

running on the computational node asks for new

iterations.

4. Performance evaluations

Table 2. The configuration of our grid system

Bao-Shan Campus Of NCUE (5 PCs)

Intel Pentium Dual-Core × 4

CPU

RAM

Hard Disk

Swap Space

Bandwidth

Pentium Dual-core E2160, 1.8GHz

512 MB DDR 667 × 1

80 GB

1 GB

400Mbps

Intel Pentium Quad-Core × 1

CPU

Memory

Hard Disk

Swap Space

Bandwidth

Intel Core 2 Quad Q6600,

2.4G/8M/1066FSB

1GB DDR2 × 2

SATAII 160GB

2GB

400Mpbs

Jin-Der Campus Of NCUE (3 SMPs)

CPU

Memory

Hard Disk

Swap Space

Bandwithd

Dual-Core AMD Opteron Processor

270/2.0/2M × 2

1GB DDR 400 Registered ECC × 4

SATAII 320GB

2GB

1000Mpbs

National Taichung University (1 PC)

CPU

Memory

Hard Disk

Swap Space

Bandwidth

Intel Core 2 Quad Q6600

2.4G/8M/1066FSB

1GB DDR2 × 2

SATAII 160GB

2GB

400Mbps

Lin Tung University (3 PCs)

CPU

Memory

Hard Disk

Swap Space

Bandwidth

Intel Pentium III 1GHz @ 997MHz

256MB PC-133 × 1

ATA66 30GB

512MB

1000Mbps

To verify the proposed approach, we have

constructed a grid system consisting of twelve

computational nodes, where nine nodes are multicore

architecture. Totally, there are 31 processor cores in

the system. The configuration of our grid is listed in

Table 2. We compare our approach with the PLS

(Performance-based Loop Scheduling) scheme [14].

The speedup is obtained by dividing the execution time

of the proposed scheme by the execution time of the

PLS scheme when the same well known dynamic self-

scheduling is employed in the second scheduling phase.

The benchmark program is the sparse matrix

multiplication that is a fundamental operation in many

numerical linear algebra applications. The input matrix

A is a sparse matrix. We assume that 50% of elements

in matrix A are zero and all the zeros are in the lower

rectangular. If an element in matrix A is zero, the

corresponding calculation is omitted. Therefore, the

workloads of different iterations in sparse matrix

multiplication are irregular. In addition, when a row is

assigned for an MPI process, the corresponding

element values of matrix A are sent to that process.

First, we compare the chuck self-scheduling based

schemes as shown in Fig. 2. The label PCSS in the

legend denotes the PLS scheme with the CSS used in

the second scheduling phase. The label LCSS in the

legend denotes the proposed scheme with the CSS used

in the second scheduling phase. Our scheme has the

better performance for any matrix sizes. The speedups

are all about 2.

Fig. 2. Comparison for CSS-based schemes. The

chunk size is 128.

Second, we compare the guided self-scheduling

based schemes with static self-scheduling scheme as

shown in Fig. 3. The label PGSS in the legend denotes

the PLS approach with the GSS employed in the

second scheduling phase. The label LGSS in the legend

denotes the proposed scheme with the GSS used in the

second scheduling phase. The speedups obtained by the

hybrid MPI and OpenMP model range from 5.03 to

2.65, which is better than that for CSS-based schemes

as shown in Figure 2. However, the speedup is

decreased when the matrix size is increased. The

reason is that the larger amount of data communication

will influence the performance significantly as follows.

In the hybrid MPI and OpenMP programming mode,

all the processor cores in the same computation node

have to wait for the completion of the data transmission

at each scheduling step because the data will be

processed in parallel by these processor cores using

OpenMP threads. The total amount of data to be

transmitted at each scheduling step is the sum of the

data that will be transmitted at several continuous

scheduling steps in the original GSS scheme. However,

in the pure MPI model, each processor core in the same

computational node only needs to wait for the

completion of the data transmission at each scheduling

step and the amount of data to be transmitted is equal

to that in the original GSS scheme. Therefore, our

approach needs to wait longer than the previous

approach before the data are available at each

scheduling step.

Fig. 3. Comparison for GSS-based schemes.

Third, we compare the self-scheduling based

schemes as shown in Fig. 4. The label PGSS in the

legend denotes the PLS approach with the GSS

employed in the second scheduling phase and the label

LGSS denotes the proposed scheme with the GSS used

in the second scheduling phase. Our approach

outperforms the previous approach. The speedups

range from 4.56 to 3.32. Unlike the GSS scheme, FSS

can prevent from assigning too much workload to the

first few processors. As a result, it balances workloads

better than GSS when loop iteration computation times

vary substantially. Moreover, the influences caused by

the data communication overhead will be lessened.

Fig. 4. Comparison for FSS-based schemes.

Finally, we compare trapezoid self-scheduling based

schemes as shown in Fig. 5. The labels PGSS and

LGSS in the legend denote the PLS approach and our

approach with the GSS employed in the second

scheduling phase, respectively. The speedups range

from 4.58 to 3.04. Unlike GSS and FSS whose

speedups are decreased when the matrix size becomes

larger, for TSS, the speedup is decreased substantially

only when the matrix size is as large as 2048×2048.

Fig. 5. Comparison for TSS-based schemes.

5. Conclusions

This paper uniquely investigate how to employ the

hybrid MPI and OpenMP programming mode to design

parallel loop self-scheduling schemes for emerging grid

systems with multicore computational nodes. The

proposed scheduling approach is based on our previous

work adopting the pure MPI model. In the proposed

approach, only one MPI process will be created in each

computational node no matter how many processor

cores it has. The MPI process will request new loop

iterations from the master MPI process. After receiving

the assigned iterations at each scheduling step, the MPI

process will fork OpenMP threads for parallel

processing on the iterations. One OpenMP thread is

created for each processor core. The MPI process will

return the results to the master MPI process whenever

the assigned iterations are finished. Because the

iterations assigned to one MPI process will be

processed in parallel by the processors cores in the

same computational node, the number of loop iterations

to be allocated to one computational node at each

scheduling step also depends on the number of

processor cores in that node. We have constructed a

grid system to verify our proposed approach. The

benchmark is the sparse matrix multiplication, which

has the irregular workload distribution among iterations

and requires data communication at each scheduling

step. Preliminary experimental results show that the

proposed approach outperforms the previous work with

the average speedup of 3.39.

References

[1] I. Foster, C. Kesselman, “Globus: a metacomputing

infrastructure toolkit”, Int’l J. Supercomputing

Applications and High Perform Computing, Vol. 11,

No. 2, pp.115–128, 1997.

[2] Foster, I. and Kesselman, C., The Grid 2: Blueprint

for a New Computing Infrastructure, Morgan

Kaufmann Publishers Inc., 2003.

[3] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik,

“Locality and Loop Scheduling on NUMA

Multiprocessors”, Proceedings of the 1993

International Conference on Parallel Processing, Vol

II, 1993, pp. 140–147.

[4] C. D. Polychronopoulos, and D. Kuck, “Guided

Self-Scheduling: a Practical Scheduling Scheme for

Parallel Supercomputers,” IEEE Trans. on Computers,

vol. 36, no. 12, pp. 1425-1439, 1987.

[5] S. F. Hummel, E. Schonberg, and L. E. Flynn

“Factoring: A Method Scheme for Scheduling Parallel

Loops”, ACM Communications, Vol. 35, 1992, pp. 90–

101.

[6] T. H. Tzen, and L. M. Ni, “Trapezoid Self-

Scheduling: A Practical Scheduling Scheme for

Parallel Compilers,” IEEE Transactions on Parallel

and Distributed Systems, Vol. 4, 1993, pp. 87-98.

[7] I. Banicescu, R.L. Carino, J. P. Pabico,

M.Balasubramaniam, “Overhead analysis of a dynamic

load balancing library for cluster computing”,

Proceedings of the 19th IEEE international parallel and

distributed processing symposium, 2005.

[8] A. T. Chronopoulos, S. Penmatsa, J. Xu, S. Ali,

“Distributed loop-self-scheduling schemes for

heterogeneous computer systems,” Concurrent

Computing: Practice and Experience, Vol. 18, pp.771–

785, 2006.

[9] C.-T. Yang, and S.-C. Chang, “A Parallel Loop

Self-Scheduling on Extremely Heterogeneous PC

Clusters”, Journal of Information Science and

Engineering, Vol. 20, No. 2, 2004, pp. 263–273.

[10] C.-T. Yang, K.-W. Cheng, and K.-C. Li, “An

Enhanced Parallel Loop Self-Scheduling Scheme for

Cluster Environments”, The Journal of

Supercomputing, Vol. 34, No. 3, 2005, pp. 315-335.

[11] C.-T. Yang, W.-C. S., and S.-S. Tseng, “Dynamic

Partitioning of Loop Iterations on Heterogeneous PC

Clusters”, The Journal of Supercomputing, Vol. 44,

2008, pp. 1-23.

[12] C.-T. Yang, K.-W. Cheng, and W.-C. Shih, “On

Development of an Efficient Parallel Loop Self-

Scheduling for Grid Computing Environments”,

Parallel Computing, Vol. 33, No. 7-8, 2007, pp. 467-

487.

[13] HINT performance analyzer. http://hint.byu.edu/

[14] W.-C. Shih, C.-T. Yang, and S.-S. Tseng, “A

Performance-Based Parallel Loop Self-scheduling on

Grid Computing Environments”, The Journal of

Supercomputing, Vol. 41, 2007, pp. 247-267.

