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Abstract 
 

Loop scheduling on parallel and distributed systems 

has been thoroughly investigated in the past. However, 

none of them considers the feature of multicore 

architecture dominating the current markets of desktop 

computers, laptop computers, servers, etc. On the 

other hand, although there have been many studies 

proposed to employ the hybrid MPI and OpenMP 

programming model to exploit different levels of 

parallelisms for the distributed system with multicore 

computers, none of them aimed at the design of 

parallel loop self-scheduling. Therefore, this paper 

investigates how to employ the hybrid MPI and 

OpenMP model to design parallel loop self-scheduling 

scheme to adapt to the feature of multicore 

architecture for emerging grid systems. The proposed 

scheduling approach is based on our previous work 

adopting the pure MPI model. Preliminary 

experimental results show that the proposed approach 

outperforms the previous work with the average 

speedup of 3.39.   

 

Keywords: Grid computing, Self-scheduling, Loop 

scheduling, MPI, OpenMP. 

 

 

1. Introduction 
 

As computers become more and more inexpensive 

and powerful, computational grids which consist of 

various computational and storage resources have 

become promising alternatives to traditional 

multiprocessors and computing clusters [1, 2]. 

Basically, grids are distributed systems which share 

resources through the Internet. Users can access more 

computing resources through grid technologies. 

However, bad management of grid environments might 

result in using grid resources in an inefficient way. 

Moreover, the heterogeneity and dynamic changing of 

the grid environment make it different from 

conventional parallel and distributed computing 

systems, such as multiprocessors and computing 

clusters. Therefore, it becomes more difficult to utilize 

the grid efficiently.  

Loop scheduling on parallel and distributed systems 

is an important problem, and has been thoroughly 

investigated on traditional parallel computers in the 

past [3-6]. Traditional loop scheduling approaches 

include static scheduling and dynamic scheduling. The 

former is not suitable in dynamic environments. The 

latter, especially self-scheduling, has to be adapted to 

be applied to heterogeneous platforms. Therefore, it is 

difficult to schedule parallel loops on the 

heterogeneous and dynamic grid environments. In 

recent years, several pieces of work has been devoted 

to parallel loop scheduling for cluster computing 

environments [7-11], addressing the heterogeneity of 

computing power.  

For grid systems, we have revised known loop self-

scheduling schemes to fit Grid computing 

environments [12].  The HINT Performance Analyzer 

[13] is used to determine whether target systems are 

relatively homogeneous or relatively heterogeneous. 

We then partition loop iterations into four classes, 

based on typical cluster system cases to achieve good 

performance in any given computing environment. 

Finally, a heuristic approach based upon α-based self-

scheduling scheme to solve parallel regular loop 
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scheduling problem on an extremely heterogeneous 

Grid computing environment.  

Intuitively, we would partition the total workload 

according to CPU clock speed. However, the CPU 

speed is not the only factor which affects node 

performance. Many other factors also have dramatic 

influences in this respect, such as the amount of 

memory available, the cost of memory accesses, and 

the communication bandwidth between nodes, etc. 

Using this intuitive approach, the result will be 

degraded if the performance estimation is not accurate. 

To address this problem, we also proposed a general 

approach called PLS (Performance-based Loop 

Scheduling) [14]. This approach utilizes performance 

functions to estimate the performance of each node.  

Although our previous approaches improve the 

system performance, they did not take the feature of 

multicore architecture into account. Recently, more and 

more cluster systems include multicore computers 

because almost all the commodity personal computers 

are multicore architecture. The primary feature of 

multicore architecture is that multiple processors on the 

same chip can communicate with each other by directly 

accessing the data in shared memory. Unlike multicore 

computers, each computer in the distributed system has 

its own memory system and thus it relies on the 

message-passing mechanism to communicate with 

other computers. The MPI library is usually used for 

parallel programming in the grid system because it is a 

message-passing programming language. However, 

MPI is not the best programming language for 

multicore computers. Instead, OpenMP is very suitable 

for multicore computers because it is a shared-memory 

programming language. Therefore, in this paper we 

propose to use hybrid MPI and OpenMP programming 

mode to design the loop self-scheduling scheme for the 

grid system with multicore computers. Preliminary 

experimental results show that the proposed approach 

outperforms the previous work with the average 

speedup of 3.39.   

 

2. Related Work 
 

Pure self-scheduling (PSS) is the first 

straightforward dynamic loop scheduling algorithm [3]. 

Whenever a processor becomes idle, the master will 

assign a loop iteration to it. This algorithm achieves 

good load balancing because the maximum waiting 

time for the last processor is the execution time of a 

loop iteration. However, it induces excessive runtime 

overhead because it requires N times to dispatch the 

iterations one by one by the master if there are N 

iterations totally. 

Chunk self-scheduling (CSS) assigns k consecutive 

iterations each time [3]. The chunk size, k, is fixed and 

must be specified by either the programmer or by the 

compiler. A large chunk size will cause load imbalance 

because the maximum waiting time for the last 

processor is the execution time of k loop iterations. In 

contrary, a small chunk size is likely to result in too 

much runtime overhead. If k is equal to 1, CSS will be 

degraded to PSS. Thus, it is important and difficult to 

choose the proper chunk size. 

Guided self-scheduling (GSS) dispatches iterations 

decreasingly [4].  More specifically, the next chunk 

size is calculated by dividing the number of the 

remaining iterations by the number of available 

processors. It aims at reducing the dispatch frequency 

to minimize the scheduling overhead and reducing the 

number of iterations assigned to the last few processors 

to achieve better load balancing. 

Factoring Self-Scheduling (FSS) assigns loop 

iterations to processors in phases [5]. During each 

phase, only the half of remaining loop iterations is 

equally divided among available processors. FSS can 

prevent from assigning too much workload to the first 

few processors. As a result, it balances workloads 

better than GSS when loop iteration computation times 

vary substantially. 

Trapezoid Self-Scheduling (TSS) reduces the 

scheduling frequency while still providing reasonable 

load balancing [6]. Two parameters have to be 

specified either by the programmer or by the compiler: 

the number of the first iterations to be assigned to the 

processor starting the loop, Ns; and the number of the 

last iterations to be assigned to the processor 

performing the last fetch, Nf. According to the values of 

Ns and Nf, the number of iterations to be assigned in 

each step is decreased in a constant ratio. 

 

3. The proposed method 
 

A grid system is comprised of multiple computational 

nodes connected by the Internet. Each computational 

node has its own memory system and the address space. 

Parallel processes running in different computational 

nodes communicate with each other by explicit 

message transmissions. Therefore, message-passing 

programming languages, such as the MPI de facto 

standard, are used to design parallel programs for grid 

systems. On the other hand, a multicore computer is a 

shared-memory multiprocessor. Because all the cores 

share the same physical main memory modules, 

parallel processes communicate with each other by 

accessing to data in the shared memory. In addition, 

because every process has completely separate program 



with its own variables and memory allocation while 

threads share the same memory space and global 

variables between routines, it is more cost effective if 

processes are replaced with threads. Therefore, it is 

more suitable to use shared-memory programming 

languages, such as the OpenMP library, to develop 

parallel programs for multicore computational nodes. 

Therefore, we propose to adopt the hybrid parallel 

programming model to combine both the advantages of 

message-passing programming and shared-memory 

programming for the grid system with multicore 

computational nodes. MPI message-passing 

programming is adopted for the communications 

among different computational nodes and OpenMP 

shared-memory programming is adopted for the 

communications among different cores in the same 

computational node. 
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Fig. 1. Single-level and two-level scheduling schemes 

 

We give an example to explain the idea more 

detailed as shown in Figure 1. Assume that we have a 

4-core computational node. In the pure MPI 

programming model, there will be four parallel MPI 

processes running on the four cores as shown in Figure 

1(a). Every process has to request the iterations from 

the scheduler directly. The iterations assigned to a 

process cannot be shared by the other three processes 

although the assigned iterations are in the shared 

memory. On the other hand, if the hybrid MPI and 

OpenMP programming model is employed, there will 

be only one MPI process running in one of the four 

processor cores as shown in Figure 1(b). The MPI 

process will communicate with the scheduler to request 

new iterations. Whenever receiving the assigned 

iterations, the MPI process will fork four parallel 

OpenMP threads to process the assigned iterations. The 

four parallel threads will adopt the OpenMP built-in 

self-scheduling function to process the iterations. As 

soon as the assigned iterations have been processed by 

OpenMP threads, the MPI process returns the result to 

the scheduler and asks for new iterations.  

Because only one MPI process will be created for 

each multicore computational and the assigned 

iterations will be processed by all the processor cores 

in parallel using OpenMP threads, the number of 

iterations assigned at each scheduling step must be 

modified. We describe how to extend our previous 

work [14] for the hybrid MPI and OpenMP 

programming model. 

Let M denote the number of computing nodes, P 

denote the total number of processor cores. Computing 

node i is represented by mi, and the total number of 

processor cores in computing node mi is represented by 

pi, where 1 ≦ i ≦ M. In consequence, P =



M

i

ip
1

. The j
th

 

processor core in computing node i is represented by cij, 

where 1 ≦ i ≦ M and 1 ≦ j ≦ pi. N denotes the total 

number of iterations in some application program and 

f() is an allocation function to produce the chunk-size at 

each step. The output of f is the chunk-size for the next 

iteration. At the s
th

 scheduling step, the global 

scheduler computes the chunk-size Cs for the 

computing node i and the remaining number of tasks Rs, 

R0 = N, Cs = f(s, i), Rs = Rs-1 − Cs ,            (1) 

where f() possibly has more parameters than just s 

and i, such as Ri−1. The concept of performance ratio is 

previously defined in [10–12] in different forms and 

parameters, according to the requirements of 

applications. In this work, a different formulation is 

proposed to model the heterogeneity of the dynamic 

grid nodes. 

The purpose of calculating performance ratio is to 

estimate the current capability of processing for each 

node. With this metric, we can distribute appropriate 

workloads to each node, and load balancing can be 

achieved. The more accurate the estimation is, the 

better the load balance is.  

 To estimate the performance of each computing 

node, we define a performance function (PF) for a 

computing node i as  

PFi (V1, V2, . . . , VX),                         (2) 

where Vr , 1 ≦  r ≦  X, is a variable of the 

performance function. In this paper, our PF for a 

computing node i is defined as 

PFi = 

 
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where CSij is the CPU clock speed of processor core j 

in computing node i, and it is a constant attribute. The 

value of this parameter is acquired by the MDS service; 



CLij is the CPU loading of processor core j in 

computing node i, and it is a variable attribute. The 

value of this parameter is acquired by the Ganglia tool. 

The performance ratio (PR) is defined to be the ratio 

of all performance functions. For instance, assume the 

values of PFs of three nodes are 1/2, 1/3 and 1/4. 

Then, the PR is 1/2:1/3:1/4; i.e., the PR of the three 

nodes is 6:4:3. In other words, if there are 13 loop 

iterations, 6 iterations will be assigned to the first node, 

4 iterations will be assigned to the second node, and 3 

iterations will be assigned to the last one. 

We propose to use a parameter, SWR (Static-

Workload Ratio), to alleviate the effect of irregular 

workload. In order to take advantage of static 

scheduling, SWR percentage of the total workload is 

dispatched according to Performance Ratio. If the 

workload of the target application is regular, SWR can 

be set to be 100. However, if the application has 

irregular workload, it is efficient to reserve some 

amount of workload for load balancing. We propose to 

randomly take five sampling iterations, and compute 

their execution time. Then, the SWR of the target 

application i is determined by the following formula. 

SWRi = 

i

i

MAX

min           (4) 

where mini is the minimum execution time of all 

sampled iterations for application i; MAXi is the 

maximum execution time of all sampled iterations for 

application i. For example, for a regular application 

with uniform workload distribution, the five sampled 

iterations are the same. Therefore, the SWR is 100%, 

and the whole workload can be dispatched according to 

Performance Ratio, with good load balance. However, 

or another application, the five sampling execution 

time might be 7, 7.5, 8, 8.5 and 10 seconds, 

respectively. Then the SWR is 7/10, i.e. a percentage 

of 70. Therefore, 70 percentages of the iterations would 

be scheduled statically according to PR, while 30 

percentages of the iterations would be scheduled 

dynamically by any one of the well known self-

scheduling scheme such as GSS. In the second phase, 

when an MPI process requests for new iterations at 

each scheduling step, we have to take the number of 

processor cores into consideration when the master 

process determines the number of iterations to be 

allocated for the process because the assigned iterations 

will be processed by parallel OpenMP threads. If there 

are pi processor cores in the computational node i, the 

master will base on the applied well known self-

scheduling scheme to calculate the total number of 

iterations by adding up the next pi allocations. For 

instance, if there are 4 processor cores in a 

computational node and the CSS scheme with the 

chunk size of 128 iterations is adopted, the master will 

assign 512 iterations whenever the MPI process 

running on the computational node asks for new 

iterations.  

 

4. Performance evaluations 
 

Table 2. The configuration of our grid system 

Bao-Shan Campus Of NCUE (5 PCs) 

Intel Pentium Dual-Core × 4 

CPU 

RAM 

Hard Disk 

Swap Space 

Bandwidth 

Pentium Dual-core E2160, 1.8GHz 

512 MB DDR 667 × 1 

80 GB 

1 GB 

400Mbps 

Intel Pentium Quad-Core × 1 

CPU 

 

Memory 

Hard Disk 

Swap Space 

Bandwidth 

Intel Core 2 Quad Q6600, 

2.4G/8M/1066FSB 

1GB DDR2 × 2 

SATAII 160GB 

2GB 

400Mpbs 

Jin-Der Campus Of NCUE (3 SMPs)                                       

CPU 

 

Memory 

Hard Disk 

Swap Space 

Bandwithd 

Dual-Core AMD Opteron Processor 

270/2.0/2M × 2 

1GB DDR 400 Registered ECC × 4 

SATAII 320GB 

2GB 

1000Mpbs 

National Taichung University (1 PC) 

CPU 

 

Memory 

Hard Disk 

Swap Space 

Bandwidth 

Intel Core 2 Quad Q6600 

2.4G/8M/1066FSB 

1GB DDR2 × 2 

SATAII 160GB 

2GB 

400Mbps 

Lin Tung University (3 PCs) 

CPU 

Memory 

Hard Disk 

Swap Space 

Bandwidth 

Intel Pentium III 1GHz @ 997MHz  

256MB PC-133 × 1 

ATA66 30GB 

512MB 

1000Mbps 

 

To verify the proposed approach, we have 

constructed a grid system consisting of twelve 

computational nodes, where nine nodes are multicore 

architecture. Totally, there are 31 processor cores in 

the system. The configuration of our grid is listed in 

Table 2. We compare our approach with the PLS 

(Performance-based Loop Scheduling) scheme [14]. 

The speedup is obtained by dividing the execution time 

of the proposed scheme by the execution time of the 

PLS scheme when the same well known dynamic self-

scheduling is employed in the second scheduling phase. 



The benchmark program is the sparse matrix 

multiplication that is a fundamental operation in many 

numerical linear algebra applications. The input matrix 

A is a sparse matrix. We assume that 50% of elements 

in matrix A are zero and all the zeros are in the lower 

rectangular. If an element in matrix A is zero, the 

corresponding calculation is omitted. Therefore, the 

workloads of different iterations in sparse matrix 

multiplication are irregular. In addition, when a row is 

assigned for an MPI process, the corresponding 

element values of matrix A are sent to that process. 

 

First, we compare the chuck self-scheduling based 

schemes as shown in Fig. 2. The label PCSS in the 

legend denotes the PLS scheme with the CSS used in 

the second scheduling phase. The label LCSS in the 

legend denotes the proposed scheme with the CSS used 

in the second scheduling phase. Our scheme has the 

better performance for any matrix sizes. The speedups 

are all about 2.  

 
Fig. 2. Comparison for CSS-based schemes. The 

chunk size is 128. 

 

Second, we compare the guided self-scheduling 

based schemes with static self-scheduling scheme as 

shown in Fig. 3. The label PGSS in the legend denotes 

the PLS approach with the GSS employed in the 

second scheduling phase. The label LGSS in the legend 

denotes the proposed scheme with the GSS used in the 

second scheduling phase. The speedups obtained by the 

hybrid MPI and OpenMP model range from 5.03 to 

2.65, which is better than that for CSS-based schemes 

as shown in Figure 2. However, the speedup is 

decreased when the matrix size is increased. The 

reason is that the larger amount of data communication 

will influence the performance significantly as follows. 

In the hybrid MPI and OpenMP programming mode, 

all the processor cores in the same computation node 

have to wait for the completion of the data transmission 

at each scheduling step because the data will be 

processed in parallel by these processor cores using 

OpenMP threads. The total amount of data to be 

transmitted at each scheduling step is the sum of the 

data that will be transmitted at several continuous 

scheduling steps in the original GSS scheme. However, 

in the pure MPI model, each processor core in the same 

computational node only needs to wait for the 

completion of the data transmission at each scheduling 

step and the amount of data to be transmitted is equal 

to that in the original GSS scheme. Therefore, our 

approach needs to wait longer than the previous 

approach before the data are available at each 

scheduling step. 

 
Fig. 3. Comparison for GSS-based schemes. 

 

Third, we compare the self-scheduling based 

schemes as shown in Fig. 4. The label PGSS in the 

legend denotes the PLS approach with the GSS 

employed in the second scheduling phase and the label 

LGSS denotes the proposed scheme with the GSS used 

in the second scheduling phase. Our approach 

outperforms the previous approach. The speedups 

range from 4.56 to 3.32. Unlike the GSS scheme, FSS 

can prevent from assigning too much workload to the 

first few processors. As a result, it balances workloads 

better than GSS when loop iteration computation times 

vary substantially. Moreover, the influences caused by 

the data communication overhead will be lessened.  

 
Fig. 4. Comparison for FSS-based schemes. 

 

Finally, we compare trapezoid self-scheduling based 

schemes as shown in Fig. 5. The labels PGSS and 

LGSS in the legend denote the PLS approach and our 

approach with the GSS employed in the second 

scheduling phase, respectively. The speedups range 

from 4.58 to 3.04. Unlike GSS and FSS whose 

speedups are decreased when the matrix size becomes 

larger, for TSS, the speedup is decreased substantially 

only when the matrix size is as large as 2048×2048.  



 
Fig. 5. Comparison for TSS-based schemes. 

 

5. Conclusions 
 

This paper uniquely investigate how to employ the 

hybrid MPI and OpenMP programming mode to design 

parallel loop self-scheduling schemes for emerging grid 

systems with multicore computational nodes. The 

proposed scheduling approach is based on our previous 

work adopting the pure MPI model. In the proposed 

approach, only one MPI process will be created in each 

computational node no matter how many processor 

cores it has. The MPI process will request new loop 

iterations from the master MPI process. After receiving 

the assigned iterations at each scheduling step, the MPI 

process will fork OpenMP threads for parallel 

processing on the iterations. One OpenMP thread is 

created for each processor core. The MPI process will 

return the results to the master MPI process whenever 

the assigned iterations are finished. Because the 

iterations assigned to one MPI process will be 

processed in parallel by the processors cores in the 

same computational node, the number of loop iterations 

to be allocated to one computational node at each 

scheduling step also depends on the number of 

processor cores in that node. We have constructed a 

grid system to verify our proposed approach. The 

benchmark is the sparse matrix multiplication, which 

has the irregular workload distribution among iterations 

and requires data communication at each scheduling 

step. Preliminary experimental results show that the 

proposed approach outperforms the previous work with 

the average speedup of 3.39.   
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