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Abstract 

Clustering computing has become the paradigm of choices 
for executing large-scale science, engineering, and 
commercial applications. This is due to their low cost, high 
performance, high availability of off-the-shelf hardware 
components and freely accessible software tools that can be 
used for developing applications. In this paper, we will 
introduce the clustering system and discuss system 
architecture, software tools, and applications of this system. 
Keywords: Clustering, SMP, Parallel Computing, Speedup, 
PVM, MPI 

摘要 

利用傳統電腦來解決複雜的科學及工程問題已不敷使

用，唯有藉助平行處理的方式才能達到此一目的。最近，

運用叢集式電腦系統搭配 Linux 作業系統與 PVM 或 MPI
訊息傳遞程式庫，來執行高速計算(或平行計算)已經逐漸
走到實際可行的階段。即使用者可以花較少的費用與時間

就能建置叢集式的平行電腦系統，將平行計算應用到其專

業領域，而得到不錯的結果。本論文所陳述的叢集式平行

系統架構，軟體工具以及相關應用。 
關鍵詞：叢集式、平行計算、對稱式多處理機系統、訊息

傳遞程式庫 
1 Introduction 

While the use of parallel supercomputers has been 
one of mainstreams for high-performance computing for 
the past decade, its popularity is waning. The reasons 
for this decline are many. They include factors such as 
being expensive to own and maintain; slow to evolve 
along with emerging hardware technologies; and 
difficult to upgrade without totally being replaced by a 
new system. Extraordinary technological improvements 
over the past few years in areas such as microprocessors, 
memory, buses, networks, and software have made it 
possible to assemble groups of inexpensive personal 
computers and/or workstations into a cost effective 
system that functions in concert and posses tremendous 
processing power rivaling supercomputers. Cluster 
computing is not new, but in company with other 
technical capabilities, particularly in the area of 
networking, this class of machines is becoming a 
high-performance platform for parallel and distributed 
applications [1, 2, 10, 11]. 

Scalable computing clusters, ranging from a cluster of 
(homogeneous or heterogeneous) PCs or workstations, 
to SMPs (Symmetric MultiProcessors), as shown in 
Figure 1 (a), are rapidly becoming the standard 
platforms for high-performance and large-scale 
computing. A cluster, as shown in Figure 1 (b), is a 
group of independent computer systems and thus forms 
a loosely coupled multiprocessor system. A network is 
used to provide inter-processor communications. 
Applications that are distributed across the processors of 
the cluster use either message passing or network shared 
memory for communication. Cluster nodes work 
collectively as a single computing resource and fill the 
conventional role of using each node as an independent 
machine. A cluster computing system is a compromise 
between a massively parallel processing system and a 
distributed system. An MPP (Massively Parallel 
Processors) system node typically cannot serve as a 
standalone computer; a cluster node usually contains its 
own disk and equipped with a complete operating 
systems, and therefore, it also can handle interactive 
jobs. In a distributed system, each node can function 
only as an individual resource while a cluster system 
presents itself as a single system to the user.  
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Figure 1: (a) The structure of a typical SMP with four 

processors. (b) A typical cluster system with eight processors. 
The concept of Beowulf clusters originated at the 

Center of Excellence in Space Data and Information 
Sciences (CESDIS), located at the NASA Goddard 
Space Flight Center in Maryland. The goal of building a 
Beowulf cluster is to create a cost-effective parallel 
computing system from mass-market commodity, 
off-the-shelf components to satisfy specific 



computational requirements in the earth and space 
sciences community. The first Beowulf cluster was built 
from 16 Intel DX4TM processors connected by a 
channel-bonded 10 Mbps Ethernet, and it ran the Linux 
operating system [10]. It was an instant success, 
demonstrating the concept of using a commodity cluster 
as an alternative choice for high-performance 
computing (HPC). After the success of the first Beowulf 
cluster, several more were built by CESDIS using 
several generations and families of processors and 
network interconnects. 

Such a system can provide a cost-effective way to 
achieve features and benefits (fast and reliable services) 
that have historically been found only on more 
expensive proprietary shared memory systems. The 
main attractiveness of such system is that they are built 
using affordable, low-cost, commodity hardware (such 
as Pentium PCs), fast LAN such as Myrinet, and 
standard software computers such as UNIX, Linux, and 
Solaris. Applications are often parallelized by using the 
MPI or PVM message-passing library for 
inter-processor communications [4, 6]. These systems 
are scalable, i.e., they can be tuned according to user’s 
available budget and computational needs and allow 
efficient execution of both demanding sequential and 
parallel applications. To utilize the resources of a 
clustering system, a problem had to be algorithmically 
expressed as comprising a set of concurrently executing 
sub-problems or tasks [1, 2, 11, 12, 13, 14]. This was 
achieved via the use of parallel programming, libraries, 
and/or environments that encapsulate the way in which 
the various tasks cooperate to provide the solution to the 
original problem [12, 13, 14]. 

We conducted and maintained an experimental Linux 
SMP cluster (SMP PC machines running the Linux 
operating system), which is available as a computing 
resource for test users. This cluster is made up of 16 
PC-based SMPs. Nodes are connected using Fast 
Ethernet with a maximum bandwidth of 200/100Mbits 
with/without channel bonded, through two 3Com 
24-port switches. This cluster machine is operated as a 
unit, sharing networking, file servers, and other 
peripherals. This cluster is used to run both serial and 
parallel jobs. 

In this  paper, the system architecture, software tools, 
and applications of this cluster system will be discussed. 
The matrix multiplication and parallel ray tracing 
problems are illustrated and the experimental results are 
also demonstrated on our Linux SMPs cluster. Eight 
2-Celeron-processor SMPs and eight 2-PIII-processor 
SMPs are connected as a cluster to measure the system 
performance on speedup. The experimental results show 
that the highest speedups are 10.85 and 15.22, 
respectively for matrix multiplication and PVMPOV [5],  
when the total number of processor is 16 on SMPs 
cluster. Two benchmarks, LU of NPB and HPL, are also 
used to demonstrate the performance of our testbed by 
using LAM/MPI library. The experimental results show 
that our cluster can obtain 6.433Gflop/s and 

5.784Gflop/s for HPL, when the total number of 
processors used is  16 with and without channel bonding. 
The results of this study will make theoretical and 
technical contributions to the design of a 
high-performance computing system on a Linux SMP 
Clusters. 
2 System Overview 

2.1. Hardware 
Our SMPs cluster is a low cost Beowulf class 

supercomputer that utilizes a multi-computer 
architecture for parallel computations. The Parallel 
Testbed consists of two PC clusters. One is used for 
parallel comp uting, the other is used for high available 
application. For parallel computation portion, the 
snapshot of our cluster is shown in Figure 2 that 
consists of 16 PC-based symmetric multiprocessors 
(SMP) connected by two 24-port 100Mbps Ethernet 
SuperStackII 3300 XM switches with Fast Ethernet 
interface. Its system architecture is shown in Figure 3. 

There are one server node and fifteen computing 
nodes. The server node has two Intel Pentium-III 
945MHz (750 over-clock, FSB 126MHz) processors 
and 768MBytes of shared local memory. Each 
Pentium-III has 32K on-chip instruction and data caches 
(L1 cache), a 256K on-chip four-way second-level 
cache with full speed of CPU. There are two kinds of 
computing nodes, one is  P-III-based, and the other is 
Celeron-based. Each P-III-based computing node with 
two 945 P-III processors has 512MBytes of shared local 
memory. Each Celeron-based computing node with two 
Celeron processors has 384MBytes of shared local 
memory. Each Celeron also has 32K on-chip instruction 
and data caches (L1 cache), a 128K on-chip four-way 
second-level cache with full speed of CPU. Each 
individual processor is rated at 495MHz, and the system 
bus has a clock rate of 110 MHz. 

 
Figure 2: The snapshot of NSPO Parallel Testbed. 
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Figure 3: The NSPO Parallel Testbed system architecture. 

2.2. System Software  

2.2.1. Logical View of Beowulf 

A Beowulf cluster uses multi computer architecture, 
as depicted in Figure 4. It features a parallel computing 
system that usually consists of one or more master 
nodes and one or more compute nodes, or cluster nodes, 
interconnected via widely available network 
interconnects. All of the nodes in a typical Beowulf 
cluster are commodity systems -PCs, workstations, or 
servers-running commodity software such as Linux. 

The master node acts as a server for Network File 
System (NFS) and as a gateway to the outside world. As 
an NFS server, the master node provides user file space 
and other common system software to the compute 
nodes via NFS. As a gateway, the master node allows 
users to gain access through it to the compute nodes. 
Usually, the master node is the only machine that is also 
connected to the outside world using a second network 
interface card (NIC). The sole task of the compute 
nodes is to execute parallel jobs. In most cases, 
therefore, the compute nodes do not have keyboards, 
mice, video cards, or monitors. All access to the client 
nodes is provided via remote connections from the 
master node. Because compute nodes do not need to 
access machines outside the cluster, nor do machines 
outside the cluster need to access compute nodes 
directly, compute nodes commonly use private IP 
addresses, such as the 10.0.0.0/8 or 192.168.0.0/16 
address ranges. 

From a user’s perspective, a Beowulf cluster appears 
as a Massively Parallel Processor (MPP) system. The 
most common methods of using the system are to access 
the master node either directly or through Telnet or 
remote login from personal workstations. Once on the 
master node, users can prepare and compile their 
parallel applications, and also spawn jobs on a desired 
number of compute nodes in the cluster. Applications 
must be written in parallel style and use the 
message-passing programming model. Jobs of a parallel 
application are spawned on compute nodes, which work 
collaboratively until finishing the application. During 
the execution, compute nodes use standard 

message-passing middleware, such as Message Passing 
Interface (MPI) and Parallel Virtual Machine (PVM), to 
exchange information. 

Since a Beowulf cluster is an MPP system, it suits 
applications that can be partitioned into tasks, which can 
then be executed concurrently by a number of 
processors. These applications range from high-end, 
floating-point intensive scientific and engineering 
problems to commercial data-intensive tasks. Uses of 
these applications include ocean and climate modeling 
for prediction of temperature and precipitation, seismic 
analysis for oil exploration, aerodynamic simulation for 
motor and aircraft design, and molecular modeling for 
biomedical research. 

 
Figure 4: Logic view of a Beowulf cluster.  

2.2.2. Linux 

Linux is a freely available UNIX-like open operating 
system that is supported by its users and developers. 
Now, Linux has become a robust and reliable POSIX 
compliant operating system. Several companies have 
built businesses from packaging Linux software into 
organized distributions; RedHat is an example of such a 
company. Linux provides the features typically found in 
standard UNIX such as multi-user access, pre-emptive 
multi-tasking, demand-paged virtual memory and SMP 
support. In addition to the Linux kernel, a large amount 
of application and system software and tools are is also 
freely available. This makes Linux the preferred 
operating system for clusters. 

The idea of the Linux cluster is to maximize the 
performance-to-cost ratio of computing by using 
low-cost commodity components and free-source Linux 
and GNU software to assemble a parallel and 
distributed computing system. Software support 
includes the standard Linux/GNU environment, 
including compilers, debuggers, editors, and standard 
numerical libraries. Coordination and communication 
among the processing nodes so they can truly work 
together is an obvious key requirement of 
parallel-processing clusters. In order to accommodate 
this coordination, developers have created software to 
carry out the coordination and hardware to send and 
receive the coordinating messages. Messaging 
architectures such as MPI or Message Passing Interface, 
and PVM or Parallel Virtual Machine, allow the 
programmer to ensure that control and data messages 



take place as needed during operation. Several 
approaches to message passing are discussed below. 

2.2.3. PVM 

PVM, or Parallel Virtual Machine, started out as a 
project at the Oak Ridge National Laboratory and was 
developed further at the University of Tennessee [6]. 
PVM is a complete dis tributed computing system, 
allowing programs to span several machines across a 
network. PVM utilizes a Message Passing model that 
allows developers to distribute programs across a 
variety of machine architectures and across several data 
formats. PVM essentially collects the network's 
workstations into a single virtual machine. PVM allows 
a network of heterogeneous computers to be used as a 
single computational resource called the parallel virtual 
machine. As we have seen, PVM is a very flexible 
parallel processing environment. It therefore supports 
almost all models of parallel programming, including 
the commonly used all-peers and master-slave 
paradigms. The chief reasons for reasons for the 
richness in the models it provides a framework for are 
its support  for dynamic cluster change and dynamic 
spawning of processes. 

2.2.4. MPI 

MPI is a message-passing application programmer 
interface with protocol and semantic specifications for 
how its features must behave in any implementation 
(such as a message buffering and message delivery 
progress requirement). MPI includes point-to-point 
message passing and collective (global) operations. 
These are all scoped to a user-specified group of 
processes [4]. In addition, MPI supplies abstractions for 
processes at two levels. At the first level, processes are 
named according to the rank of the group in which the 
communication is being performed. At the second level, 
virtual topologies allow for graph or Cartesian naming 
of processes that help relate in a convenient, efficient 
way the application semantics to the message passing 
semantics. Communicators, which house groups and 
communication context (scoping) information, provide 
an important measure of safety that is necessary and 
useful for building up library-oriented parallel code. 
MPI provides a substantial set of libraries for the 
writing, debugging, and performance testing of 
distributed programs. Our system currently offers 
LAM/MPI, a portable implementation of the MPI 
standard developed cooperatively by Notre Dame 
University. LAM (Local Area Multicomputer) is an 
MPI programming environment and development 
system and includes a visualization tool that allows a 
user to examine the state of the machine allocated to 
their job as well as provides a means of studying 
message flows between nodes. 
3 Applications and Performance 

3.1. Performance of Channel Bonding 
We use a simple program to measure the round ripe 

time of messages of various lengths between two nodes 

of our clusters. The program uses the MPI_Send and 
MPI_Recv library  routines for sending and receiving 
messages. The latency and bandwidth are two important 
parameters that characterize a network. The latency 
measures the overhead associated with sending or 
receiving a message and is often measures as half the 
round trip time for a small message. Figure 5 shows the 
round trip time (ms) versus message size (Byte) 
achieved by MPI library. In order to reduce sampling 
errors, the message is send back and forth 1,000 times 
and the average of these round trip times is taken. There 
are three cases are considered: One measuring the round 
trip time between two processors in the same SMP; one 
measuring the time between two processors in the 
different SMP; and one measuring the time between two  
processors in the different SMP with channel bonded. 
Case one incurs a cost of 27.2124 microseconds for a 
524288-byte message; whereas the same messages take 
106.756 ms and 58.9251 ms for case 2 and 3, 
respectively. In general, channel bonding can improve 
the communication bandwidth and reduce the 
communication time for larger messages. 

 

Figure 5: The performance of channel bonding by using MPI. 

3.2 Matrix Multiplication 
The matrix operation derives a resultant matrix by 

multiplying two input matrices, a and b, where matrix a 
is a matrix o f N rows by P columns and matrix b is of P 
rows by M columns. The resultant matrix c is of N rows 
by M columns. The serial realization of this operation is 
quite straightforward as listed in the following: 

for(k=0; k<M; k++) 
 for(i=0; i<N; i++){ 
  c[i][k]=0.0; 
  for(j=0; j<P; j++) 
   c[i][k]+=a[i][j]*b[j][k]; 
 } 
Its algorithm requires n3 multiplications and n3 

additions, leading to a sequential time complexity of 
O(n3). Let's consider what we need to change in order 
to use PVM. The first activity is to partition the problem 
so each slave node can perform on its own assignment 
in parallel.  For matrix multiplication, the smallest 
sensible unit of work is the computation of one element 
in the result matrix. It is possible to divide the work into 
even smaller chunks, but any finer division would not 
be beneficial because of the number of processor is not 
enough to process, i.e., n2 processors are needed. 

The matrix multiplication algorithm is implemented 
in PVM using the master-slave paradigm as shown in 



Figure 6. The master task is named master_mm_pvm, 
and the slave task is named slave_mm_pvm. The master 
reads in the input data, which includes the number of 
slaves to be spawned, nTasks. After registering with 
PVM and receiving a taskid or tid, it spawns nTasks 
instances of the slave program slave_mm_pvm and then 
distributes the input graph information to each of them.  
As a result of the spawn function, the master obtains the 
tids from each of the slaves. Since each slave needs to 
work on a distinct subset of the set of matrix elements, 
they need to be assigned instance IDs in the range (0, ..., 
nTask-1). The tids assigned to them by the PVM library 
do not lie in this range, so the master needs to assign the 
instance IDs to the slave nodes and send that 
information along with the input matrix. Each slave also 
need to know the total number of slaves in the program, 
and this information is passed on to them by the master 
process as an argument to the spawn function since, 
unlike the instance IDs, this number is the same for all 
nTasks slaves. 

To send the input data and instance ID information, 
the master process packs these into the active send 
buffer, and then invokes the send function. It then waits 
to receive partial results from each of the slaves. The 
slaves register with the PVM environment, and then 
wait for input data from the master, using a wildcard in 
the receive function to receive a message from any 
source. Once a message is received, each slave 
determines the master's tid from the received message 
buffer properties. Alternatively, the slaves could have 
determined the master's tid by calling the pvm_parent 
function, which they could have used as the source in 
their receive function. Upon receiving the message from 
the master that contains the input matrix, a slave 
unpacks this data from the active receive buffer.  Each 
slave then works on its input partition, and send its 
partial results to the master when it is done. Then the 
master collects these partial results into an output matrix 
and outputs the results. In the slave program, we keep 
the basic structure of the sequential program intact. But 
now the routine to multiply the two matrices, the main 
program of slave_mm_pvm does not do the actual work 
itself, only performs the loop partition for each 
individual portion. Instead, the slave program calls a 
function matrix_multiple to perform real matrix 
multiplication. Each individual slave then performs a 
portion of the matrix multiplication as shown in Figure 
7. 

 

Figure 6: The master_mm_pvm.c and slave_mm_pvm.c 
programs  

 
Figure 7: The block partition for MM. 

The matrix multiplication was run with forking of 
different numbers of tasks to demonstrate the speedup. 
The problem sizes were 256X256, 512X512, 768X768, 
1024X1024, and 2048X2048 in our experiments. It is 
well known, the speedup can be defined as Ts /Tp, where 
Ts is the execution time using serial program, and Tp is 
the execution time using multiprocessor. The execution 
times on 1, 2, 4, 8, and 16, were listed in Figure 8, 
respectively. In Figure 9, the corresponding speedup is 
increased for different problem sizes by varying the 
number of slave programs. Since matrix multiplication 
was a uniform workload application, the high speedups 
were gained about 1.76 (256X256) using 2 processors 
of one SMP, and 3.41 (256X256) using two SMPs. The 
highest speedup was obtained about 10.85 (2048X2048) 
by using our SMP cluster with 16 processors. We also 
found that the speedups were closed when creating two 
slave programs on one dual processor machine and two 
slaves program on two SMPs respectively by using 
PVM library. With channel-bonded technique, the 
highest speedup was measured about 11.71 shown in 
Figure 10. 



 
Figure 8: Execution times of MM with different number of 

tasks. 

 

Figure 9: Speedups of MM with different number of tasks. 

 
Figure 10: The execution times and the corresponding 

speedups of MM by using channel bonded. 

3.3. PVMPOV 
Rendering is a technique for generating a graphical 

image from a mathematical model of a two or 
three-dimensional object or scene. A common method 
of rendering is ray tracing. Ray tracing is a technique 
used in computer graphics to create realistic images by 
calculating the paths taken by rays of light entering the 
observer’s eye at different angles. Ray tracing is an 
ideal application for parallel processing since there are 
many pixels, each of whose values are independent and 
can be calculated in parallel. The Persistence of Vision 
Ray Tracer (POV-Ray) is an all-round 3-dimensional 
ray tracing software package [5]. It takes input 
information and simulates the way light interacts with 
the objects defined to create 3D pictures and animations. 
In addition to the ray tracing process, newer versions of 

POV can also use a variant of the process known as 
radiosity (sophisticated lighting) to add greater realism 
to scenes, particularly those that use diffuse light 
POVRay can simulate many atmospheric and 
volumetric effects (such as smoke and haze). 

Given a number of computers and a demanding 
POVRay scene to render, there are a number of 
techniques to distribute the rendering among the 
available resources. If one is rendering an animation 
then obviously each computer can render a subset of the 
total number of frames. The frames can be sent to each 
computer in contiguous chunks or in an interleaved 
order, in either case a preview (every Nth frame) of the 
animation can generally be viewed as the frames are 
being computed. POVRay is a multi-platform, freeware 
ray tracer. Many people have modified its source code 
to produce special “unofficial” versions. One of these 
unofficial versions is PVMPOV, which enables 
POVRay to run on a Linux cluster. 

PVMPOV has the ability to distribute a rendering 
across multiple heterogeneous systems. Parallel 
execution is only active if the user gives the “+N” 
option to PVMPOV. Otherwise, PVMPOV behaves the 
same as regular POV-Ray and runs a single task only on 
the local machine. Using the PVM code, there is one 
master and many slave tasks. The master has the 
responsibility of dividing the image up into small blocks, 
which are assigned to the slaves. When the slaves have 
finished rendering the blocks, they are sent back to the 
master, which combines them to form the final image. 
The master does not render anything by itself, although 
there is usually a slave running on the same machine as 
the master, since the master doesn't use very much CPU 
power. 

If one or more slaves fail, it is usually possible for 
PVMPOV to complete the rendering. PVMPOV starts 
the slaves at a reduced priority by default, to avoid 
annoying the users on the other machines. The slave 
tasks will also automatically time out if the master fails, 
to avoid having lots of lingering slave tasks if you kill 
the master. PVMPOV can also work on a single 
machine, like the regular POV-Ray, if so desired. The 
code is designed to keep the available slaves busy, 
regardless of system loading and network bandwidth. 
We have run PVMPOV on our 16-Celeron and 16-PIII 
processors testbed and have had amazing results, 
respectively. With the cluster configured, runs the 
following commands to begin the ray tracing and 
generates the image files as shown in Figure 11: 

$pvmpov +iskyvase.pov +w640 +h480 +nw32 +nh32 
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include 

$pvmpov +ifish13.pov +w640 +h480 +nw32 +nh32 
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include 

$pvmpov +ipawns.pov +w640 +h480 +nw32 +nh32 
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include 

$pvmpov +iEstudio.pov +w640 +h 480 +nw32 +nh32 
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include 

This is the benchmark option command-line with the 
exception of the +nw and +nh switches, which are 



specific to PVMPOV and define the size of image each 
of the slaves, will be working on. The +nt switch is 
specific to the number of tasks will be running. For 
example, +nt16 will start 16 tasks, one for each 
processor. The messages on the screen should show that 
slaves were successfully started. When completed, 
PVMPOV will display the slave statistics as well as the 
total render time. In case of Skyvase model, by using 
single Celeron processor mode of a dual processor 
machine for processing 1600X1280 image, the render 
time was 256 seconds. Using out Celeron-based SMP 
cluster (16 processors) further reduced the time to 26 
seconds. The execution times for the different POVray 
model (Skyvase, Fish13, Pawns, and Estudio) on 
Celeron SMPs and P-III SMP clusters  were shown in 
Figure 12, respectively. The corresponding speedups of 
different problem size by varying the number of task 
(option: +nt) was shown in Figure 13. The highest 
speedups were obtained about 15.22 and 13.45 
(1600X1280) for Pawns model by using our Celeron 
SMPs cluster with 16 processors  and P-III SMPs cluster 
with 16 processors, respectively. 

 
Figure 11: Four diagrams were generated by PVMPOV.  

 
Figure 12: Execution times of PVMPOV diagram. 

 
Figure 13: Speedups of PVMPOV diagrams  

3.4. NAS Parallel Benchmark 
The NAS Parallel Benchmark (NPB) is a set of 8 

programs designed to help evaluate the performance of 
parallel supercomputers. The benchmarks, which are 
derived from computational fluid dynamics (CFD) 
applications, consist of five kernels and three 
pseudo-applications. NPB 2.3 is MPI-based source-code 
implementations written and distributed by NAS. They 
are intended to run with little or no tuning, and 
approximate the performance a typical user can expect 
to obtain for a portable parallel program. The LU 
benchmark is based on the NX reference 
implementation from 1991. This code requires a 
power-of-two number of processors. A 2-D partitioning 
of the grid onto processors occurs by halving the grid 
repeatedly in the first two dimensions, alternately x and 
then y, until all power-of-two processors are assigned, 
resulting in vertical pencil-like grid partitions on the 
individual processors. This ordering of point based 
operations constituting the SSOR procedure proceeds 
on diagonals which progressively sweep from one 
corner on a given z plane to the opposite corner of the 
same z plane, thereupon proceeding to the next z plane. 
Communication of partition boundary data occurs after 
completion of computation on all diagonals that contact 
an adjacent partition. This constitutes a diagonal 
pipelining method and is called a “wavefront” method. 
It results in relatively large number of small 
communications of 5 words each. 

The one NAS benchmark that we chose to present 
here is LU. For the LU benchmark, the sizes were class 
A and B. The execution time of LU was shown in 
Figure 14 (a). The performance numbers for 16 
processors as reported in Figure 14 (b) by the LU 
benchmark were 715.06 MFLOPS and 778.62 MFLOPS 
for class A and class B, respectively. As a measure of 
scalability, we selected parallel speedup, as classically 
calculated (that is, as the ratio between the serial time Ts 
and the parallel time Tp for the execution of the 
benchmark, Ts/Tp). The serial time was obtained by 
running the benchmarks on one processor. The speedup 
of LU benchmark is reported in Figure 14 (c). 

 



 
Figure 14: (a) Execution time of LU. (b) Speedup of LU using 
16 processors. (c) Total Mflop/s obtained using 16 processors. 

3.5. High Performance Linpack (HPL) 
HPL is a software package that solves a (random) 

dense linear system in double precision (64 bits) 
arithmetic on distributed-memory computers [3]. It can 
thus be regarded as a portable as well as freely available 
implementation of the High Performance Computing 
Linpack Benchmark. The HPL software package 
requires the availability on your system of an 
implementation of the Message Passing Interface MPI 
(1.1 compliant). An implementation of either the Basic 
Linear Algebra Subprograms BLAS or the Vector 
Signal Image Processing Library VSIPL is also needed. 
Machine-specific as well as generic implementations of 
MPI, the BLAS and VSIPL are available for a large 
variety of systems. 

This software package solves a linear system of order 
n: Ax=b by first computing the LU factorization with 
row partial pivoting of the n-by-n+1 coefficient matrix 
[A b]=[[L, U] y]. Since the lower triangular factor L is 
applied to b as the factorization progresses, the solution 
x is obtained by solving the upper triangular system 
Ux=y. The lower triangular matrix L is left unpivoted 
and the array of pivots is not returned. The data is 
distributed onto a two-dimensional P-by-Q grid of 
processes according to the block-cyclic scheme to 
ensure “good” load balance as well as the scalability of 
the algorithm. The n-by-n+1 coefficient matrix is first 
logically partitioned into NB-by-NB blocks, which are 
cyclically “dealt” onto the P-by-Q process grid. This is 
done in both dimensions of the matrix. The 
right-looking variant has been chosen for the main loop 
of the LU factorization. This means that at each 
iteration of the loop a panel of NB columns is factorized, 
and the trailing submatrix is updated. Note that this 
computation is thus logically partitioned with the same 
block size NB that was used for the data distribution. 

The HPL package provides a testing and timing 
program to quantify the accuracy of the obtained 
solution as well as the time it took to compute it. The 
best performance achievable by this software on your 
system depends on a large variety of factors. 
Nonetheless, with some restrictive assumptions on the 
interconnection network, the algorithm described here 
and its attached implementation are scalable in the sense 
that their parallel efficiency is maintained constant with 
respect to the per processor memory usage. In order to 
find out the best performance of your system, the largest 
problem size fitting in memory is what you should aim 
for. The amount of memory used by HPL is essentially 
the size of the coefficient matrix. For example, if you 

have 8 nodes with 512MB of memory on each, this 
corresponds to 4GB total, i.e., 500M double precision (8 
Bytes) elements. The square root of that number is 
22360. One definitely needs to leave some memory for 
the OS as well as for other things, so a problem size of 
20000 is likely to fit. As a rule of thumb, 80 % of the 
total amount of memory is a good guess. If the problem 
size you pick is too large, swapping will occur, and the 
performance will drop. If multiple processes are spawn 
on each node (say you have 2 processors per node), 
what counts is the available amount of memory to each 
process. The performance achieved by this software 
package on our cluster is shown in Figure 15. We 
compare the system performance obtained from our 
cluster with P-III 550X16 data that generated by 
University of Tennessee (UT) from the HPL web site. 
Our P-III SMP cluster can achieve 6.433Gflop/s for the 
problem size 20000X20000 with channel bonded. Also, 
Our cluster can achieve 6.669Gflop/s by using 16 P-III 
and 16 Celeron processors. 

HPL uses the block size NB for the data distribution 
as well as for the computational granularity. From a data 
distribution point of view, the smallest NB, the better 
the load balance. You definitely want to stay away from 
very large values of NB. From a computation point of 
view, a too small value of NB may limit the 
computational performance by a large factor because 
almost no data reuse will occur in the highest level of 
the memory hierarchy. The number of messages will 
also increase. Efficient matrix-multiply routines are 
often internally blocked. Small multiples of this 
blocking factor is likely to be good block sizes for HPL. 
The bottom line is that “good” block sizes are almost 
always in the [32, 256] interval. The best values depend 
on the computation/communication performance ratio 
of your system. This depends on the physical 
interconnection network you have. In other words, P 
and Q should be approximately equal, with Q slightly 
larger than P. If you are running on a simple Ethernet 
network, there is only one wire through which all the 
messages are exchanged. On such a network, the 
performance and scalability of HPL is strongly limited 
and very flat process grids are likely to be the best 
choices: 1X4, 1X8, and 2X4. For example, in Figure 16 
we can found that the case of 4X4 always got more 
computational speed than the case of 2X8 by using a 
16-processor cluster.  



 
Figure 15: The system performance comparison of our cluster 

with HPL web site data. 

 
Figure 16: The performance of HPL with the different case of 

PXQ 
4 Parallel Programming for SMP Clusters  

Architectures of parallel systems are broadly divided 
into shared-memory and distributed-memory models. 
While multithreaded programming is used for 
parallelism on shared-memory systems , the typical 
programming model on distributed-memory systems is 
message passing. SMP clusters have a mixed 
configuration of shared-memory and 
distributed-memory architectures. One way to program 
SMP clusters is to use an all -message-passing model. 
This approach uses message passing even for intra-node 
communication. It simplifies parallel programming for 
SMP clusters but might lose the advantage of shared 
memory in an SMP node. Another way is with the 
all-shared-memory model, using a software 
distributed-shared-memory (DSM) system such as 
TreadMarks. This model, however, needs complicated 
runtime management to maintain consistency of the 
shared data between nodes. 

We will use a hybrid-programming model of shared 
and distributed memory to take advantage of locality in 
each SMP node. Intra-node computations use 
multithreaded programming, and inter-node 
programming is based on message passing and remote 
memory operations. Consider data-parallel programs. 
We can easily phase the partitioning of target data such 
as matrices and vectors. First, we partition and 
distribute the data between nodes and then partition and 
assign the distributed data to the threads in each node. 
Data decomposition and distribution and inter-node 
communications are the same as in distributed-memory 
programming. Data allocation to the threads and local 

computation are the same as in multithreaded 
programming on shared-memory systems. Hybrid 
programming is a type of distributed programming, in 
that computation in each node uses multiple threads. 
Although some data-parallel operations such as 
reduction and scan need more complicated steps in 
hybrid programming, we can easily implement hybrid 
programming by combining both shared and distributed 
programming for data-parallel programs. 

The matrix multiplication was run with forking of 
different numbers of tasks to demonstrate the speedup 
as shown in Figure 17. The problem sizes were 
256X256, 512X512, 1024X1024, and 1280X1280, in 
our experiments. We found that the execution time of 
combining thread and PVM model always small than 
pure PVM model. The hybrid-programming model of 
shared and distributed memory can take advantage of 
locality in each SMP node. It is believed that 
hybrid-programming model is the mo st obvious 
approach to help programmer to take advantage of 
clustering symmetric multiprocessors (SMP) 
parallelism. 

 

Figure 17: Performance comparisons between pure message 
passing and hybrid with different problem size. 

5 Near Work: Automatic Translator for 
Parallel Programming 

PVM programming support may be the most obvious 
approach to help programmers to take advantage of 
parallelism by the operating systems. Therefore, we 
propose a new model of parallelizing compiler for 
exploiting potential power of multiprocessors and 
gaining performance benefit on cluster systems  [14]. 
The portable automatic parallel program generator 
(APPG) for parallelizing compiler to produce parallel 
object codes is shown in Figure 18. 

 



 
Figure 18: The system structure of APPG 

First, the automatic parallel program generator 
(APPG) takes the C source program as input, and then 
generates the output in which the parallel loops (doall) 
are translated into sub-tasks by replacing them with 
multithreaded codes. Our AMPG will use some 
loop-partitioning algorithms, e.g., Chunk 
Self-Scheduling (CSS), Factoring, and Trapezoid 
Self-Scheduling (TSS) to partition a doall loop. Second, 
The resulting multithreaded program is then compiled 
and linked with the pthreads run-time libraries or 
message passing library, such as PVM or MPI, by using 
the native C compiler, e.g., GNU C compiler. Then, the 
generated parallel object codes can be scheduled and 
executed in parallel on the multiprocessors or cluster 
system to achieve high performance.  Based upon this 
model, we will implement a parallelizing compiler to 
help programmers take advantage of multithreaded 
parallelism and message passing on SMP clusters, 
running Linux. 
6 Conclusion and Future Work 

Scalable computing clusters, ranging from a cluster of 
(homogeneous or heterogeneous) PCs or workstations, 
to SMPs, are rapidly becoming the standard platforms 
for high-performance and large-scale computing. It is 
believed that message-passing programming is the most 
obvious approach to help programmer to take advantage 
of clustering symmetric multiprocessors (SMP) 
parallelism. In this paper, the topics including system 
architecture, software tools, and applications of our 
cluster system were discussed. In order to take 
advantage of a cluster system, we presented the basic 
programming techniques by using Linux/PVM to 
implement a PVM-based matrix multiplication program.  
Also, a real application PVMPOV by using parallel 
ray-tracing techniques was examined. The experimental 
results show that the highest speedups are 10.85 and 
15.22 respectively for matrix multiplication and 
PVMPOV, when the total number of processors is 16, 
by creating 16 tasks on SMPs cluster.  Furthermore, two 
benchmarks, NAS and HPL are used to demonstrate the 
performance of our parallel testbed by using MPI. The 
experimental results show that our cluster can obtain 
6.433Gflops for HPL programs with channel bonded, 
when the total number of processors used is 16. The 
results of this study will make theoretical and technical 
contributions to the design of a message passing 
program on a Linux SMP clusters. In the near future, we 
will propose a new model of parallelizing compiler for 

exploiting potential power of multiprocessor systems 
and gaining performance benefit on PC-based SMP 
cluster systems. Also, we will expend the parallel 
computing research to remote sensing applications. 
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