
Using a Low-Cost PC Cluster for High-Performance Computing

使用低價個人電腦叢集於高性能計算

Chao-Tung Yang
楊朝棟

Chi-Chu Hung
洪基祝

Dept. of Computer Science and Information Engineering
Tunghai University

181 Taichung-kang Road, Sec. 3
Taichung, 407, Taiwan

東海大學資訊工程與科學系

email: ctyang@mail.thu.edu.tw
Tel: +886-4-23590121 ext. 3279

ROCSAT Ground System Section
National Space Program Office

8F, 9 Prosperity 1st Road, Science-based Indu. Park
Hsinchu, 300, Taiwan, R.O.C.

行政院國家太空計畫室

email: om21@nspo.gov.tw
Tel: +886-3-5784208 ext. 1181

Abstract

Clustering computing has become the paradigm of choices
for executing large-scale science, engineering, and
commercial applications. This is due to their low cost, high
performance, high availability of off-the-shelf hardware
components and freely accessible software tools that can be
used for developing applications. In this paper, we will
introduce the clustering system and discuss system
architecture, software tools, and applications of this system.
Keywords: Clustering, SMP, Parallel Computing, Speedup,
PVM, MPI

摘要

利用傳統電腦來解決複雜的科學及工程問題已不敷使

用，唯有藉助平行處理的方式才能達到此一目的。最近，

運用叢集式電腦系統搭配 Linux 作業系統與 PVM 或 MPI
訊息傳遞程式庫，來執行高速計算(或平行計算)已經逐漸
走到實際可行的階段。即使用者可以花較少的費用與時間

就能建置叢集式的平行電腦系統，將平行計算應用到其專

業領域，而得到不錯的結果。本論文所陳述的叢集式平行

系統架構，軟體工具以及相關應用。
關鍵詞：叢集式、平行計算、對稱式多處理機系統、訊息

傳遞程式庫
1 Introduction

While the use of parallel supercomputers has been
one of mainstreams for high-performance computing for
the past decade, its popularity is waning. The reasons
for this decline are many. They include factors such as
being expensive to own and maintain; slow to evolve
along with emerging hardware technologies; and
difficult to upgrade without totally being replaced by a
new system. Extraordinary technological improvements
over the past few years in areas such as microprocessors,
memory, buses, networks, and software have made it
possible to assemble groups of inexpensive personal
computers and/or workstations into a cost effective
system that functions in concert and posses tremendous
processing power rivaling supercomputers. Cluster
computing is not new, but in company with other
technical capabilities, particularly in the area of
networking, this class of machines is becoming a
high-performance platform for parallel and distributed
applications [1, 2, 10, 11].

Scalable computing clusters, ranging from a cluster of
(homogeneous or heterogeneous) PCs or workstations,
to SMPs (Symmetric MultiProcessors), as shown in
Figure 1 (a), are rapidly becoming the standard
platforms for high-performance and large-scale
computing. A cluster, as shown in Figure 1 (b), is a
group of independent computer systems and thus forms
a loosely coupled multiprocessor system. A network is
used to provide inter-processor communications.
Applications that are distributed across the processors of
the cluster use either message passing or network shared
memory for communication. Cluster nodes work
collectively as a single computing resource and fill the
conventional role of using each node as an independent
machine. A cluster computing system is a compromise
between a massively parallel processing system and a
distributed system. An MPP (Massively Parallel
Processors) system node typically cannot serve as a
standalone computer; a cluster node usually contains its
own disk and equipped with a complete operating
systems, and therefore, it also can handle interactive
jobs. In a distributed system, each node can function
only as an individual resource while a cluster system
presents itself as a single system to the user.

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU

Cache

CPU

Cache

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU

Cache

CPU

Cache

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU

Cache

CPU

Cache

Hi
gh

 S
pe

ed
 N

et
wo

rk

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU

Cache

CPU

Cache

System Bus

Shared Memory

Network
Device

Storage
Device

I/O Bus

4-CPU

SMP

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

(a) (b)
Figure 1: (a) The structure of a typical SMP with four

processors. (b) A typical cluster system with eight processors.
The concept of Beowulf clusters originated at the

Center of Excellence in Space Data and Information
Sciences (CESDIS), located at the NASA Goddard
Space Flight Center in Maryland. The goal of building a
Beowulf cluster is to create a cost-effective parallel
computing system from mass-market commodity,
off-the-shelf components to satisfy specific

computational requirements in the earth and space
sciences community. The first Beowulf cluster was built
from 16 Intel DX4TM processors connected by a
channel-bonded 10 Mbps Ethernet, and it ran the Linux
operating system [10]. It was an instant success,
demonstrating the concept of using a commodity cluster
as an alternative choice for high-performance
computing (HPC). After the success of the first Beowulf
cluster, several more were built by CESDIS using
several generations and families of processors and
network interconnects.

Such a system can provide a cost-effective way to
achieve features and benefits (fast and reliable services)
that have historically been found only on more
expensive proprietary shared memory systems. The
main attractiveness of such system is that they are built
using affordable, low-cost, commodity hardware (such
as Pentium PCs), fast LAN such as Myrinet, and
standard software computers such as UNIX, Linux, and
Solaris. Applications are often parallelized by using the
MPI or PVM message-passing library for
inter-processor communications [4, 6]. These systems
are scalable, i.e., they can be tuned according to user’s
available budget and computational needs and allow
efficient execution of both demanding sequential and
parallel applications. To utilize the resources of a
clustering system, a problem had to be algorithmically
expressed as comprising a set of concurrently executing
sub-problems or tasks [1, 2, 11, 12, 13, 14]. This was
achieved via the use of parallel programming, libraries,
and/or environments that encapsulate the way in which
the various tasks cooperate to provide the solution to the
original problem [12, 13, 14].

We conducted and maintained an experimental Linux
SMP cluster (SMP PC machines running the Linux
operating system), which is available as a computing
resource for test users. This cluster is made up of 16
PC-based SMPs. Nodes are connected using Fast
Ethernet with a maximum bandwidth of 200/100Mbits
with/without channel bonded, through two 3Com
24-port switches. This cluster machine is operated as a
unit, sharing networking, file servers, and other
peripherals. This cluster is used to run both serial and
parallel jobs.

In this paper, the system architecture, software tools,
and applications of this cluster system will be discussed.
The matrix multiplication and parallel ray tracing
problems are illustrated and the experimental results are
also demonstrated on our Linux SMPs cluster. Eight
2-Celeron-processor SMPs and eight 2-PIII-processor
SMPs are connected as a cluster to measure the system
performance on speedup. The experimental results show
that the highest speedups are 10.85 and 15.22,
respectively for matrix multiplication and PVMPOV [5],
when the total number of processor is 16 on SMPs
cluster. Two benchmarks, LU of NPB and HPL, are also
used to demonstrate the performance of our testbed by
using LAM/MPI library. The experimental results show
that our cluster can obtain 6.433Gflop/s and

5.784Gflop/s for HPL, when the total number of
processors used is 16 with and without channel bonding.
The results of this study will make theoretical and
technical contributions to the design of a
high-performance computing system on a Linux SMP
Clusters.
2 System Overview

2.1. Hardware
Our SMPs cluster is a low cost Beowulf class

supercomputer that utilizes a multi-computer
architecture for parallel computations. The Parallel
Testbed consists of two PC clusters. One is used for
parallel comp uting, the other is used for high available
application. For parallel computation portion, the
snapshot of our cluster is shown in Figure 2 that
consists of 16 PC-based symmetric multiprocessors
(SMP) connected by two 24-port 100Mbps Ethernet
SuperStackII 3300 XM switches with Fast Ethernet
interface. Its system architecture is shown in Figure 3.

There are one server node and fifteen computing
nodes. The server node has two Intel Pentium-III
945MHz (750 over-clock, FSB 126MHz) processors
and 768MBytes of shared local memory. Each
Pentium-III has 32K on-chip instruction and data caches
(L1 cache), a 256K on-chip four-way second-level
cache with full speed of CPU. There are two kinds of
computing nodes, one is P-III-based, and the other is
Celeron-based. Each P-III-based computing node with
two 945 P-III processors has 512MBytes of shared local
memory. Each Celeron-based computing node with two
Celeron processors has 384MBytes of shared local
memory. Each Celeron also has 32K on-chip instruction
and data caches (L1 cache), a 128K on-chip four-way
second-level cache with full speed of CPU. Each
individual processor is rated at 495MHz, and the system
bus has a clock rate of 110 MHz.

Figure 2: The snapshot of NSPO Parallel Testbed.

SuperStack IISwi tch 3300

STACK

3C16980

ModuleStat us 3ComUnit
12345678123456789101112131415161718192021222324123456789101112

green =enabled, link OKfl ashing greendi sabled, link OKoff = l ink fai l

131415161718192021222324
PacketStatusPacketStatus

1x

13x

6x

18

7x

19x

12x

24

SMP
(Celeron

495)

SMP
(Celeron

495)

dual2 dual3 dual4 dual5 dual6 dual7 dual8 dual9

SMP
(Celeron

495)

SMP
(Celeron

495)

SMP
(Celeron

495)

SMP
(Celeron

495)

SMP
(Celeron

495)

SMP
(Celeron

495)

SuperStack IISwitch 3300

STACK

3C16980

ModuleStatus 3ComUnit
12345678123456789101112131415161718192021222324123456789101112

green =enabled, li nk OKflashing greendisabled, l ink OKoff = link fail

131415161718192021222324
PacketSt atusPacketSt atus

1x

13x

6x

18

7x

19x

12x

24

Uplink

System Bus

Shared Memory
384MB

Network
Device

Storage
Device

PCI Bus

ABIT BP6
2-node
SMP

300a oc 495

System Bus

Shared Memory
512MB

Network
Device

Storage
Device

PCI Bus

ABIT VP6
2-node
SMP

750 oc 945750 oc 945

SMP
(P-III 945)

SMP
(P-III 945)

SMP
(P-III 945)

SMP
File Sever
(P-III 945)

dual14 dual13 dual12 dual1dual15

SMP
(P-III 975)

SMP
(P-III 975)

SMP
(P-III 975)

SMP
(P-III 975)

dual16dual17dual18

300a oc 495

Figure 3: The NSPO Parallel Testbed system architecture.

2.2. System Software

2.2.1. Logical View of Beowulf

A Beowulf cluster uses multi computer architecture,
as depicted in Figure 4. It features a parallel computing
system that usually consists of one or more master
nodes and one or more compute nodes, or cluster nodes,
interconnected via widely available network
interconnects. All of the nodes in a typical Beowulf
cluster are commodity systems -PCs, workstations, or
servers-running commodity software such as Linux.

The master node acts as a server for Network File
System (NFS) and as a gateway to the outside world. As
an NFS server, the master node provides user file space
and other common system software to the compute
nodes via NFS. As a gateway, the master node allows
users to gain access through it to the compute nodes.
Usually, the master node is the only machine that is also
connected to the outside world using a second network
interface card (NIC). The sole task of the compute
nodes is to execute parallel jobs. In most cases,
therefore, the compute nodes do not have keyboards,
mice, video cards, or monitors. All access to the client
nodes is provided via remote connections from the
master node. Because compute nodes do not need to
access machines outside the cluster, nor do machines
outside the cluster need to access compute nodes
directly, compute nodes commonly use private IP
addresses, such as the 10.0.0.0/8 or 192.168.0.0/16
address ranges.

From a user’s perspective, a Beowulf cluster appears
as a Massively Parallel Processor (MPP) system. The
most common methods of using the system are to access
the master node either directly or through Telnet or
remote login from personal workstations. Once on the
master node, users can prepare and compile their
parallel applications, and also spawn jobs on a desired
number of compute nodes in the cluster. Applications
must be written in parallel style and use the
message-passing programming model. Jobs of a parallel
application are spawned on compute nodes, which work
collaboratively until finishing the application. During
the execution, compute nodes use standard

message-passing middleware, such as Message Passing
Interface (MPI) and Parallel Virtual Machine (PVM), to
exchange information.

Since a Beowulf cluster is an MPP system, it suits
applications that can be partitioned into tasks, which can
then be executed concurrently by a number of
processors. These applications range from high-end,
floating-point intensive scientific and engineering
problems to commercial data-intensive tasks. Uses of
these applications include ocean and climate modeling
for prediction of temperature and precipitation, seismic
analysis for oil exploration, aerodynamic simulation for
motor and aircraft design, and molecular modeling for
biomedical research.

Figure 4: Logic view of a Beowulf cluster.

2.2.2. Linux

Linux is a freely available UNIX-like open operating
system that is supported by its users and developers.
Now, Linux has become a robust and reliable POSIX
compliant operating system. Several companies have
built businesses from packaging Linux software into
organized distributions; RedHat is an example of such a
company. Linux provides the features typically found in
standard UNIX such as multi-user access, pre-emptive
multi-tasking, demand-paged virtual memory and SMP
support. In addition to the Linux kernel, a large amount
of application and system software and tools are is also
freely available. This makes Linux the preferred
operating system for clusters.

The idea of the Linux cluster is to maximize the
performance-to-cost ratio of computing by using
low-cost commodity components and free-source Linux
and GNU software to assemble a parallel and
distributed computing system. Software support
includes the standard Linux/GNU environment,
including compilers, debuggers, editors, and standard
numerical libraries. Coordination and communication
among the processing nodes so they can truly work
together is an obvious key requirement of
parallel-processing clusters. In order to accommodate
this coordination, developers have created software to
carry out the coordination and hardware to send and
receive the coordinating messages. Messaging
architectures such as MPI or Message Passing Interface,
and PVM or Parallel Virtual Machine, allow the
programmer to ensure that control and data messages

take place as needed during operation. Several
approaches to message passing are discussed below.

2.2.3. PVM

PVM, or Parallel Virtual Machine, started out as a
project at the Oak Ridge National Laboratory and was
developed further at the University of Tennessee [6].
PVM is a complete dis tributed computing system,
allowing programs to span several machines across a
network. PVM utilizes a Message Passing model that
allows developers to distribute programs across a
variety of machine architectures and across several data
formats. PVM essentially collects the network's
workstations into a single virtual machine. PVM allows
a network of heterogeneous computers to be used as a
single computational resource called the parallel virtual
machine. As we have seen, PVM is a very flexible
parallel processing environment. It therefore supports
almost all models of parallel programming, including
the commonly used all-peers and master-slave
paradigms. The chief reasons for reasons for the
richness in the models it provides a framework for are
its support for dynamic cluster change and dynamic
spawning of processes.

2.2.4. MPI

MPI is a message-passing application programmer
interface with protocol and semantic specifications for
how its features must behave in any implementation
(such as a message buffering and message delivery
progress requirement). MPI includes point-to-point
message passing and collective (global) operations.
These are all scoped to a user-specified group of
processes [4]. In addition, MPI supplies abstractions for
processes at two levels. At the first level, processes are
named according to the rank of the group in which the
communication is being performed. At the second level,
virtual topologies allow for graph or Cartesian naming
of processes that help relate in a convenient, efficient
way the application semantics to the message passing
semantics. Communicators, which house groups and
communication context (scoping) information, provide
an important measure of safety that is necessary and
useful for building up library-oriented parallel code.
MPI provides a substantial set of libraries for the
writing, debugging, and performance testing of
distributed programs. Our system currently offers
LAM/MPI, a portable implementation of the MPI
standard developed cooperatively by Notre Dame
University. LAM (Local Area Multicomputer) is an
MPI programming environment and development
system and includes a visualization tool that allows a
user to examine the state of the machine allocated to
their job as well as provides a means of studying
message flows between nodes.
3 Applications and Performance

3.1. Performance of Channel Bonding
We use a simple program to measure the round ripe

time of messages of various lengths between two nodes

of our clusters. The program uses the MPI_Send and
MPI_Recv library routines for sending and receiving
messages. The latency and bandwidth are two important
parameters that characterize a network. The latency
measures the overhead associated with sending or
receiving a message and is often measures as half the
round trip time for a small message. Figure 5 shows the
round trip time (ms) versus message size (Byte)
achieved by MPI library. In order to reduce sampling
errors, the message is send back and forth 1,000 times
and the average of these round trip times is taken. There
are three cases are considered: One measuring the round
trip time between two processors in the same SMP; one
measuring the time between two processors in the
different SMP; and one measuring the time between two
processors in the different SMP with channel bonded.
Case one incurs a cost of 27.2124 microseconds for a
524288-byte message; whereas the same messages take
106.756 ms and 58.9251 ms for case 2 and 3,
respectively. In general, channel bonding can improve
the communication bandwidth and reduce the
communication time for larger messages.

Figure 5: The performance of channel bonding by using MPI.

3.2 Matrix Multiplication
The matrix operation derives a resultant matrix by

multiplying two input matrices, a and b, where matrix a
is a matrix o f N rows by P columns and matrix b is of P
rows by M columns. The resultant matrix c is of N rows
by M columns. The serial realization of this operation is
quite straightforward as listed in the following:

for(k=0; k<M; k++)
 for(i=0; i<N; i++){
 c[i][k]=0.0;
 for(j=0; j<P; j++)
 c[i][k]+=a[i][j]*b[j][k];
 }
Its algorithm requires n3 multiplications and n3

additions, leading to a sequential time complexity of
O(n3). Let's consider what we need to change in order
to use PVM. The first activity is to partition the problem
so each slave node can perform on its own assignment
in parallel. For matrix multiplication, the smallest
sensible unit of work is the computation of one element
in the result matrix. It is possible to divide the work into
even smaller chunks, but any finer division would not
be beneficial because of the number of processor is not
enough to process, i.e., n2 processors are needed.

The matrix multiplication algorithm is implemented
in PVM using the master-slave paradigm as shown in

Figure 6. The master task is named master_mm_pvm,
and the slave task is named slave_mm_pvm. The master
reads in the input data, which includes the number of
slaves to be spawned, nTasks. After registering with
PVM and receiving a taskid or tid, it spawns nTasks
instances of the slave program slave_mm_pvm and then
distributes the input graph information to each of them.
As a result of the spawn function, the master obtains the
tids from each of the slaves. Since each slave needs to
work on a distinct subset of the set of matrix elements,
they need to be assigned instance IDs in the range (0, ...,
nTask-1). The tids assigned to them by the PVM library
do not lie in this range, so the master needs to assign the
instance IDs to the slave nodes and send that
information along with the input matrix. Each slave also
need to know the total number of slaves in the program,
and this information is passed on to them by the master
process as an argument to the spawn function since,
unlike the instance IDs, this number is the same for all
nTasks slaves.

To send the input data and instance ID information,
the master process packs these into the active send
buffer, and then invokes the send function. It then waits
to receive partial results from each of the slaves. The
slaves register with the PVM environment, and then
wait for input data from the master, using a wildcard in
the receive function to receive a message from any
source. Once a message is received, each slave
determines the master's tid from the received message
buffer properties. Alternatively, the slaves could have
determined the master's tid by calling the pvm_parent
function, which they could have used as the source in
their receive function. Upon receiving the message from
the master that contains the input matrix, a slave
unpacks this data from the active receive buffer. Each
slave then works on its input partition, and send its
partial results to the master when it is done. Then the
master collects these partial results into an output matrix
and outputs the results. In the slave program, we keep
the basic structure of the sequential program intact. But
now the routine to multiply the two matrices, the main
program of slave_mm_pvm does not do the actual work
itself, only performs the loop partition for each
individual portion. Instead, the slave program calls a
function matrix_multiple to perform real matrix
multiplication. Each individual slave then performs a
portion of the matrix multiplication as shown in Figure
7.

Figure 6: The master_mm_pvm.c and slave_mm_pvm.c
programs

Figure 7: The block partition for MM.

The matrix multiplication was run with forking of
different numbers of tasks to demonstrate the speedup.
The problem sizes were 256X256, 512X512, 768X768,
1024X1024, and 2048X2048 in our experiments. It is
well known, the speedup can be defined as Ts /Tp, where
Ts is the execution time using serial program, and Tp is
the execution time using multiprocessor. The execution
times on 1, 2, 4, 8, and 16, were listed in Figure 8,
respectively. In Figure 9, the corresponding speedup is
increased for different problem sizes by varying the
number of slave programs. Since matrix multiplication
was a uniform workload application, the high speedups
were gained about 1.76 (256X256) using 2 processors
of one SMP, and 3.41 (256X256) using two SMPs. The
highest speedup was obtained about 10.85 (2048X2048)
by using our SMP cluster with 16 processors. We also
found that the speedups were closed when creating two
slave programs on one dual processor machine and two
slaves program on two SMPs respectively by using
PVM library. With channel-bonded technique, the
highest speedup was measured about 11.71 shown in
Figure 10.

Figure 8: Execution times of MM with different number of

tasks.

Figure 9: Speedups of MM with different number of tasks.

Figure 10: The execution times and the corresponding

speedups of MM by using channel bonded.

3.3. PVMPOV
Rendering is a technique for generating a graphical

image from a mathematical model of a two or
three-dimensional object or scene. A common method
of rendering is ray tracing. Ray tracing is a technique
used in computer graphics to create realistic images by
calculating the paths taken by rays of light entering the
observer’s eye at different angles. Ray tracing is an
ideal application for parallel processing since there are
many pixels, each of whose values are independent and
can be calculated in parallel. The Persistence of Vision
Ray Tracer (POV-Ray) is an all-round 3-dimensional
ray tracing software package [5]. It takes input
information and simulates the way light interacts with
the objects defined to create 3D pictures and animations.
In addition to the ray tracing process, newer versions of

POV can also use a variant of the process known as
radiosity (sophisticated lighting) to add greater realism
to scenes, particularly those that use diffuse light
POVRay can simulate many atmospheric and
volumetric effects (such as smoke and haze).

Given a number of computers and a demanding
POVRay scene to render, there are a number of
techniques to distribute the rendering among the
available resources. If one is rendering an animation
then obviously each computer can render a subset of the
total number of frames. The frames can be sent to each
computer in contiguous chunks or in an interleaved
order, in either case a preview (every Nth frame) of the
animation can generally be viewed as the frames are
being computed. POVRay is a multi-platform, freeware
ray tracer. Many people have modified its source code
to produce special “unofficial” versions. One of these
unofficial versions is PVMPOV, which enables
POVRay to run on a Linux cluster.

PVMPOV has the ability to distribute a rendering
across multiple heterogeneous systems. Parallel
execution is only active if the user gives the “+N”
option to PVMPOV. Otherwise, PVMPOV behaves the
same as regular POV-Ray and runs a single task only on
the local machine. Using the PVM code, there is one
master and many slave tasks. The master has the
responsibility of dividing the image up into small blocks,
which are assigned to the slaves. When the slaves have
finished rendering the blocks, they are sent back to the
master, which combines them to form the final image.
The master does not render anything by itself, although
there is usually a slave running on the same machine as
the master, since the master doesn't use very much CPU
power.

If one or more slaves fail, it is usually possible for
PVMPOV to complete the rendering. PVMPOV starts
the slaves at a reduced priority by default, to avoid
annoying the users on the other machines. The slave
tasks will also automatically time out if the master fails,
to avoid having lots of lingering slave tasks if you kill
the master. PVMPOV can also work on a single
machine, like the regular POV-Ray, if so desired. The
code is designed to keep the available slaves busy,
regardless of system loading and network bandwidth.
We have run PVMPOV on our 16-Celeron and 16-PIII
processors testbed and have had amazing results,
respectively. With the cluster configured, runs the
following commands to begin the ray tracing and
generates the image files as shown in Figure 11:

$pvmpov +iskyvase.pov +w640 +h480 +nw32 +nh32
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include

$pvmpov +ifish13.pov +w640 +h480 +nw32 +nh32
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include

$pvmpov +ipawns.pov +w640 +h480 +nw32 +nh32
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include

$pvmpov +iEstudio.pov +w640 +h 480 +nw32 +nh32
+nt16 -L/home/gs17/pvmpov3_1g_1/povray31/include

This is the benchmark option command-line with the
exception of the +nw and +nh switches, which are

specific to PVMPOV and define the size of image each
of the slaves, will be working on. The +nt switch is
specific to the number of tasks will be running. For
example, +nt16 will start 16 tasks, one for each
processor. The messages on the screen should show that
slaves were successfully started. When completed,
PVMPOV will display the slave statistics as well as the
total render time. In case of Skyvase model, by using
single Celeron processor mode of a dual processor
machine for processing 1600X1280 image, the render
time was 256 seconds. Using out Celeron-based SMP
cluster (16 processors) further reduced the time to 26
seconds. The execution times for the different POVray
model (Skyvase, Fish13, Pawns, and Estudio) on
Celeron SMPs and P-III SMP clusters were shown in
Figure 12, respectively. The corresponding speedups of
different problem size by varying the number of task
(option: +nt) was shown in Figure 13. The highest
speedups were obtained about 15.22 and 13.45
(1600X1280) for Pawns model by using our Celeron
SMPs cluster with 16 processors and P-III SMPs cluster
with 16 processors, respectively.

Figure 11: Four diagrams were generated by PVMPOV.

Figure 12: Execution times of PVMPOV diagram.

Figure 13: Speedups of PVMPOV diagrams

3.4. NAS Parallel Benchmark
The NAS Parallel Benchmark (NPB) is a set of 8

programs designed to help evaluate the performance of
parallel supercomputers. The benchmarks, which are
derived from computational fluid dynamics (CFD)
applications, consist of five kernels and three
pseudo-applications. NPB 2.3 is MPI-based source-code
implementations written and distributed by NAS. They
are intended to run with little or no tuning, and
approximate the performance a typical user can expect
to obtain for a portable parallel program. The LU
benchmark is based on the NX reference
implementation from 1991. This code requires a
power-of-two number of processors. A 2-D partitioning
of the grid onto processors occurs by halving the grid
repeatedly in the first two dimensions, alternately x and
then y, until all power-of-two processors are assigned,
resulting in vertical pencil-like grid partitions on the
individual processors. This ordering of point based
operations constituting the SSOR procedure proceeds
on diagonals which progressively sweep from one
corner on a given z plane to the opposite corner of the
same z plane, thereupon proceeding to the next z plane.
Communication of partition boundary data occurs after
completion of computation on all diagonals that contact
an adjacent partition. This constitutes a diagonal
pipelining method and is called a “wavefront” method.
It results in relatively large number of small
communications of 5 words each.

The one NAS benchmark that we chose to present
here is LU. For the LU benchmark, the sizes were class
A and B. The execution time of LU was shown in
Figure 14 (a). The performance numbers for 16
processors as reported in Figure 14 (b) by the LU
benchmark were 715.06 MFLOPS and 778.62 MFLOPS
for class A and class B, respectively. As a measure of
scalability, we selected parallel speedup, as classically
calculated (that is, as the ratio between the serial time Ts
and the parallel time Tp for the execution of the
benchmark, Ts/Tp). The serial time was obtained by
running the benchmarks on one processor. The speedup
of LU benchmark is reported in Figure 14 (c).

Figure 14: (a) Execution time of LU. (b) Speedup of LU using
16 processors. (c) Total Mflop/s obtained using 16 processors.

3.5. High Performance Linpack (HPL)
HPL is a software package that solves a (random)

dense linear system in double precision (64 bits)
arithmetic on distributed-memory computers [3]. It can
thus be regarded as a portable as well as freely available
implementation of the High Performance Computing
Linpack Benchmark. The HPL software package
requires the availability on your system of an
implementation of the Message Passing Interface MPI
(1.1 compliant). An implementation of either the Basic
Linear Algebra Subprograms BLAS or the Vector
Signal Image Processing Library VSIPL is also needed.
Machine-specific as well as generic implementations of
MPI, the BLAS and VSIPL are available for a large
variety of systems.

This software package solves a linear system of order
n: Ax=b by first computing the LU factorization with
row partial pivoting of the n-by-n+1 coefficient matrix
[A b]=[[L, U] y]. Since the lower triangular factor L is
applied to b as the factorization progresses, the solution
x is obtained by solving the upper triangular system
Ux=y. The lower triangular matrix L is left unpivoted
and the array of pivots is not returned. The data is
distributed onto a two-dimensional P-by-Q grid of
processes according to the block-cyclic scheme to
ensure “good” load balance as well as the scalability of
the algorithm. The n-by-n+1 coefficient matrix is first
logically partitioned into NB-by-NB blocks, which are
cyclically “dealt” onto the P-by-Q process grid. This is
done in both dimensions of the matrix. The
right-looking variant has been chosen for the main loop
of the LU factorization. This means that at each
iteration of the loop a panel of NB columns is factorized,
and the trailing submatrix is updated. Note that this
computation is thus logically partitioned with the same
block size NB that was used for the data distribution.

The HPL package provides a testing and timing
program to quantify the accuracy of the obtained
solution as well as the time it took to compute it. The
best performance achievable by this software on your
system depends on a large variety of factors.
Nonetheless, with some restrictive assumptions on the
interconnection network, the algorithm described here
and its attached implementation are scalable in the sense
that their parallel efficiency is maintained constant with
respect to the per processor memory usage. In order to
find out the best performance of your system, the largest
problem size fitting in memory is what you should aim
for. The amount of memory used by HPL is essentially
the size of the coefficient matrix. For example, if you

have 8 nodes with 512MB of memory on each, this
corresponds to 4GB total, i.e., 500M double precision (8
Bytes) elements. The square root of that number is
22360. One definitely needs to leave some memory for
the OS as well as for other things, so a problem size of
20000 is likely to fit. As a rule of thumb, 80 % of the
total amount of memory is a good guess. If the problem
size you pick is too large, swapping will occur, and the
performance will drop. If multiple processes are spawn
on each node (say you have 2 processors per node),
what counts is the available amount of memory to each
process. The performance achieved by this software
package on our cluster is shown in Figure 15. We
compare the system performance obtained from our
cluster with P-III 550X16 data that generated by
University of Tennessee (UT) from the HPL web site.
Our P-III SMP cluster can achieve 6.433Gflop/s for the
problem size 20000X20000 with channel bonded. Also,
Our cluster can achieve 6.669Gflop/s by using 16 P-III
and 16 Celeron processors.

HPL uses the block size NB for the data distribution
as well as for the computational granularity. From a data
distribution point of view, the smallest NB, the better
the load balance. You definitely want to stay away from
very large values of NB. From a computation point of
view, a too small value of NB may limit the
computational performance by a large factor because
almost no data reuse will occur in the highest level of
the memory hierarchy. The number of messages will
also increase. Efficient matrix-multiply routines are
often internally blocked. Small multiples of this
blocking factor is likely to be good block sizes for HPL.
The bottom line is that “good” block sizes are almost
always in the [32, 256] interval. The best values depend
on the computation/communication performance ratio
of your system. This depends on the physical
interconnection network you have. In other words, P
and Q should be approximately equal, with Q slightly
larger than P. If you are running on a simple Ethernet
network, there is only one wire through which all the
messages are exchanged. On such a network, the
performance and scalability of HPL is strongly limited
and very flat process grids are likely to be the best
choices: 1X4, 1X8, and 2X4. For example, in Figure 16
we can found that the case of 4X4 always got more
computational speed than the case of 2X8 by using a
16-processor cluster.

Figure 15: The system performance comparison of our cluster

with HPL web site data.

Figure 16: The performance of HPL with the different case of

PXQ
4 Parallel Programming for SMP Clusters

Architectures of parallel systems are broadly divided
into shared-memory and distributed-memory models.
While multithreaded programming is used for
parallelism on shared-memory systems , the typical
programming model on distributed-memory systems is
message passing. SMP clusters have a mixed
configuration of shared-memory and
distributed-memory architectures. One way to program
SMP clusters is to use an all -message-passing model.
This approach uses message passing even for intra-node
communication. It simplifies parallel programming for
SMP clusters but might lose the advantage of shared
memory in an SMP node. Another way is with the
all-shared-memory model, using a software
distributed-shared-memory (DSM) system such as
TreadMarks. This model, however, needs complicated
runtime management to maintain consistency of the
shared data between nodes.

We will use a hybrid-programming model of shared
and distributed memory to take advantage of locality in
each SMP node. Intra-node computations use
multithreaded programming, and inter-node
programming is based on message passing and remote
memory operations. Consider data-parallel programs.
We can easily phase the partitioning of target data such
as matrices and vectors. First, we partition and
distribute the data between nodes and then partition and
assign the distributed data to the threads in each node.
Data decomposition and distribution and inter-node
communications are the same as in distributed-memory
programming. Data allocation to the threads and local

computation are the same as in multithreaded
programming on shared-memory systems. Hybrid
programming is a type of distributed programming, in
that computation in each node uses multiple threads.
Although some data-parallel operations such as
reduction and scan need more complicated steps in
hybrid programming, we can easily implement hybrid
programming by combining both shared and distributed
programming for data-parallel programs.

The matrix multiplication was run with forking of
different numbers of tasks to demonstrate the speedup
as shown in Figure 17. The problem sizes were
256X256, 512X512, 1024X1024, and 1280X1280, in
our experiments. We found that the execution time of
combining thread and PVM model always small than
pure PVM model. The hybrid-programming model of
shared and distributed memory can take advantage of
locality in each SMP node. It is believed that
hybrid-programming model is the mo st obvious
approach to help programmer to take advantage of
clustering symmetric multiprocessors (SMP)
parallelism.

Figure 17: Performance comparisons between pure message
passing and hybrid with different problem size.

5 Near Work: Automatic Translator for
Parallel Programming

PVM programming support may be the most obvious
approach to help programmers to take advantage of
parallelism by the operating systems. Therefore, we
propose a new model of parallelizing compiler for
exploiting potential power of multiprocessors and
gaining performance benefit on cluster systems [14].
The portable automatic parallel program generator
(APPG) for parallelizing compiler to produce parallel
object codes is shown in Figure 18.

Figure 18: The system structure of APPG

First, the automatic parallel program generator
(APPG) takes the C source program as input, and then
generates the output in which the parallel loops (doall)
are translated into sub-tasks by replacing them with
multithreaded codes. Our AMPG will use some
loop-partitioning algorithms, e.g., Chunk
Self-Scheduling (CSS), Factoring, and Trapezoid
Self-Scheduling (TSS) to partition a doall loop. Second,
The resulting multithreaded program is then compiled
and linked with the pthreads run-time libraries or
message passing library, such as PVM or MPI, by using
the native C compiler, e.g., GNU C compiler. Then, the
generated parallel object codes can be scheduled and
executed in parallel on the multiprocessors or cluster
system to achieve high performance. Based upon this
model, we will implement a parallelizing compiler to
help programmers take advantage of multithreaded
parallelism and message passing on SMP clusters,
running Linux.
6 Conclusion and Future Work

Scalable computing clusters, ranging from a cluster of
(homogeneous or heterogeneous) PCs or workstations,
to SMPs, are rapidly becoming the standard platforms
for high-performance and large-scale computing. It is
believed that message-passing programming is the most
obvious approach to help programmer to take advantage
of clustering symmetric multiprocessors (SMP)
parallelism. In this paper, the topics including system
architecture, software tools, and applications of our
cluster system were discussed. In order to take
advantage of a cluster system, we presented the basic
programming techniques by using Linux/PVM to
implement a PVM-based matrix multiplication program.
Also, a real application PVMPOV by using parallel
ray-tracing techniques was examined. The experimental
results show that the highest speedups are 10.85 and
15.22 respectively for matrix multiplication and
PVMPOV, when the total number of processors is 16,
by creating 16 tasks on SMPs cluster. Furthermore, two
benchmarks, NAS and HPL are used to demonstrate the
performance of our parallel testbed by using MPI. The
experimental results show that our cluster can obtain
6.433Gflops for HPL programs with channel bonded,
when the total number of processors used is 16. The
results of this study will make theoretical and technical
contributions to the design of a message passing
program on a Linux SMP clusters. In the near future, we
will propose a new model of parallelizing compiler for

exploiting potential power of multiprocessor systems
and gaining performance benefit on PC-based SMP
cluster systems. Also, we will expend the parallel
computing research to remote sensing applications.

References
1. R. Buyya, High Performance Cluster Computing:

System and Architectures, Vol. 1, Prentice Hall PTR,
NJ, 1999.

2. R. Buyya, High Performance Cluster Computing:
Programming and Applications, Vol. 2, Prentice
Hall PTR, NJ, 1999.

3. http://www.netlib.org/benchmark/hpl, HPL – A
Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory
Computers.

4. http://www.lam-mpi.org, LAM/MPI Parallel
Computing.

5. http://www.haveland.com/povbench,
POVBENCH – The Official Home Page.

6. http://www.epm.ornl.gov/pvm/, PVM – Parallel
Virtual Machine.

7. Lie, W. N., Distributed Computing Systems for
Satellite Image Processing, Technical Report, EE,
National Chung Cheng University, 2001.

8. Lillesand, Thomas M. and Kiefer, Ralph W.,
Remote Sensing and Image Interpretation, Third
Edition, John Wiley & Sons, 1994.

9. Richards, John A., Remote Sensing Digital Image
Analysis: An Introduction, Springer-Verlag, 1999.

10. T. L. Sterling, J. Salmon, D. J. Backer, and D. F.
Savarese, How to Build a Beowulf: A Guide to the
Implementation and Application of PC Clusters,
2nd Printing, MIT Press, Cambridge,
Massachusetts, USA, 1999.

11. B. Wilkinson and M. Allen, Parallel Programming:
Techniques and Applications Using Networked
Workstations and Parallel Computers, Prentice
Hall PTR, NJ, 1999.

12. M. Wolfe, High-Performance Compilers for
Parallel Computing, Addison-Wesley Publishing,
NY, 1996.

13. C. T. Yang, S. S. Tseng, M. C. Hsiao, and S. H. Kao,
“A Portable parallelizing compiler with loop
partitioning,” Proc. of the NSC ROC(A) , Vol. 23,
No. 6, 1999, pp. 751-765.

14. Chao-Tung Yang, Shian-Shyong Tseng, Yun-Woei
Fan, Ting-Ku Tsai, Ming-Hui Hsieh, and
Cheng-Tien Wu, “Using Knowledge-based Systems
for research on portable parallelizing compilers,”
Concurrency and Computation: Practice and
Experience, vol. 13, pp. 181-208, 2001.

