
An Asynchronous Processor Simulator

Tse-Hao Lee, Chang-Jiu Chen
Department of Computer Science and Information Engineering,

National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, Taiwan
E-mail: {derrick, cjchen}@csie.nctu.edu.tw

Abstract

Asynchronous processors have become a
new direction of modern architecture research
these years. To compare the improvement of
different approaches without designing a real
chip, we need a code-based simulator. The
SimAsync, an asynchronous processor simulator
was developed. The simulator tools are based on
SimpleScalar[1], a public simulator of modern
microprocessors.

Keywords: SimAsync, SimpleScalar, simulator,
and asynchronous

1. Introduction
Asynchronous architecture is a new

research topic in computer architecture. There
are several asynchronous processor prototypes
announced in the past years, but we cannot find
any asynchronous processor simulator for the
study and research.

There exists some bottleneck in the
synchronous designs. As systems grow
increasingly large and complex, clock can cause
big problems with clock ske w. It means a timing
delay between several parts of system and may
introduce logical error. To avoid clock skew, the
clock tree should be placed early and several
routing algorithms are needed. It increases the
difficult of circuit design and we need more
silicon area in the system so that the cost of each
die is increased, too. It also leads to more power
dissipation and overheating, and this kind of
processors won’t be suitable for handing devices
and mobile computing in the modern
applications. However, all of the usual
improvements, the clock skew will be more
serious.

To overcome such limitations, computer
architecture researchers are actively considering
asynchronous processor design. Instead of global
clock, in an asynchronous architecture, each
stage communicates with each other by some
protocol. Without global clock, asynchronous
architecture can permit modular design, exhibits
the average performance of all components
rather than worst-case performance of single
component, and reduced power dissipation [2].
 In the ideal situation, asynchronous
processors have the advantages mentioned above.
But in real world, asynchronous designs suffer

from poor performance. Some researches figure
out that some problems, like branch miss penalty
and data dependency, cannot be solved easily in
asynchronous environment.

The power dissipation reduction is not as
good as expected, neither. Because the additional
control logics between each stage also need
power, the implementation of control logic
should be more refined. On the other hand,
reducing the units needed to process the
instruction can decrease the power consumption,
too. To do these, we need to classify the
instruction types and to refine the control
protocol. To shut down the functional unit when
it will not be used recently is also a possible
solution. But we have to design an effective way
to control the action of shutting down and
waking up.

In this paper, we design an asynchronous
processor simulator to provide researchers an
open general platform. We believe that through
the simulator, more high quality researches can
easily be achieved.

In order to studying various architectures
of asynchronous processors, we developed a
simulator, SimAsync. In next section, we
describe some related works about asynchronous
processors and SimpleScalar. The design
measures are described in section 3. In section 4,
we introduce SimAsync architecture. In section
5, the implementation details and verification
results are presented. A brief conclusion is
provided in section 6.

2. Related Work
In this section, we describe some

researches about asynchronous architectures and
some proceeding plans of asynchronous
processors. SimpleScalar, the basis of SimAsync,
is also included. At the last, we talk about the
difficult problems of designs of asynchronous
processors.
2-1. Micropipelines

Sutherland[3] described an architecture
named “Micropipelines”, which is an
event-driven elastic pipeline. Sutherland
introduced many event-driven logics and storage
elements. Either rising or fa lling transition of
signal is called an event and has the same
meaning to circuits. He also announced how
event control the actions of the whole pipeline.
Data transfer between two stages is using
two-phase bundled data interface. First, the
sender puts valid data on data wires and then
produces a “Request” event. After that, the
receiver accepts the data and then produces an
“Acknowledge” event. Data must be bundled
with the “Request” control line so as to avoid the
error occurs. In Figure 1 and Figure 2, the
stages exchange data with each other through the
protocol.

It simply figures out how to use protocol
to control the pipeline instead of traditional
clock. SimAsync can support micropipelines,
and it increases ILP.
2-2. Micronets

D. K. Arvind et al. [4] defined a model for
decentralising control in asynchronous processor
architectures. Micronets proposed by them
describes how a control unit control distributed
functional units and gain the advantage through
spatial concurrency in microagents within one
stage.

Assume an execution unit in a traditional
pipeline. In Figure 3, there are three function
units in the execution unit: shifter, multiplier and
ALU. In Figure 4, there are two types of
instructions. Instructions of Type A needs only
the shifter and the ALU, called set 1 , to complete
their calculation. And instructions of Type B
needs them all, called set 2 .

In traditional clock-driven pipeline, the

clock rate is determined by the slowest stage,
usually the execution unit. Other stages which
finish their work early have to wait until the
slowest stage finish its job. See the pipeline part
in Figure 5, it wastes too much time in waiting
under clock-driven pipeline.

In micropipeline, the stages are
event-driven, and it never needs a global clock.
Each stage finishes its job and then starts next
job as early as possible. Sometimes a stage needs
to wait until the FIFOs have empty slots. See the
micropipeline part in Figure 5, however, if the
time each stage needs is fixed, the performance
will be limited by the slowest stage, too.

Microagents, announced in micronets,
mean that each function unit in each stage can
communicate with other function unit.
Instructions do not have to waste time in
microagents they don’t need. So when Type A
instructions are executed, they only need set 1
function units in execution unit. Similarly, Type
B instructions need set 2 only. Control unit
simply keeps the occupancy of each microagent
and issues next instruction when its microagents
are all free. In micronets, we will gain the
benefit from multiple function units. In this case,
if we have two shifters and two ALUs, we can
issue Type A instructions without waiting. See
the micronet part in Figure 5, it is the mean to
improve ILP in asynchronous architectures.

This release of SimAsync can’t support
micronet but we support multiple function units.
2-3. AMULET [5, 6, 7, 8, 9]

AMULET, developed in the University of
Manchester, actually is the most famous plan of
implementation of asynchronous ARM
architectures. The first release of AMULET is
announced in 1994. This release proved the
possibility to design an asynchronous processor.
And this design method indeed provides the
advantage that it can be implemented modularly.

On the other hand, AMULET 1 was
suffered from the poor performance. Compared
with the similar synchronous design, ARM 6,

AMULET 1 needs more transistors and
completes the benchmark programs slower and
the worst, consumes more power. After some
reasonable analysis, they believed that data
dependency is the major part to influence the
performance. In AMULET 1, when data
dependency occurs, they simply stall the register
access through locking the destination register.
The locking mechanism offered nothing to
improve performance. To attain better operation
ability, we need some algorithms like result
forwarding to solve the data dependency. It is
nature in synchronous designs but hard in
asynchronous environment. Many related
researches are still in progress. This is one of the
reasons we want to design an asynchronous
processor simulator. If we simulate the design
before implementing, we can realize that locking
mechanism is not suitable for asynchronous
designs, and we can save the efforts.

To reduce the gate count, AMULET 1
research group have to improve latch circuits
and change the communication protocol to
four-phase bundled-data communication can be
helpful to simplify the design. Figure 6 shows
timing diagram of this design.

After these improvements, AMULET 2
indeed achieved the similar performance level of
synchronous designs. To compare with ARM
810, using the same CMOS process, AMULET 2
has better power efficiency. The latest version of
AMULET is release 3.
2-4. SimpleScalar

SimpleScalar[1] is a simulation tool set
that offers both detailed and high-performance
simulation of modern microporcessors. It is
based on MIPS-IV architecture, written in C
language, and supports most platforms
(Linux/Win32/Unix/FreeBSD/ … ..).

SimpleScaler defines its own instruction
set. The tool set also provide debugger, compiler,
and pipeline status recorder. There are five
execution-driven processor simulators in the tool
set. Range from an extremely fast functional
simulator to detailed, out-of-order issue,
superscalar processor simulator that supports
non-blocking caches and speculative execution.
It is a load/store and two-source architecture.
Only load/store instructions can access memory
directly and there are at most two source
operands for each instruction. It also defines

both little-endian and big-endian versions of the
architecture, so researchers can use the version
that matches the endianess of any given host
machine.
2-5. Arduous Problems of Asynchronous
Processors Designs

In this section, we will discuss some
difficult problems in asynchronous systems.
Some of them have a general solution, and
others still need better solutions.
2-5-1. Branching [2]

Whether asynchronous or not, processors
can reduce the branch penalty by one of five
techniques: locking the pipeline, predict
not-taken, predict taken, a branch prediction
algorithm, or delay slots.

To flush the mis -prefetch instructions is
easy in synchronous processors, because the
branch delay is fixed and known. However, in
asynchronous processors, we have no idea about
how many instructions fetched after the branch
since the fetch unit fetch as many instruction as
it could before the mis -prediction.

One technique to solve the problem is to
bundle a “color-bit” with each fetched
instruction. All instructions have the same color
until a branch encountered. At this point, the
color changed and successive instructions have
the different color. When mis -prediction is
happened, the instructions which that have the
wrong color are simply moved from the pipeline
such that we will not commit the mis -prefetched
instructions.

In our simulator, we simply flush all
instructions succeed the mis -predicted branch.
2-5-2. Exception or Interrupt Handling [2]

Hardware interrupts occur at random with
internal control operations of the processors.
Therefore, a metastability problem will be
happened. In synchronous processors, the
metastability is nearly eliminated through a
series of flip -flops that the global clock regulates.
However, the metastability is still never entirely
eliminated from synchronous systems and the
possibility increases with the clock frequency.

In asynchronous processors, the
metastablity may be worse because there is no
global clock to synchronize each functional unit
[9]. We cannot know precise status of each
functional unit when a hardware interrupt
happened. What is lucky is that the nature of the
asynchronous designs is easy to handle the
interrupt processing mechanism. More design
issues should be concerned as considering the
interrupt handling.

We don’t support the exception handling in
this release of our simulator.
2-5-3. Data Forwarding

As we know, the register locking
mechanism cannot make the performance better.

We need some procedures like data forwarding
to reduce the time to wait until the source data
available. Naturally, data forwarding have to
compare the destination register in the commit
stage and the source registers in the decode stage.
If the names are the same, data can be forwarded
to the decode stage. However, “comparison”
means that synchronization is needed between
the two stages. It will increase the complexity of
pipeline controls. Other algorithms, like
scoreboard and reorder buffer, may be work. We
still need to consider the complexity of
implementation the algorithms. More
investigations are needed to improve the
solution.

In SimAsync, we try to solve this problem
with a reorder buffer. This trial is just to provide
a method and to implement it needs more
analysis.
2-5-4. Communication with Off-chip Memory

In synchronous systems, there is a global
clock inside the core chip. Thus communication
with off-chip memory is straightforward through
a frequency divider. In asynchronous systems,
arbitration or synchronization is needed to
communicate with the off-chip memory with a
fixed frequency. Synchronization means that the
faster unit must slow down to wait the slower
unit. It is clear that synchronization is not an
efficient solution since it will influence the
performance. However, arbitration is not always
reliable so that many mechanisms need to be
implemented to make sure that the failure is
rarely to happen. To design an arbiter whose
probability of failure is enough low to be
unimportant will be a hot issue.

We ignore this problem when implement
our simulator.

3. Design of the Simulator
In Figure 7, the expected architecture is

shown.

As a general architecture, we design a
pipeline structure, except that communications
between stages are event-driven instead of
clock-driven.

The Simulator itself is simply compiled by
a normal compiler (for example, gcc). The tool
set needed to run benchmark is shown in Figure
8, indicated by shadow. The inputs of the loader
are the executable file and the test program input.
A configuration of the simulator is provided.
And the simulator should produce some readable,
reasonable results.

In order to make the simulator easy to use,
some other tools are needed. For example, we
can dump the status of each stage at any
designate time. We can make sure that we
process the instructions exactly correct.

In our simulator, we can simulate the
execution time, but simulation of power
dissipation is not supported.
3-1. Architected Parameters

The simulator should provide some
flexibility. To make the researchers make their
own simulators more easily, some parameters of
the architecture can be adjusted in our design.

We hope the architected parameters can be
written in a configuration file with some formats
defined in advance.

The architected parameters should have
default values. A parameter will equals to its
default value when it is absent from the
configuration file. The configuration also can be
dumped into a file after simulation to be a log.
3-2. A Suitable Base

An asynchronous processor simulator as
we expect is hardly to implement, so that we try
to find a suitable simulator as a base. Amulet has
its own simulation tool, indeed. But that one is in
circuit level but not in behavior level.

ARM also provide a code-based simulator
in its develop kit, called ARMulator. But we
cannot get it.

SimpleScalar [1], developed by University
of Wisconsin-Madison, is a free tool set for
synchronous processor simulation. It is based on
MIPS-IV architecture and flexible in most of its
structure. It also provides a complete tool set and
is well documented. Although it mainly
simulates the synchronous processors, with some
modifications we can fit it for the asynchronous
design. In order to reduce the effort of

development, we use SimpleScalar as a base and
rewrite it to be an asynchronous processor
simulator.

We can focus on the simulator itself rather
than other tools . To reach our goal, firstly, we
need design a method to measure the simulation
time. Although SimpleScalar’s target machine is
synchronous, we can consider the timestamps
carefully such that it seems to be asynchronous.
Secondly, we should add some architected
parameters so that we can measure the more
precise time. Finally, we should run some
benchmarks to make sure that it really works.

4. Architecture of the Simulator
In this section, we will introduce the

architecture of the asynchronous processor
simulator. A detailed diagram of the architecture
will be listed at the end of this section.
4-1. Overview of SimAsync Architecture

The SimAsync architecture is derived
from the SimpleScalar architecture. Their
instruction set architectures are all based on
MIPS-IV ISA and are a superset of MIPS with
several notable differences and additions [1].
First, there are no architected delay slots.
Secondly, loads and stores support two
addressing modes for all data types in addition to
those found in the MIPS architecture. These are
indexed (register + register) and
auto-increment/decrement. Third, there is a
square-root instruction implements both single
and double precision floating point square roots.
Finally, the instruction encoding uses 64-bit
extended encoding.

Three instruction formats are supported.
They are register, immediate, and jump formats.
(see Figure 9)

Like traditional pipelines, instructions are
fetched by fetch unit, decoded and dispatched in
dispatch unit, evaluated in execute unit, and then
retired in commit unit.

Figure 10 describes the overview of
SimAsync architecture. It looks like the general
structure of synchronous processor, but we know
that the communications are using protocols
instead of clocks. The details of each unit will be
dis cussed in following sections.

4-2. Memory Hierarchy

The details of SimAsync memory
hierarchy are described in Figure 11[1]. The
architecture of cache system and TLBs are
adjustable. The characteristics can be adjusted
by changing parameters just meets our
expectancy.
4-3. Fetch Unit

The details of fetch stage are shown in
Figure 12. The main job of the fetch unit is to
fetch instructions from instruction cache. The
instruction address is determined by program
count (PC, its initial value is determined by the
loader). The fetch width is an architected
parameter. It is determined by the product of the
decode width of the dispatch stage and the speed
of front-end of machine relative to execution
core. The cycle time of the fetch unit is
adjustable, too. If a cache miss is happened, no
matter a pure cache miss or a TLB page fault,
the fetch unit will end its job and stall until the
miss solved.

In order to reduce the control penalty, we

need a branch predictor. If mis -prediction is
happened, or any statistics are needed, the status
of branch predictor will be updated in the
commit stage. The default branch predict
algorithm is to predict non-taken.

After the instructions are fetched, they are
stored in the instruction fetch queue, which will
be accessed by the dispatch unit afterward. Its
size is also adjustable.
4-4. Dispatch Unit

Figure 13 shows the details of the dispatch
stage. Before being executed, the instructions
have to be decoded. The dispatch unit decodes
the instructions, request register value from
register bank and then saves the decoded
instructions into buffer.

The decoder receives an instruction from
instruction fetch queue, decodes the instruction
and then requests the register values needed
from register bank. Whenever input data
dependency is solved or not, the decoded
instruction will be send into the register update
unit (RUU) with the information of data
dependency. The decoder also records the output
dependency of the instruction in a rename table.

The decode width is an architected
parameter. The cycle time of the dispatch unit
can be adjusted, too. Of course, the size of RUU
and LSQ are also architected parameters.

The structure of each RUU element is
described in Figure 14. And the structure of
each LSQ is show in Figure 15.

4-5. Issue Unit

The main function of the issue unit is to
execute instructions. The details of the issue unit
are shown in Figure 16. The scheduler receives
decoded instructions from RUU and LSQ,
checks the data dependency is solved or not. If
the data dependency is already solved, the
scheduler put the instruction into the ready
queue for the next step. If the in-order issue
simulator is used, and the data dependency has
not been solved, the issue stage will end its job
and try to issue the hazard instruction next time.
If the out-order issue simulator is used, the
hazard instruction will be inserted back into the
RUU / LSQ, and then the scheduler will check
the next instruction continuously.

After scheduling, the issue unit gets those
ready instructions from the ready queue. The
issue unit request the functional unit needed by
the instruction. The issue width, the number and
latency of each functional unit type can be
adjusted by the architected parameters. And keep
in mind that the latency of floating point units is
usually one hundred times of the latency of
integer units.
4-6. Commit Unit

The final stage— the commit stage— is
described in Figure 17. First, the completed
instructions are received from the event queue.
The commit unit writes the result back to the
register bank, including the value load from
memory. If a branch mis -prediction is
encountered, the commit unit will send the
correct PC value to the fetch unit to fix the
program flow, and then update the branch
predictor status. The commit unit also refreshes
the rename table to make certain data
dependency solved.
Store instruction is processing in this stage, too.

The stored value is sent to memory at this
moment.

After that, the valid, completed
instructions will be committed. The commit unit
will commit these changes in register bank and
memory system. If there are invalid instructions
(for example, wrong pre-fetch instructions), the
commit unit retires these instructions directly
without change the machine status. After the
instructions are committed, the occupied RUU /
LSQ element will be free.

The commit unit will also free the
functional units which that complete their job.
The commit width is another architected
parameter.

The overall detailed architecture is shown
in Figure 18. Each stage is indicated by a dotted
square with its name. Although the SimpleScalar
architecture is not totally the same as our design,
it reduces our develop effort very much and the
differences can be accepted.

5. Implementation and Verification
Results

In this section, we will discuss the details
of implementation of the simulators and provide
some verification results.
5-1 Measure the Execution Time

A simulator should be able to provide the
information of execution time. We need to
consider how to measure the execution time. In
order to carry it out, we explain the measuring
rules step by step.

As we mentioned before, the architecture
simply divide in to four stages. They are Fetch,
Dispatch, Issue, and Commit. Assume one cycle
spends one nero-second (ns). We keep track of
the timestamp of each stage and the initial values
of them are all zero. We check every stage per
event in reverse order to vanish the inter-stage
synchronization. The reverse order can help us to
reduce some design effort. If some stage finishes
its work, its timestamp will be increased of its
processing time.

Figure 19 describes the normal case. The
number inside each processing segment indicates
the order of timestamp ’s changes. Notice that we
may change the timestamp more than once per
check. It is nature that each stage should act as
many times as it could. We can reduce the
inaccuracy through this way. The white arrow
indicates a delay is happened and we explain it
in the next section.

Sometimes the timestamps can be
increased normally, because in nature the stages
have to stall until they can work. There are
several cases that the timestamp have to be
stalled.

Figure 20 shows the first case. Assume
there is a stage with prior and successive queues,
which used to be a buffer. When the prior queue
is empty, no matter what status the successive
queue is, the current stage has nothing to do.
Thus the current stage will stall and must wait
until the prior stage produces some new inputs
into the prior queue. With the new inputs, the
current stage has new job to do. In this case, the
timestamp of the current stage will be set as the
timestamp after the prior stage produces results.
Recall Figure 19, we see that the queues are all
empty initially and the timestamps of back-end
stages are set as the time that the prior stage
completes its work. The timestamps setting is

shown in Figure 21.

Another case is described in Figure 22.
When the successive queue of the current stage
is full, no matter what status the prior queue is,
the current stage will stall. Because there is no
empty slot for new output to insert. The current
stage will stall until there is an empty space in
the successive queue, that means the next stage
consume the data in the successive queue. In this
case, the current stage must wait until the next
stage done its job and keeps on work afterwards.
In this case, the timestamp of the current stage
will be set as the timestamp after the successive
stage consume something from queue.

See Figure 23, the dotted white double
arrow shows that the fetch stage is stall at the
third check. And when the fourth, the dispatch
stage produces empty slots in the buffer and then
set the timestamp of the fetch stage. Afterwards,
the fetch stage can continue its job.

There are still other cases that the
timestamp has to stall. The usual processing time
of the fetch stage is determined by the hit time of
the level one cache, but it has to stall when a
cache miss is happened. The fetch stage will stall
until the cache miss recover. This case is
happened in the issue stage and the commit stage,
too.

When a mis -prediction branch is
committed, there is something to do. As Figure
24 describes, we have to reset the timestamp of
the fetch stage to the end of the commit stage. It
indicates that the new PC changes the program
flow and the fetch stage begins to fetch the
correct instructions. The dotted white double
arrow in Figure 24 describes the correction we
do.

We have developed several major rules
about measuring the execution time. Besides,
there are still some details need attention. Firstly,
we recall that the processing time of each stage
can be adjusted by configuration. In our
simulation, the processing time of the dispatch
stage is fixed. But others are varied with the
situations the stages meet. In the fetch stage, as
we mentioned, the processing time equals to the
level one cache hit time usually. But sometimes,
when a cache miss or a page fault is happened, it
will be equal to the cache miss time or the TLB
miss time. In the issue stage, if there are still
empty function units, the processing time will be
the processing time of the issue stage. Figure 25
describes this situation. The processing time of
the issue stage is a composite of the issue time
and the functional unit latency. The issue time is
indicated by a straight line and the functional
unit is indicated by a dotted line. We can issue
next instruction after the issue time passes.
However, when there is no free function unit for
the next instruction, the processing time will be
the earliest finish time the specific type of
function units. In the commit stage, because it
processes the store instruction, it needs to
consider the miss recovering time, too. When no
miss is happened, the processing time of the
commit stage will be the time the commit
processing needs.

We also keep the timestamp within each
individual instruction. This timestamp is used as
double check. We can sure that each stage only
processes an instruction when it is ready. See the
commit stage in Figure 25, the commit stage
commit executed instructions only when they are
ready at that time.

Since we can set all the architected
parameter of processing time, we can get more
precise simulation results through set the more
practical parameters. According to consider each
timestamp carefully, we can get the reasonable
results.
5-2. Count the Data Dependency

In order to study how serious the data
dependency will be. We also keep track of the
number of dependency. As we mentioned before,
there is a scoreboard to keep the status of the
register bank. It records which instruction will
attempt to modify the specific register. Before
the issue unit issues an instruction, it checks the
scoreboard first. If all source registers of the
current instruction are ready, there is no data
dependency. But if some of the sources are
recorded as “lock”, it means that some previous
instruction needs to modified it do not complete
its job. In this case, the number of locked
instruction will be increased. If the simulator is
in in -order issue mode, the current instruction
cannot be issued until the data dependency is
solved.
5-3. Benchmark

Table 1 is the list of the benchmarks we
used in our paper. And Table 2 is the
characteristic of these benchmarks.

5-4. Simulator Settings

Before running the benchmarks, we have
to decide all architected parameters. We set our
simulator into three modes, they are in-order
issue, out-of-order issue, and multiple function
units (MFU). As the simulator is in in-order
issue mode, it cannot issue the next instruction
when the current instruction suffers from data
dependency. We can get information about how
serious the data dependency is through the
in-order issue mode. In the out-of-order issue
mode, the next instruction can be issued whether
the current instruction is ‘locked’ or not. Of
course, the instructions are committed in order.
We ‘hide’ the delay of data dependency with the
out-of-order issue mechanism. We hope to
consider if it is worth to solve the problem with
the mechanism. Usually, to use multiple function
units is the popular way to improve the
performance of the processors. We simply
increase the number of function units of the
issue stage to see if the MFU can improve the
performance of the asynchronous processors.

We will list the different architected
parameters of the three modes (Table 3) and
following is the common parameters (Table 4).

Notice that we use the uniform level 2
cache.
5-5. Verification Results

As we mentioned before, we run the
benchmarks in the in-order issue mode to study
the problem of data dependency. We count not
only the ‘locked’ instructions but also the
executed and committed ones. An instruction is
executed when the issue unit issues it. But it
does not mean that the execution is correct.
Whenever a branch mis -prediction or an
unconditional jump or an interrupt is happened,
the pre-executed instruction will be retired
directly. Only when an instruction is committed,
the execution is correct. An instruction is called
“committed” when it is committed by the
commit unit. That’s why the execution
instruction count is always larger than the
committed instruction count.

Before an instruction is executed, it must
be dispatched. Thus the delay of data
dependency influences the performance in early
stage of the pipeline. In Table 5 we can see the
ratio of the locked instruction count to the
executed instruction count, too. They all range
from 50% to 65%, and that is really a high ratio.
We can realize that the data dependency does
impact the performance very much and we
should try to solve the serious problem in
reasonable algorithms.

We also notice that the committed
instruction count is the same as the count in the
original synchronous processor simulator. That
means our simulator is correct logically, and we
still have to verify correctness of the simulation
time.

Table 5 is the statistics of the three kinds
of instruction count of the benchmarks. And
Figure 26 is the graphic description of this
statistics.

Table 6 is the statistics of the simulation
results of the benchmarks. We run the programs
in three modes. The results are simulation time
(in ns). The simulation time is calculated by
keeping track of timestamp of each stage and
follows the rules we have discussed in previous
section.

We notice that the trend of the execution
time of the three modes meets our expectancy.
We also ran the same benchmarks by setting all
parameters double. We got the simulation results
almost double as original ones. Since we have
verified the measuring rules with some small
cases and we have the correct trend, we can say
that the simulation result is very close to correct.

We can realize some important facts from
the results, too. Firstly, if an asynchronous
processor is out-of-order issued, the delay of
data dependency is hidden and the performance
is better than an in-order issued one. The
difference of simulation time of the in-order
issue mode and out-of-order issue mode can be
treated as the delay of data dependency. We
should still try to study a suitable algorithm, like
data forward, to eliminate the delay indeed.

Second, MFU indeed improve the performance,
even our simulator is asynchronous. But the
main improvement is come from the out-of-issue.
Third, the running time can be just a reference,
because the critical time of each unit is not
drawn from the real world. We certainly can get
a more believable result through setting the
architected parameters based on simulation
results of the EDA tools.

Table 6 is the running results and the
improvement ratio of each mode. Figure 27
describes the running results.

The two running results can be used to
prove that the asynchronous processor simulator
is work. Since we have verified the correctness
of the logicality and the time simulation is near
to be correct, the reliability of the simulator is
good enough.

6. Conclusion
In this paper, we design and implement a

wanted simulator of asynchronous processors.
Because the efforts of implementation, we
design this simulator based on SimpleScalar and
carefully think about how to maintain the
timestamps of each stage. We also count the
number of data dependency and can be helpful
to the researches of solve the data hazard. This
free tool set can be used to investigate the
problems of the asynchronous architecture.

With this simulator, we can study some
questions about the asynchronous architecture.
To improve the performance, we should solve
the difficulty of data forwarding. We also can
study the arbitration of core processor and

off-chip memory. The high power efficiency is
the advantage of asynchronous design. We can
trace the power usage and design the architecture
using less power.

References
[1] D. Burger et al. “The SimpleScalar Tool

Set, Version 2.0”, University of
Wisconsin-Madison Computer Sciences
Department Technical Report #1342, Jun,
1997

[2] T. Werner, V. Akella. “Asynchronous
processor survey”, IEEE Computer Vol
30, Issue 11, Page(s):67-76, Nov. 1997

[3] Sutherland, I.E. “Micropipelines”,
Communications of the ACM, Vol.32,
No.6, Page(s)720-738, Jun 1989

[4] D. K. Arvind et al. “Micronets: A Model
for Decentralising Control in
Asynchronous Processor Architectures”,
Asynchronous Design Methodologies,
Proceedings, Second Working
Conference, Page(s): 190 –199, 1995

[5] Furber, S.B.; Day, P.; Garside, J.D.;
Paver, N.C.; Woods, J.V. “AMULET1: a
micropipelined ARM”, Compcon Spring
'94, Digest of Papers, Page(s): 476 –485,
1994

[6] Woods, J.V.; Day, P.; Furber, S.B.;
Garside, J.D.; Paver, N.C.; Temple, S.
“AMULET1: an asynchronous ARM
microprocessor”, Computers, IEEE
Transactions on, Vo l. 46 Issue 4, Page(s):
385 –398, April 1997

[7] Furber, S.B.; Garside, J.D.; Riocreux, P.;
Temple, S.; Day, P.; Jianwei Liu; Paver,
N.C. “AMULET2e: an asynchronous
embedded controller”, Proceedings of
the IEEE, Vol. 87, Issue 2, Page(s):
243 –256, Feb. 1999

[8] Furber, S.B.; Garside, J.D.; Gilbert, D.A.
“AMULET3: a high-performance
self-timed ARM microprocessor”, ICCD
'98. Proceedings. International
Conference on, Computer Design: VLSI
in Computers and Processors. Page(s):
247 –252, 1998

[9] Lloyd, D.W.; Garside, J.D.; Gilbert, D.A.
“Memory faults in asynchronous
microprocessors”, Fifth International
Symposium on, Advanced Research in
Asynchronous Circuits and Systems.
Page(s): 71 -80, 1999

[10] Gilbert, D.A.; Garside, J.D. “A result
forwarding mechanism for asynchronous
pipelined systems”, Third International
Symposium on, , Advanced Research in
Asynchronous Circuits and Systems ,
Page(s): 2 –11, 1997

[11] Arvind, D.K.; Rebello, V.E.F. “On the

performance evaluation of asynchronous
processor architectures”, MASCOTS '95.,
Proceedings of the Third International
Workshop on, Modeling, Analysis, and
Simulation of Computer and
Telecommunication Systems , Page(s):
100 –104, 1995

[12] Donaldson, V.; Ferrante, J. “Determining
asynchronous acyclic pipeline execution
times”, Proceedings of IPPS '96, The
10th International, Parallel Processing
Symposium, Page(s): 568 –572, 1996

[13] Arvind, D.K.; Rebello, V.E.F. “Static
scheduling of instructions on
micronet-based asynchronous
processors”, Second International
Symposium on, Advanced Research in
Asynchronous Circuits and Systems,
Page(s): 80 –91, 1996

[14] Moore, S.W.; Robinson, P. “Rapid
prototyping of self-timed circuits”,
ICCD '98. Proceedings. International
Conference on, Computer Design: VLSI
in Computers and Processors, Page(s):
360 –365, 1998

[15] Lewis, M.; Garside, J.; Brackenbury, L.
“Re-configurable latch controllers for
low power asynchronous circuits”, Fifth
International Symposium on, Advanced
Research in Asynchronous Circuits and
Systems , Page(s): 27 –35, 1999

[16] Riocreux, P.A.; Lewis, M.J.G.;
Brackenbury, L.E.M. “Power reduction
in self-timed circuits using early-open
latch controllers”, Electronics Letters,
Vol. 36, Issue 2, Page(s): 115 –116, 20
Jan. 2000

