An Asynchronous Processor Simulator

Tse-Hao Lee, Chang-Jiu Chen
Department of Computer Science and Information Engineering,
National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, Taiwan
E-mail: {derrick, ¢jchen}@csie.nctu.edu.tw

Abstract

Asynchronous processors have become a
new direction of modern architecture research
these years. To compare the improvement of
different approaches without designing areal
chip, we need a code-based simulator. The
SimAsync, an asynchronous processor simulator
was developed. The simulator tools are based on
SimpleScalar[1], apublic simulator of modern
Mi Croprocessors.
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1. Introduction

Asynchronous architecture is anew
research topic in computer architecture. There
are several asynchronous processor prototypes
announced in the past years, but we cannot find
any asynchronous processor simulator for the
study and research.

There exists some bottleneck in the
synchronous designs. As systems grow
increasingly large and complex, clock can cause
big problems with clock skew. It means a timing
delay between several parts of system and may
introduce logical error. To avoid clock skew, the
clock tree should be placed early and several
routing algorithms are needed. It increases the
difficult of circuit design and we need more
silicon areain the system so that the cost of each
dieisincreased, too. It also leads to more power
dissipation and overheating, and this kind of
processors won't be suitable for handing devices
and mobile computing in the modern
applications. However, al of the usua
improvements, the clock skew will be more
serious.

To overcome such limitations, computer
architecture researchers are actively considering
asynchronous processor design. Instead of global
clock, in an asynchronous architecture, each
stage communicates with each other by some
protocol. Without global clock, asynchronous
architecture can permit modular design, exhibits
the average performance of all components
rather than worst-case performance of single
component, and reduced power dissipation [2].

In the ideal situation, asynchronous
processors have the advantages mentioned above.
But in real world, asynchronous designs suffer

from poor performance. Some researches figure
out that some problems, like branch miss penalty
and data dependency, cannot be solved easily in
asynchronous environment.

The power dissipation reduction is not as
good as expected, neither. Because the additional
control logics between each stage also need
power, the implementation of control logic
should be more refined. On the other hand,
reducing the units needed to process the
instruction can decrease the power consumption,
too. To do these, we need to classify the
instruction types and to refine the control
protocol. To shut down the functional unit when
it will not be used recently is also a possible
solution. But we have to design an effective way
to control the action of shutting down and
waking up.

In this paper, we design an asynchronous
processor simulator to provide researchers an
open general platform. We believe that through
the simulator, more high quality researches can
easily be achieved.

In order to studying various architectures
of asynchronous processors, we developed a
simulator, SimAsync. In next section, we
describe some related works about asynchronous
processors and SimpleScalar. The design
measures are described in section 3. In section 4,
we introduce SimAsync architecture. In section
5, the implementation details and verification
results are presented. A brief conclusion is
provided in section 6.

2. Related Work

In this section, we describe some
researches about asynchronous architectures and
some proceeding plans of asynchronous
processors. SimpleScalar, the basis of SimAsync,
isalsoincluded. At the last, we talk about the
difficult problems of designs of asynchronous
processors.
2-1. Micropipelines
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Sutherland[3] described an architecture
named “Micropipelines”, which is an
event-driven  elastic  pipeline.  Sutherland
introduced many event-driven logics and storage
elements. Either rising or falling transition of
signal is called an event and has the same
meaning to circuits. He also announced how
event control the actions of the whole pipeline.
Data transfer between two stages is using
two-phase bundled data interface. First, the
sender puts valid data on data wires and then
produces a “Request’ event. After that, the
receiver accepts the data and then produces an
“Acknowledge” event. Data must be bundled
with the “ Request” control line so asto avoid the
error occurs. In Figure 1and Figure 2 the
stages exchange data with each other through the
protocol.

clock rate is determined by the slowest stage,
usually the execution unit. Other stages which
finish their work early have to wait until the
slowest stage finish its job. See the pipeline part
in Figure 5, it wastes too much time in waiting
under clock-driven pipeline.

In  micropipeline, the stages are
event-driven, and it never needs a global clock.
Each stage finishes its job and then starts next
job as early as possible. Sometimes a stage needs
to wait until the FIFOs have empty slots. See the
micropipeline part in Figure 5, however, if the
time each stage needs is fixed, the performance
will be limited by the slowest stage, too.
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It simply figures out how to use protocol
to control the pipeline instead of traditional
clock. SimAsync can support micropipelines,
anditincreases|ILP.

2-2. Micronets

D. K. Arvind et al. [4] defined a model for
decentralising control in asynchronous processor
architectures. Micronets proposed by them
describes how a control unit control distributed
functional units and gain the advantage through
spatial concurrency in microagents within e

stage.
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Assume an execution unit in a traditional
pipeline. In Figure 3 there are three function
unitsin the execution unit: shifter, multiplier and
ALU. In Figure 4, there are two types of
instructions. Instructions of Type A needs only
the shifter and the ALU, called set 1, to complete
their calculation. And instructions of Type B
needs them all, called set 2.
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Figure 4: Two sets of microagenis needed by two mstnuctions, respectively.
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Microagents, announced in micronets,
mean that each function unit in each stage can
communicate with other function unit.
Instructions do not have to waste time in
microagents they don't need. So when Type A
instructions are executed, they only need set 1
function units in execution unit. Similarly, Type
B instructions need set 2 only. Control unit
simply keeps the occupancy of each microagent
and issues next instruction when its microagents
are al free. In micronets, we will gain the
benefit from multiple function units. In this case,
if we have two shifters and two ALUs, we can
issue Type A instructions without waiting. See
the micronet part in Figure 5, it is the mean to
improve ILP in asynchronous architectures.

This release of SimAsync can’t support
micronet but we support multiple function units.
2-3. AMULET [5, 6, 7, 8, 9]

AMULET, developed in the University of
Manchester, actually is the most famous plan of
implementation  of  asynchronous ARM
architectures. The first release of AMULET is
announced in 1994. This release proved the
possibility to design an asynchronous processor.
And this design method indeed provides the
advantage that it can be implemented modularly.

On the other hand, AMULET 1 was
suffered fromthe poor performance. Compared
with the similar synchronous design, ARM 6,



AMULET 1 needs more transistors and
completes the benchmark programs slower and
the worst, consumes more power. After some
reasonable analysis, they believed that data
dependency & the major part to influence the
performance. In AMULET 1, when data
dependency occurs, they simply stall the register
access through locking the destination register.
The locking mechanism offered nothing to
improve performance. To attain better operation
ability, we need some agorithms like result
forwarding to solve the data dependency. It is
nature in synchronous designs but hard in
asynchronous environment. Many related
researches are still in progress. Thisis one of the
reasons we want to design an asynchronous
processor simulator. If we simulate the design
before implementing, we can realize that locking
mechanism is not suitable for asynchronous
designs, and we can save the efforts.

To reduce the gate count, AMULET 1
research group have to improve latch circuits
and change the communication protocol to
four-phase bundled-data communication can be
helpful to simplify the design. Figure 6 shows
timing diagram of this design.
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After these improvements, AMULET 2
indeed achieved the similar performance level of
synchronous designs. To compare with ARM
810, using the same CMOS process, AMULET 2
has better power efficiency. The latest version of
AMULET isrelease 3.

2-4. SimpleScalar

SimpleScalar[1] is a simulation tool set
that offers both detailed and high-performance
simulation of modern microporcessors. It is
based on MIPS-IV architecture, written in C
language, and supports most platforms
(Linux/Win32/Unix/FreeBSD/ .....).

SimpleScaler defines its own instruction
set. Thetool set also provide debugger, compiler,
and pipeline status recorder. There are five
execution-driven processor simulators in the tool
set. Range from an extremely fast functional
simulator to detailed, out-of-order issue,
superscalar processor simulator that supports
non-blocking caches and speculative execution.
It is a load/store and two-source architecture.
Only load/store instructions can access memory
directly and there are at most two source
operands for each instruction. It also defines

both little-endian and big-endian versions of the
architecture, so researchers can use the version
that matches the endianess of any given host
machine.

2-5. Arduous Problems of Asynchronous
Processor s Designs

In this section, we will discuss some
difficult problems in asynchronous systems.
Some of them have a general solution, and
others still need better solutions.

2-5-1. Branching [2]

Whether asynchronous or not, processors
can reduce the branch penalty by one of five
techniques: locking the pipeline, predict
not-taken, predict taken, abranch prediction
algorithm, or delay slots.

To flush the mis-prefetch instructions is
easy in synchronous processors, because the
branch delay isfixed and known. However, in
asynchronous processors, we have no idea about
how many instructions fetched after the branch
since the fetch unit fetch as many instruction as
it could before the mis-prediction.

One technique to solve the problem isto
bundle a“color-bit” with each fetched
instruction. All instructions have the same color
until abranch encountered. At this point, the
color changed andsuccessive instructions have
the different color. When mis-prediction is
happened, the instructions which that have the
wrong color are simply moved from the pipeline
such that we will not commit the mis-prefetched
instructions.

In our simulator, we simply flush all
instructions succeed the mis-predicted branch.
2-5-2. Exception or Interrupt Handling [2]

Hardware interrupts occur at random with
internal control operations of the processors.
Therefore, a metastability problemwill be
happened. In synchronous processors, the
metastability is nearly eliminated through a
series of flip-flops that the global clock regulates.
However, the metastability is still never entirely
eliminated from synchronous systems and the
possibility increases with the clock frequency.

In asynchronous processors, the
metastablity may be worse because there is no
global clock to synchronize each functional unit
[9]. We cannot know precise status of each
functional unit when a hardware interrupt
happened. What is lucky isthat the nature of the
asynchronous designsis easy to handle the
interrupt processing mechanism. More design
issues should be concerned as considering the
interrupt handling.

We don’t support the exception handling in
thisrelease of our simulator.

2-5-3. Data Forwarding

As we know, the register locking

mechani smcannot make the performance better.



We need some procedures like data forwarding
to reduce the time to wait until the source data
available. Naturally, data forwarding have to
compare the destination register in the commit
stage and the source registersin the decode stage.
If the names are the same, data can be forwarded
to the decode stage. However, “comparison”
means that synchronization is needed between
the two stages. It will increase the complexity of
pipeline controls. Other algorithms, like
scoreboard and reorder buffer, may be work. We
still need to consider the complexity of
implementation  the  agorithms. More
investigations are needed to improve the
solution.

In SimAsync, we try to solve this problem
with areorder buffer. Thistrial isjust to provide
a method and to implement it needs more
analysis.

2-5-4. Communication with Off-chip Memory

In synchronous systems, there is a global
clock inside the core chip. Thus communication
with off-chip memory is straightforward through
a frequency divider. In asynchronous systems,
arbitration or synchronization is needed to
communicate with the off-chip memory with a
fixed frequency. Synchronization means that the
faster unit must slow down to wait the slower
unit. It is clear that synchronization is not an
efficient solution since it will influence the
performance. However, arbitration is not always
reliable so that many mechanisms need to be
implemented to make sure that the failure is
rarely to happen. To design an arbiter whose
probability of failure is enough low to be
unimportant will be ahot issue.

We ignore this problem when implement
our simulator.

3. Design of the Simulator
In Figure 7, the expected architecture is
shown.
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pipeline structure, except that communications
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The Simulator itself is simply compiled by
a normal compiler (for example, gcc). The tool
set needed to run benchmark is shown in Figure
8, indicated by shadow. The inputs of the |oader
are the executable file and the test program input.
A configuration of the simulator is provided.
And the simulator should produce some readable,
reasonable results.

In order to make the simulator easy to use,
some other tools are needed. For example, we
can dump the status of each stage at any
designate time. We can make sure that we
process the instructions exactly correct.

In our simulator, we can simulate the
execution time, but simulation of power
dissipation is not supported.

3-1. Architected Parameters

The simulator should provide some
flexibility. To make the researchers make their
own simulators more easily, some parameters of
the architecture can be adjusted in our design.

We hope the architected parameters can be
written in a configuration file with some formats
defined in advance.

The architected parameters should have
default values. A parameter will equals to its
default value when it is absent from the
configuration file. The configuration also can be
dumped into afile after simulation to be alog.
3-2. A Suitable Base

An asynchronous processor simulator as
we expect is hardly to implement, so that wetry
to find a suitable simulator as a base. Amulet has
its own simulation tool, indeed. But that oneisin
circuit level but not in behavior level.

ARM also provide a code-based simulator
inits develop kit, called ARMulator. But we
cannot get it.

SimpleScalar [1], developed by University
of Wisconsin-Madison, isafreetool set for
synchronous processor simulation. It is based on
MIPS-IV architecture and flexible in most of its
structure. It also provides a complete tool set and
iswell documented. Although it mainly
simulates the synchronous processors, with some
maodifications we can fit it for the asynchronous
design. In order to reduce the effort of



development, we use SimpleScalar as a base and
rewrite it to be an asynchronous processor
simulator.

We can focus on the simulator itself rather
than other tools. To reach our god, firstly, we
need design a method to measure the simulation
time. Although SimpleScalar's target machineis
synchronous, we can consider the timestamps
carefully such that it seemsto be asynchronous.
Secondly, we should add some architected
parameters so that we can measure the more
precise time. Finally, we should run some
benchmarks to make sure that it really works.

4. Architecture of the Simulator

In this section, we will introduce the
architecture of the asynchronous processor
simulator. A detailed diagram of the architecture
will belisted at the end of this section.
4-1. Overview of SimAsync Ar chitecture

The SimAsync architecture is derived
from the SimpleScalar architecture. Their
instruction set architectures are all based on
MIPS-IV ISA and are a superset of MIPS with
several notable differences and additions [1].
First, there are no architected delay slots.
Secondly, loads and stores support two
addressing modes for all datatypesin addition to
those found in the MIPS architecture. These are
indexed (register + register) and
auto-increment/decrement. Third, there is a
square-root instruction implements both single
and double precision floating point square roots.
Finally, the instruction encoding uses 64-bit
extended encoding.
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Three instruction formats are supported.
They are register, immediate, and jump formats.
(see Figure9)

Liketraditional pipelines, instructions are
fetched by fetch unit, decoded and dispatched in
dispatch unit, evaluated in execute unit, and then
retired in commit unit.

Figure 10 describes the overview of
SimAsync architecture. It looks like the general
structure of synchronous processor, but we know
that the communications are using protocols
instead of clocks. The details of each unit will be
discussed in following sections.
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4-2. Memory Hierarchy
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The details of SimAsync memory
hierarchy are described in Figure 11[1]. The
architecture of cache system and TLBs are
adjustable. The characteristics can be adjusted
by changing parameters just meets our
expectancy.

4-3. Fetch Unit

Memory
| Higrarchy
P | I |m|r||-,-r|n-|

L
Bruuxk | It rwcibome Foich Uhscus

Commit
Siwpy

[TTp—
Brage

Figwre 12z The fach unit in SimAkyne architcemre. The size of insnsction

Pesoh quecess 15 vidriod sty the paramoer.

The details of fetch stage are shown in
Figure 12. The main job of the fetch unit is to
fetch instructions from instruction cache. The
instruction address is determined by program
count (PC, its initial value is determined by the
loader). The fetch width is an architected
parameter. It is determined by the product of the
decode width of the dispatch stage and the speed
of front-end of machine relative to execution
core. The cycle time of the fetch unit is
adjustable, too. If a cache miss is happened, no
matter a pure cache miss or a TLB page fault,
the fetch unit will end its job and stall until the
miss solved.

In order to reduce the control penalty, we




need a branch predictor. If mis-prediction is
happened, or any statistics are needed, the status
of branch predictor will be updated in the
commit stage. The default branch predict
algorithm is to predict non-taken.

After the instructions are fetched, they are
stored in the instruction fetch queue, which will
be accessed by the dispatch unit afterward. Its
size isalso adjustable.

4-4. Dispatch Unit
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Figure 13 shows the details of the dispatch
stage. Before being executed, the instructions
have to be decoded. The dispatch unit decodes
the instructions, request register value from
register bank and then saves the decoded
instructionsinto buffer.

The decoder receives an instruction from
instruction fetch queue, decodes the instruction
and then requests the register values needed
from register bank. Whenever input data
dependency is solved or not, the decoded
instruction will be send into the register update
unit (RUU) with the information of data
dependency. The decoder also records the output
dependency of theinstruction in arenametable.

The decode width is an architected
parameter. The cycle time of the dispatch unit
can be adjusted, too. Of course, the size of RUU
and L SQ are also architected parameters.

The structure of each RUU element is
described in Figure 14. And the structure of
each LSQ is show in Figure 15.
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The main function of theissue unitisto
execute instructions. The details of the issue unit
are shown in Figure 16. The scheduler receives
decoded instructions from RUU and L SQ,
checks the data dependency is solved or not. If
the data dependency is already solved, the
scheduler put the instruction into the ready
gueue for the next step. If thein-order issue
simulator is used, and the data dependency has
not been solved, theissue stage will end itsjob
and try to issue the hazard instruction next time.
If the out-order issue simulator is used, the
hazard instruction will be inserted back into the
RUU / LSQ, and then the scheduler will check
the next instruction continuously.

After scheduling, the issue unit gets those
ready instructions from the ready queue. The
issue unit request the functional unit needed by
the instruction. The issue width, the number and
latency of each functional unit type can be
adjusted by the architected parameters. And keep
in mind that the latency of floating point unitsis
usually one hundred times of the latency of
integer units.

4-6. Commit Unit
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Thefinal stage—the commit stage—is
described in Figure 17. First, the completed
instructions are received from the event queue.
The commit unit writes the result back to the
register bank, including the value load from
memory. If abranch mis-prediction is
encountered, the commit unit will send the
correct PC valueto the fetch unit to fix the
program flow, and then update the branch
predictor status. The commit unit also refreshes
the rename table to make certain data
dependency solved.

Store instruction isprocessing in this stage, too.



The stored value is sent to memory at this
moment.

After that, the valid, completed
instructions will be committed. The commit unit
will commit these changesin register bank and
memory system. If there are invalid instructions
(for example, wrong pre-fetch instructions), the
commit unit retires these instructions directly
without change the machine status. After the
i nstructions are committed, the occupied RUU /
LSQ element will be free.

The commit unit will also free the
functional units which that complete their job.
The commit width is another architected
parameter.

The overall detailed architecture is shown
in Figure 18. Each stage isindicated by a dotted
square with its name. Although the SimpleScalar
architectureis not totally the same as our design,
it reduces our develop effort very much and the
differences can be accepted.
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Figure 18: The details of SimAsync architecture.

5. Implementation and Verification

Results

In this section, we will discussthe details
of implementation of the simulators and provide
some verification results.
5-1 Measure the Execution Time

A simulator should be able to provide the
information of execution time. We need to
consider how to measure the execution time. In
order to carry it out, we explain the measuring
rules step by step.
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Aswe mentioned before, the architecture
simply dividein to four stages. They are Fetch,
Dispatch, Issue, and Commit. Assume one cycle
spends one nero-second (ns). We keep track of
the timestamp of each stage and the initial values
of them are all zero. We check every stage per
event in reverse order tovanish the inter-stage
synchronization. The reverse order can help usto
reduce some design effort. If some stage finishes
its work, its timestamp will be increased of its
processing time.

Figure 19 describes the normal case. The
number inside each processing segment indicates
the order of timestamp ’s changes. Notice that we
may change the timestamp more than once per
check. It is nature that each stage should act as
many times asit could. We can reduce the
inaccuracy through this way. The white arrow
indicates adelay is happened and we explain it
in the next section.

Sometimes the timestamps can be
increased normally, because in nature the stages
have to stall until they can work. There are
several cases that the timestamp have to be
stalled.
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Figure 20 shows the first case. Assume
there is a stage with prior and successive queues,
which used to be abuffer. When the prior queue
is empty, no matter what status the successive
gueue is, the current stage has nothing to do.
Thus the current stage will stall and must wait
until the prior stage produces some new inputs
into the prior queue. With the new inputs, the
current stage has new job to do. In this case, the
timestamp of the current stage will be set as the
timestamp after the prior stage produces results.
Recall Figure 19, we see that the queues are all
empty initially and the timestamps of back-end
stages are set as the time that the prior stage
completes its work. The timestamps setting is



shown inFigure 21.
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Another case is described in Figure 22.
When the successive queue of the current stage
is full, no matter what status the prior queue is,
the current stage will stall. Because there is no
empty slot for new output to insert. The current
stage will stall until there is an empty space in
the successive queue, that means the next stage
consume the data in the successive queue. In this
case, the current stage must wait until the next
stage done its job and keeps on work afterwards.
In this case, the timestamp of the current stage
will be set as the timestamp after the successive
stage consume something from queue.
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See Figure 23, the dotted white double
arrow shows that the fetch stageis stall at the
third check. And when the fourth, the dispatch
stage produces empty slotsin the buffer and then
set the timestamp of the fetch stage. Afterwards,
the fetch stage can continueitsjob.

There are still other casesthat the
timestamp hasto stall. The usual processing time
of the fetch stage is determined by the hit time of
the level one cache, but it hasto stall when a
cache missis happened. The fetch stage will stall
until the cache missrecover. Thiscaseis
happened in the issue stage and the commit stage,
too.

When amis-prediction branch is
committed, there is something to do. AsFigure
24 describes, we have to reset the timestamp of
the fetch stage to the end of the commit stage. It
indicates that the new PC changes the program
flow and the fetch stage beginsto fetch the
correct instructions. The dotted white double
arrow in Figure 24 describes the correction we
do.
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We have developed several major rules
about measuring the execution time. Besides,
there are still some details need attention. Firstly,
we recall that the processing time of each stage
can be adjusted by configuration. In our
simulation, the processing time of the dispatch
stage isfixed. But others are varied with the
situations the stages meet. In the fetch stage, as
we mentioned, the processing time equals to the
level one cache hit time usually. But sometimes,
when a cache miss or a page fault is happened, it
will be equal to the cache misstimeor the TLB
miss time. In theissue stage, if there are still
empty function units, the processing time will be
the processing time of the issue stage. Figure 25
describes this situation. The processing time of
the issue stage is a composite of the issue time
and the functional unit latency. Theissuetimeis
indicated by astraight line and the functional
unit isindicated by adotted line. We can issue
next instruction after the issue time passes.
However, when there is no free function unit for
the next instruction, the processing time will be
the earliest finish time the specific type of
function units. In the commit stage, because it
processes the store instruction, it needs to
consider the miss recovering time, too. When no
missis happened, the processing time of the
commit stage will be the time the commit
processing needs.
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We also keep the timestamp within each
individual instruction. Thistimestamp is used as
double check. We can sure that each stage only
processes an instruction when it is ready. See the
commit stagein Figure 25, the commit stage
commit executed instructions only when they are
ready at that time.

Since we can set all the architected
parameter of processing time, we can get more
precise simulation results through set the more
practical parameters. According to consider each
timestamp carefully, we can get the reasonable
results.

5-2. Count the Data Dependency

In order to study how serious the data
dependency will be. We also keep track of the
number of dependency. Aswe mentioned before,
thereis ascoreboard to keep the status of the
register bank. It records which instruction will
attempt to modify the specific register. Before
the issue unit issues an instruction, it checks the
scoreboard first. If all source registers of the
current instruction are ready, thereis no data
dependency. But if some of the sources are
recorded as“lock”, it means that some previous
instruction needs to modified it do not complete
itsjob. In this case, the number of locked
instruction will be increased. If the simulator is
inin-order issue mode, the current instruction
cannot be issued until the data dependency is
solved.

5-3. Benchmark

Table 1 is the list of the benchmarks we
used in our paper. And Table 2 is the
characteristic of these benchmarks.

Benchmark

A

124 mB38ksim

126.gcc

129,

13 0.ijpen

134.perl

Table I: SPECYS benchmarks

Baenchmark
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ITnstruction mumiber
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126 moc 2e374T0a0
129 compress [1est in ASHEF 42T
13 ifpem 40481671
134 pert S02 138407
Table 2: Characteristics of the benchmarks
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5-4. Simulator Settings

Before running the benchmarks, we have
to decide all architected parameters. We set our
simulator into three modes, they are in-order
issue, out-of-order issue, and multiple function
units (MFU). Asthe simulator isin in-order
issue mode, it cannot issue the next instruction
when the current instruction suffers from data
dependency. We can get information about how
serious the data dependency isthrough the
in-order issue mode. In the out-of-order issue
mode, the next instruction can be issued whether
the current instruction is‘locked’ or not. Of
course, the instructions are committed in order.
We ‘hide’ the delay of data dependency with the
out-of-order issue mechanism. We hope to
consider if it isworth to solve the problem with
the mechanism. Usually, to use multiple function
unitsisthe popular way to improve the
performance of the processors. We simply
increase the number of function units of the
issue stageto seeif the MFU can improve the
performance of the asynchronous processors.

Wewill list the different architected
parameters of the three modes (Table 3) and
following isthe common parameters (Table 4).

W aramder micowdier ol ol aord
i D ription : s ML
i i T Jis sanss

oome | anemdeil un g FLI i ALRT alsk

ras. = jals

b= | el

|

R i pye——

L.LF availanie

b = il

odl Fmbe
b ¢ tmil fessitipher'divders available

Tulsde 3t The duiferent paramaters of B three sunning modis




Parmmeter

T - i

fach : fime  [Foach wnm fime i i
decade - dime ecode mni ime {m oyl
sapc mme  jsaye um ume wher g mehog (o el

3

o ; ciime joosme unii e e ol

i miager ALLT Hrwe [0 cpcdi

ezt © wimaliften Brkoses ialbipfen dieiders: i (0 oadvi

Fiea : fpalutime floaling poimt ALL Uew: jin oyl B

i i el ok ohest ks tans (18 ool

ot ek e e ctiim Laiency

Ferich: : speaed  Jepusd oF oo end o marhe reloire o execution cose |1

peceads @ mMth prerrecion decods BOW | insis’opcle )

LTt Fslfacticn dres B (s icvele)

iitind @ wealihpratrection somatin B Jiss'cvcled

We also notice that the committed
instruction count isthe same as the count in the
original synchronous processor simulator. That
means our simulator is correct logically, and we
still have to verify correctness of the simulation
time.

Table5 isthe statistics of the three kinds
of instruction count of the benchmarks. And
Figure 26 is the graphic description of this
statistics.
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5-5. Verification Results

As we mentioned before, we run the
benchmarks in the in-order issue mode to study
the problem of data dependency. We count not
only the ‘locked’ instructions but also the
executed and committed ones. An instruction is
executed when the issue unit issues it. But it
does not mean that the execution is correct.
Whenever a branch mis-prediction or an
unconditional jump or an interrupt is happened,
the pre-executed instruction will be retired
directly. Only when an instruction is committed,
the execution is correct. An instruction is called
“committed” when it is committed by the
commit unit. That's why the execution
instruction count is aways larger than the
committed instruction count.

Before an instruction is executed, it must
be dispatched. Thusthe delay of data
dependency influences the performance in early
stage of the pipeline. In Table5 we can seethe
ratio of the locked instruction count to the
executed instruction count, too. They all range
from 50% to 65%, and that isreally ahigh ratio.
We can realize that the data dependency does
impact the performance very much and we
should try to solve the serious problemin
reasonable algorithms.

bershmarks
F'q;l.l.r\e 20: The executed, commiied, locked insiruction couni

Table6 isthe statistics of the simulation
results of the benchmarks. We run the programs
in three modes. The results are simulation time
(in ns). The simulation timeis calculated by
keeping track of timestamp of each stage and
follows the rules we have discussed in previous
section.

We notice that the trend of the execution
time of the three modes meets our expectancy.
We also ran the same benchmarks by setting all
parameters double. We got the simulation results
amost double as original ones. Since we have
verified the measuring rules with some small
cases and we have the correct trend, we can say
that the simulation result is very closeto correct.

We can realize some important facts from
the results, too. Firstly, if an asynchronous
processor is out-of-order issued, the delay of
data dependency ishidden and the performance
is better than an in-order issued one. The
difference of simulation time of the in-order
issue mode and out-of-order issue mode can be
treated as the delay of data dependency. We
should still try to study a suitable algorithm, like
data forward, to eliminate the delay indeed.



Second, MFU indeed improve the performance,
even our simulator is asynchronous. But the
main improvement is come from the out-of-issue.
Third, the running time can be just areference,
because the critical time of each unit is not
drawn from the real world. We certainly can get
amore believable result through setting the
architected parameters based on simulation
results of the EDA tools.

Table 6 isthe running results and the
improvement ratio of each mode. Figure 27
describes the running resullts.
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Figure XT: The runmng fime of thee modes

The two running results can be used to
prove that the asynchronous processor simulator
iswork. Since we have verified the correctness
of thelogicality and the time simulation is near
to be correct, the reliability of the simulator is
good enough.

6. Conclusion

In this paper, we design and implement a
wanted simulator of asynchronous processors.
Because the efforts of implementation, we
design this simulator based on SimpleScalar and
carefully think about how to maintain the
timestamps of each stage. We also count the
number of data dependency and can be helpful
to the researches of solve the data hazard. This
free tool set can be used to investigate the
problems of the asynchronous architecture.

With this simulator, we can study some
guestions about the asynchronous architecture.
To improve the performance, we should solve
the difficulty of data forwarding. We also can
study the arbitration of core processor and

off-chip memory. The high power efficiency is
the advantage of asynchronous design. We can
trace the power usage and design the architecture
using less power.
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