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Abstract 

Asynchronous processors have become a 
new direction of modern architecture research 
these years. To compare the improvement of 
different approaches without designing a real 
chip, we need a code-based simulator. The 
SimAsync, an asynchronous processor simulator 
was developed. The simulator tools are based on 
SimpleScalar[1], a public simulator of modern 
microprocessors. 
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1. Introduction 
Asynchronous architecture is a new 

research topic in computer architecture. There 
are several asynchronous processor prototypes 
announced in the past years, but we cannot find 
any asynchronous processor simulator for the 
study and research. 

There exists some bottleneck in the 
synchronous designs. As systems grow 
increasingly large and complex, clock can cause 
big problems with clock ske w. It means a timing 
delay between several parts of system and may 
introduce logical error. To avoid clock skew, the 
clock tree should be placed early and several 
routing algorithms are needed. It increases the 
difficult of circuit design and we need more 
silicon area in the system so that the cost of each 
die is increased, too. It also leads to more power 
dissipation and overheating, and this kind of 
processors won’t be suitable for handing devices 
and mobile computing in the modern 
applications. However, all of the usual 
improvements, the clock skew will be more 
serious. 

To overcome such limitations, computer 
architecture researchers are actively considering 
asynchronous processor design. Instead of global 
clock, in an asynchronous architecture, each 
stage communicates with each other by some 
protocol. Without global clock, asynchronous 
architecture can permit modular design, exhibits 
the average performance of all components 
rather than worst-case performance of single 
component, and reduced power dissipation [2]. 
 In the ideal situation, asynchronous 
processors have the advantages mentioned above. 
But in real world, asynchronous designs suffer 

from poor performance. Some researches figure 
out that some problems, like branch miss penalty 
and data dependency, cannot be solved easily in 
asynchronous environment. 

The power dissipation reduction is not as 
good as expected, neither. Because the additional 
control logics between each stage also need 
power, the implementation of control logic 
should be more refined. On the other hand, 
reducing the units needed to process the 
instruction can decrease the power consumption, 
too. To do these, we need to classify the 
instruction types and to refine the control 
protocol. To shut down the functional unit when 
it will not be used recently is also a possible 
solution. But we have to design an effective way 
to control the action of shutting down and 
waking up. 

In this paper, we design an asynchronous 
processor simulator to provide researchers an 
open general platform. We believe that through 
the simulator, more high quality researches can 
easily be achieved. 

In order to studying various architectures 
of asynchronous processors, we developed a 
simulator, SimAsync. In next section, we 
describe some related works about asynchronous 
processors and SimpleScalar. The design 
measures are described in section 3. In section 4, 
we introduce SimAsync architecture. In section 
5, the implementation details and verification 
results are presented. A brief conclusion is 
provided in section 6. 
 

2. Related Work 
In this section, we describe some 

researches about asynchronous architectures and 
some proceeding plans of asynchronous 
processors. SimpleScalar, the basis of SimAsync, 
is also included. At the last, we talk about the 
difficult problems of designs of asynchronous 
processors. 
2-1. Micropipelines 
 

 
 



Sutherland[3] described an architecture 
named “Micropipelines”, which is an 
event-driven elastic pipeline. Sutherland 
introduced many event-driven logics and storage 
elements. Either rising or fa lling transition of 
signal is called an event and has the same 
meaning to circuits. He also announced how 
event control the actions of the whole pipeline. 
Data transfer between two stages is using 
two-phase bundled data interface. First, the 
sender puts valid data on data wires and then 
produces a “Request” event. After that, the 
receiver accepts the data and then produces an 
“Acknowledge” event. Data must be bundled 
with the “Request” control line so as to avoid the 
error occurs. In Figure 1 and Figure 2, the 
stages exchange data with each other through the 
protocol. 
 

 
 

It simply figures out how to use protocol 
to control the pipeline instead of traditional 
clock. SimAsync can support micropipelines, 
and it increases ILP. 
2-2. Micronets 

D. K. Arvind et al.  [4] defined a model for 
decentralising control in asynchronous processor 
architectures. Micronets proposed by them 
describes how a control unit control distributed 
functional units and gain the advantage through 
spatial concurrency in microagents within one 
stage. 
 

 
 

Assume an execution unit in a traditional 
pipeline. In Figure 3, there are three function 
units in the execution unit: shifter, multiplier and 
ALU. In Figure 4, there are two types of 
instructions. Instructions of Type A needs only 
the shifter and the ALU, called set 1 , to complete 
their calculation. And instructions of Type B 
needs them all, called set 2 .  
 

 
 

In traditional clock-driven pipeline, the 

clock rate is determined by the slowest stage, 
usually the execution unit. Other stages which 
finish their work early have to wait until the 
slowest stage finish its job. See the pipeline part 
in Figure 5, it wastes too much time in waiting 
under clock-driven pipeline. 

In micropipeline, the stages are 
event-driven, and it never needs a global clock. 
Each stage finishes its job and then starts next 
job as early as possible. Sometimes a stage needs 
to wait until the FIFOs have empty slots. See the 
micropipeline part in Figure 5, however, if the 
time each stage needs is fixed, the performance 
will be limited by the slowest stage, too.  
 

 
 

Microagents, announced in micronets, 
mean that each function unit in each stage can 
communicate with other function unit. 
Instructions do not have to waste time in 
microagents they don’t need. So when Type A 
instructions are executed, they only need set 1 
function units in execution unit. Similarly, Type 
B instructions need set 2 only. Control unit 
simply keeps the occupancy of each microagent 
and issues next instruction when its microagents 
are all free. In micronets, we will gain the 
benefit from multiple function units. In this case, 
if we have two shifters and two ALUs, we can 
issue Type A instructions without waiting. See 
the micronet part in Figure 5, it is the mean to 
improve ILP in asynchronous architectures. 

This release of SimAsync can’t support 
micronet but we support multiple function units. 
2-3. AMULET [5, 6, 7, 8, 9] 

AMULET, developed in the University of 
Manchester, actually is the most famous plan of 
implementation of asynchronous ARM 
architectures. The first release of AMULET is 
announced in 1994. This release proved the 
possibility to design an asynchronous processor. 
And this design method indeed provides the 
advantage that it can be implemented modularly. 

On the other hand, AMULET 1 was 
suffered from the poor performance. Compared 
with the similar synchronous design, ARM 6, 



AMULET 1 needs more transistors and 
completes the benchmark programs slower and 
the worst, consumes more power. After some 
reasonable analysis, they believed that data 
dependency is the major part to influence the 
performance. In AMULET 1, when data 
dependency occurs, they simply stall the register 
access through locking the destination register. 
The locking mechanism offered nothing to 
improve performance. To attain better operation  
ability, we need some algorithms like result 
forwarding to solve the data dependency. It is 
nature in synchronous designs but hard in 
asynchronous environment. Many related 
researches are still in progress. This is one of the 
reasons we want to design an asynchronous 
processor simulator. If we simulate the design 
before implementing, we can realize that locking 
mechanism is not suitable for asynchronous 
designs, and we can save the efforts. 

To reduce the gate count, AMULET 1 
research group have to improve latch circuits 
and change the communication protocol to 
four-phase bundled-data communication can be 
helpful to simplify the design. Figure 6 shows 
timing diagram of this design. 
 

 
 

After these improvements, AMULET 2 
indeed achieved the similar performance level of 
synchronous designs. To compare with ARM 
810, using the same CMOS process, AMULET 2 
has better power efficiency. The latest version of 
AMULET is release 3. 
2-4. SimpleScalar 

SimpleScalar[1] is a simulation tool set 
that offers both detailed and high-performance 
simulation of modern microporcessors. It is 
based on MIPS-IV architecture, written in C 
language, and supports most platforms 
(Linux/Win32/Unix/FreeBSD/ … ..). 

SimpleScaler defines its own instruction 
set. The tool set also provide debugger, compiler, 
and pipeline status recorder. There are five 
execution-driven processor simulators in the tool 
set. Range from an extremely fast functional 
simulator to detailed, out-of-order issue, 
superscalar processor simulator that supports 
non-blocking caches and speculative execution. 
It is a load/store and two-source architecture. 
Only load/store instructions can access memory 
directly and there are at most two source 
operands for each instruction. It also defines 

both little-endian and big-endian versions of the 
architecture, so researchers can use the version 
that matches the endianess of any given host 
machine. 
2-5. Arduous Problems of Asynchronous 
Processors Designs 

In this section, we will discuss some 
difficult problems in asynchronous systems. 
Some  of them have a general solution, and 
others still need better solutions. 
2-5-1. Branching [2] 

Whether asynchronous or not, processors 
can reduce the branch penalty by one of five 
techniques: locking the pipeline, predict 
not-taken, predict taken, a branch prediction 
algorithm, or delay slots. 

To flush the mis -prefetch instructions is 
easy in synchronous processors, because the 
branch delay is fixed and known. However, in 
asynchronous processors, we have no idea about 
how many instructions fetched after the branch 
since the fetch unit fetch as many instruction as 
it could before the mis -prediction. 

One technique to solve the problem is to 
bundle a “color-bit” with each fetched 
instruction. All instructions have the same color 
until a branch encountered. At this point, the 
color changed and successive instructions have 
the different color. When mis -prediction is 
happened, the instructions which that have the 
wrong color are simply moved from the pipeline 
such that we will not commit the mis -prefetched 
instructions. 

In our simulator, we simply flush all 
instructions succeed the mis -predicted branch. 
2-5-2. Exception or Interrupt Handling [2] 

Hardware interrupts occur at random with 
internal control operations of the processors. 
Therefore, a metastability problem will be 
happened. In synchronous processors, the 
metastability is nearly eliminated through a 
series of flip -flops that the global clock regulates. 
However, the metastability is still never entirely 
eliminated from synchronous systems and the 
possibility increases with the clock frequency. 

In asynchronous processors, the 
metastablity may be worse because there is no 
global clock to synchronize each functional unit 
[9]. We cannot know precise status of each 
functional unit when a hardware interrupt 
happened. What is lucky is that the nature of the 
asynchronous designs is easy to handle the 
interrupt processing mechanism. More design 
issues should be concerned as considering the 
interrupt handling. 

We don’t support the exception handling in 
this release of our simulator. 
2-5-3. Data Forwarding 

As we know, the register locking 
mechanism cannot make the performance better. 



We need some procedures like data forwarding 
to reduce the time to wait until the source data 
available. Naturally, data forwarding have to 
compare the destination register in the commit 
stage and the source registers in the decode stage. 
If the names are the same, data can be forwarded 
to the decode stage. However, “comparison” 
means that synchronization is needed between 
the two stages. It will increase the complexity of 
pipeline controls. Other algorithms, like 
scoreboard and reorder buffer, may be work. We 
still need to consider the complexity of 
implementation the algorithms. More 
investigations are needed to improve the 
solution. 

In SimAsync, we try to solve this problem 
with a reorder buffer. This trial is just to provide 
a method and to implement it needs more 
analysis. 
2-5-4. Communication with Off-chip Memory 

In synchronous systems, there is a global 
clock inside the core chip. Thus communication 
with off-chip memory is straightforward through 
a frequency divider. In asynchronous systems, 
arbitration or synchronization is needed to 
communicate with the off-chip memory with a 
fixed frequency. Synchronization means that the 
faster unit must slow down to wait the slower 
unit. It is clear that synchronization is not an 
efficient solution since it will influence the 
performance. However, arbitration is not always 
reliable so that many mechanisms need to be 
implemented to make sure that the failure is 
rarely to happen. To design an arbiter whose 
probability of failure is enough low to be 
unimportant will be a hot issue. 

We ignore this problem when implement 
our simulator. 
 

3. Design of the Simulator 
In Figure 7, the expected architecture is 

shown. 
 

 
 

As a general architecture, we design a 
pipeline structure, except that communications 
between stages are event-driven instead of 
clock-driven.  
 

 
 

The Simulator itself is simply compiled by 
a normal compiler (for example, gcc). The tool 
set needed to run benchmark is shown in Figure 
8, indicated by shadow. The inputs of the loader 
are the executable file and the test program input. 
A configuration of the simulator is provided. 
And the simulator should produce some readable, 
reasonable results. 

In order to make the simulator easy to use, 
some other tools are needed. For example, we 
can dump the status of each stage at any 
designate time. We can make sure that we 
process the instructions exactly correct. 

In our simulator, we can simulate the 
execution time, but simulation of power 
dissipation is not supported. 
3-1. Architected Parameters 

The simulator should provide some 
flexibility. To make the researchers make their 
own simulators more easily, some parameters of 
the architecture can be adjusted in our design.  

We hope the architected parameters can be 
written in a configuration file with some formats 
defined in advance.  

The architected parameters should have 
default values. A parameter will equals to its 
default value when it is absent from the 
configuration file. The configuration also can be 
dumped into a file after simulation to be a log. 
3-2. A Suitable Base 

An asynchronous processor simulator as 
we expect is hardly to implement, so that we try 
to find a suitable simulator as a base. Amulet has 
its own simulation tool, indeed. But that one is in 
circuit level but not in behavior level. 

ARM also provide a code-based simulator 
in its develop kit, called ARMulator. But we 
cannot get it. 

SimpleScalar [1], developed by University 
of Wisconsin-Madison, is a free tool set for 
synchronous processor simulation. It is based on 
MIPS-IV architecture and flexible in most of its 
structure. It also provides a complete tool set and 
is well documented. Although it mainly 
simulates the synchronous processors, with some 
modifications we can fit it for the asynchronous 
design. In order to reduce the effort of 



development, we use SimpleScalar as a base and 
rewrite it to be an asynchronous processor 
simulator.  

We can focus on the simulator itself rather 
than other tools . To reach our goal, firstly, we 
need design a method to measure the simulation 
time. Although SimpleScalar’s target machine is 
synchronous, we can consider the timestamps 
carefully such that it seems to be asynchronous. 
Secondly, we should add some architected 
parameters so that we can measure the more 
precise time. Finally, we should run some 
benchmarks to make sure that it really works. 
 

4. Architecture of the Simulator 
In this section, we will introduce the 

architecture of the asynchronous processor 
simulator. A detailed diagram of the architecture 
will be listed at the end of this section. 
4-1. Overview of SimAsync Architecture 

The SimAsync architecture is derived 
from the SimpleScalar architecture. Their 
instruction set architectures are all based on 
MIPS-IV ISA and are a superset of MIPS with 
several notable differences and additions [1]. 
First, there are no architected delay slots. 
Secondly, loads and stores support two 
addressing modes for all data types in addition to 
those found in the MIPS architecture. These are 
indexed (register + register) and 
auto-increment/decrement. Third, there is a 
square-root instruction implements both single 
and double precision floating point square roots. 
Finally, the instruction encoding uses 64-bit 
extended encoding.  
 

 
 

Three instruction formats are supported. 
They are register, immediate, and jump formats. 
(see Figure 9) 

Like traditional pipelines, instructions are 
fetched by fetch unit, decoded and dispatched in 
dispatch unit, evaluated in execute unit, and then 
retired in commit unit.  

Figure 10 describes the overview of 
SimAsync architecture. It looks like the general 
structure of synchronous processor, but we know 
that the communications are using protocols 
instead of clocks. The details of each unit will be 
dis cussed in following sections. 
 

 
 
4-2. Memory Hierarchy 
 

 
 

The details of SimAsync memory 
hierarchy are described in Figure 11[1]. The 
architecture of cache system and TLBs are 
adjustable. The characteristics can be adjusted 
by changing parameters just meets our 
expectancy. 
4-3. Fetch Unit 
 

 
 

The details of fetch stage are shown in 
Figure 12. The main job of the fetch unit is to 
fetch instructions from instruction cache. The 
instruction address is determined by program 
count (PC, its initial value is determined by the 
loader). The fetch width is an architected 
parameter. It is determined by the product of the 
decode width of the dispatch stage and the speed 
of front-end of machine relative to execution 
core. The cycle time of the fetch unit is 
adjustable, too. If a cache miss is happened, no 
matter a pure cache miss or a TLB page fault, 
the fetch unit will end its job and stall until the 
miss solved. 

In order to reduce the control penalty, we 



need a branch predictor. If mis -prediction is 
happened, or any statistics are needed, the status 
of branch predictor will be updated in the 
commit stage. The default branch predict 
algorithm is to predict non-taken. 

After the instructions are fetched, they are 
stored in the instruction fetch queue, which will 
be accessed by the dispatch unit afterward. Its 
size is also adjustable. 
4-4. Dispatch Unit 
 

 
 

Figure 13 shows the details of the dispatch 
stage. Before being executed, the instructions 
have to be decoded. The dispatch unit decodes 
the instructions, request register value from 
register bank and then saves the decoded 
instructions into buffer.  

The decoder receives an instruction from 
instruction fetch queue, decodes the instruction 
and then requests the register values needed 
from register bank. Whenever input data 
dependency is solved or not, the decoded 
instruction will be send into the register update 
unit (RUU) with the information of data 
dependency. The decoder also records the output 
dependency of the instruction in a rename table. 

The decode width is an architected 
parameter. The cycle time of the dispatch unit 
can be adjusted, too. Of course, the size of RUU 
and LSQ are also architected parameters. 

The structure of each RUU element is 
described in Figure 14. And the structure of 
each LSQ is show in Figure 15. 
 

 
 

 
 
4-5. Issue Unit 
 

 
 

The main function of the issue unit is to 
execute instructions. The details of the issue unit 
are shown in Figure 16. The scheduler receives 
decoded instructions from RUU and LSQ, 
checks the data dependency is solved or not. If 
the data dependency is already solved, the 
scheduler put the instruction into the ready 
queue for the next step. If the in-order issue 
simulator is used, and the data dependency has 
not been solved, the issue stage will end its job 
and try to issue the hazard instruction next time. 
If the out-order issue simulator is used, the 
hazard instruction will be inserted back into the 
RUU / LSQ, and then the scheduler will check 
the next instruction continuously. 

After scheduling, the issue unit gets those 
ready instructions from the ready queue. The 
issue unit request the functional unit needed by 
the instruction. The issue width, the number and 
latency of each functional unit type can be 
adjusted by the architected parameters. And keep 
in mind that the latency of floating point units is 
usually one hundred times of the latency of 
integer units. 
4-6. Commit Unit 
 

 
 

The final stage— the commit stage— is 
described in Figure 17. First, the completed 
instructions are received from the event queue. 
The commit unit writes the result back to the 
register bank, including the value load from 
memory. If a branch mis -prediction is 
encountered, the commit unit will send the 
correct PC value to the fetch unit to fix the 
program flow, and then update the branch 
predictor status. The commit unit also refreshes 
the rename table to make certain data 
dependency solved.  
Store instruction is processing in this stage, too. 



The stored value is sent to memory at this 
moment. 

After that, the valid, completed 
instructions will be committed. The commit unit 
will commit these changes in register bank and 
memory system. If there are invalid instructions 
(for example, wrong pre-fetch instructions), the 
commit unit retires these instructions directly 
without change the machine status. After the 
instructions are committed, the occupied RUU / 
LSQ element will be free. 

The commit unit will also free the 
functional units which that complete their job. 
The commit width is another architected 
parameter. 

The overall detailed architecture is shown 
in Figure 18. Each stage is indicated by a dotted 
square with its name. Although the SimpleScalar 
architecture is not totally the same as our design, 
it reduces our develop effort very much and the 
differences can be accepted. 
 

 
 

5. Implementation and Verification 
Results 

In this section, we will discuss the details 
of implementation of the simulators and provide 
some verification results. 
5-1 Measure the Execution Time 

A simulator should be able to provide the 
information of execution time. We need to 
consider how to measure the execution time. In 
order to carry it out, we explain the measuring 
rules step by step. 
 

 
 

As we mentioned before, the architecture 
simply divide in to four stages. They are Fetch, 
Dispatch, Issue, and Commit. Assume one cycle 
spends one nero-second (ns). We keep track of 
the timestamp of each stage and the initial values 
of them are all zero. We check every stage per 
event in reverse order to vanish the inter-stage 
synchronization. The reverse order can help us to 
reduce some design effort. If some stage finishes 
its work, its timestamp will be increased of its 
processing time. 

Figure 19 describes the normal case. The 
number inside each processing segment indicates 
the order of timestamp ’s changes. Notice that we 
may change the timestamp more  than once per 
check. It is nature that each stage should act as 
many times as it could. We can reduce the 
inaccuracy through this way. The white arrow 
indicates a delay is happened and we explain it 
in the next section. 

Sometimes the timestamps can be 
increased normally, because in nature the stages 
have to stall until they can work. There are 
several cases that the timestamp have to be 
stalled. 
 

 
 

Figure 20 shows the first case. Assume 
there is a stage with prior and successive queues, 
which used to be a buffer. When the prior queue 
is empty, no matter what status the successive 
queue is, the current stage has nothing to do. 
Thus the current stage will stall and must wait 
until the prior stage produces some new inputs 
into the prior queue. With the new inputs, the 
current stage has new job to do. In this case, the 
timestamp of the current stage will be set as the 
timestamp after the prior stage produces results. 
Recall Figure 19, we see that the queues are all 
empty initially and the timestamps of back-end 
stages are set as the time that the prior stage 
completes its work. The timestamps setting is 



shown in Figure 21. 
 

 
 

Another case is described in Figure 22. 
When the successive queue of the current stage 
is full, no matter what status the prior queue is, 
the current stage will stall. Because there is no 
empty slot for new output to insert. The current 
stage will stall until there is an empty space in 
the successive queue, that means the next stage 
consume the data in the successive queue. In this 
case, the current stage must wait until the next 
stage done its job and keeps on work afterwards. 
In this case, the timestamp of the current stage 
will be set as the timestamp after the successive 
stage consume something from queue. 
 

 
 

 
 

See Figure 23, the dotted white double 
arrow shows that the fetch stage is stall at the 
third check. And when the fourth, the dispatch 
stage produces empty slots in the buffer and then 
set the timestamp of the fetch stage. Afterwards, 
the fetch stage can continue its job. 

There are still other cases that the 
timestamp has to stall. The usual processing time 
of the fetch stage is determined by the hit time of 
the level one cache, but it has to stall when a 
cache miss is happened. The fetch stage will stall 
until the cache miss recover. This case is 
happened in the issue stage and the commit stage, 
too. 

When a mis -prediction branch is 
committed, there is something to do. As Figure 
24 describes, we have to reset the timestamp of 
the fetch stage to the end of the commit stage. It 
indicates that the new PC changes the program 
flow and the fetch stage begins to fetch the 
correct instructions. The dotted white double 
arrow in Figure 24 describes the correction we 
do. 
 

 
 

We have developed several major rules 
about measuring the execution time. Besides, 
there are still some details need attention. Firstly, 
we recall that the processing time of each stage 
can be adjusted by configuration. In our 
simulation, the processing time of the dispatch 
stage is fixed. But others are varied with the 
situations the stages meet. In the fetch stage, as 
we mentioned, the processing time equals to the 
level one cache hit time usually. But sometimes, 
when a cache miss or a page fault is happened, it 
will be equal to the cache miss time or the TLB 
miss time. In the issue stage, if there are still 
empty function units, the processing time will be 
the processing time of the issue stage. Figure 25 
describes this situation. The processing time of 
the issue stage is a composite of the issue time 
and the functional unit latency. The issue time is 
indicated by a straight line and the functional 
unit is indicated by a dotted line. We can issue 
next instruction after the issue time passes. 
However, when there is no free function unit for 
the next instruction, the processing time will be 
the earliest finish time the specific type of 
function units. In the commit stage, because it 
processes the store instruction, it needs to 
consider the miss recovering time, too. When no 
miss is happened, the processing time of the 
commit stage will be the time the commit 
processing needs. 
 



 
 

We also keep the timestamp within each 
individual instruction. This timestamp is used as 
double check. We can sure that each stage only 
processes an instruction when it is ready. See the 
commit stage in Figure 25, the commit stage 
commit executed instructions only when they are 
ready at that time. 

Since we can set all the architected 
parameter of processing time, we can get more 
precise simulation results through set the more 
practical parameters. According to consider each 
timestamp carefully, we can get the reasonable 
results. 
5-2. Count the Data Dependency 

In order to study how serious the data 
dependency will be. We also keep track of the 
number of dependency. As we mentioned before, 
there is a scoreboard to keep the status of the 
register bank. It records which instruction will 
attempt to modify the specific register. Before 
the issue unit issues an instruction, it checks the 
scoreboard first. If all source registers of the 
current instruction are ready, there is no data 
dependency. But if some of the sources are 
recorded as “lock”, it means that some previous 
instruction needs to modified it do not complete 
its job. In this case, the number of locked 
instruction will be increased. If the simulator is  
in in -order issue mode, the current instruction 
cannot be issued until the data dependency is 
solved. 
5-3. Benchmark 

Table 1 is the list of the benchmarks we 
used in our paper. And Table 2 is the 
characteristic of these benchmarks. 
 

 
 

 

 
5-4. Simulator Settings 

Before running the benchmarks, we have 
to decide all architected parameters. We set our 
simulator into three modes, they are in-order 
issue, out-of-order issue, and multiple function 
units (MFU). As the simulator is in in-order 
issue mode, it cannot issue the next instruction 
when the current instruction suffers from data 
dependency. We can get information about how 
serious the data dependency is through the 
in-order issue mode. In the out-of-order issue 
mode, the next instruction can be issued whether 
the current instruction is ‘locked’ or not. Of 
course, the instructions are committed in order. 
We ‘hide’ the delay of data dependency with the 
out-of-order issue mechanism. We hope to 
consider if it is worth to solve the problem with 
the mechanism. Usually, to use multiple function 
units is the popular way to improve the 
performance of the processors. We simply 
increase the number of function units of the 
issue stage to see if the MFU can improve the 
performance of the asynchronous processors. 

We will list the different architected 
parameters of the three modes (Table 3) and 
following is the common parameters (Table 4). 
 

 
 



 
 

Notice that we use the uniform level 2 
cache. 
5-5. Verification Results 

As we mentioned before, we run the 
benchmarks in the in-order issue mode to study 
the problem of data dependency. We count not 
only the ‘locked’ instructions but also the 
executed and committed ones. An instruction is 
executed when the issue unit issues it. But it 
does not mean that the execution is correct. 
Whenever a branch mis -prediction or an 
unconditional jump or an interrupt is happened, 
the pre-executed instruction will be retired 
directly. Only when an instruction is committed, 
the execution is correct. An instruction is called 
“committed” when it is committed by the 
commit unit. That’s why the execution 
instruction count is always larger than the 
committed instruction count. 

Before an instruction is executed, it must 
be dispatched. Thus the delay of data 
dependency influences the performance in early 
stage of the pipeline. In Table 5 we can see the 
ratio of the locked instruction count to the 
executed instruction count, too. They all range 
from 50% to 65%, and that is really a high ratio. 
We can realize that the data dependency does 
impact the performance very much and we 
should try to solve the serious problem in 
reasonable algorithms. 

We also notice that the committed 
instruction count is the same as the count in the 
original synchronous processor simulator. That 
means our simulator is correct logically, and we 
still have to verify correctness of the simulation 
time. 

Table 5 is the statistics of the three kinds 
of instruction count of the benchmarks. And 
Figure 26 is the graphic description of this 
statistics. 
 

 
 

 
 

Table 6 is the statistics of the simulation 
results of the benchmarks. We run the programs 
in three modes. The results are simulation time 
(in ns). The simulation time is calculated by 
keeping track of timestamp of each stage and 
follows the rules we have discussed in previous 
section. 

We notice that the trend of the execution 
time of the three modes meets our expectancy. 
We also ran the same benchmarks by setting all 
parameters double. We got the simulation results 
almost double as original ones. Since we have 
verified the measuring rules with some small 
cases and we have the correct trend, we can say 
that the simulation result is very close to correct. 

We can realize some important facts from 
the results, too. Firstly, if an asynchronous 
processor is out-of-order issued, the delay of 
data dependency is hidden and the performance 
is better than an in-order issued one. The 
difference of simulation time of the in-order 
issue mode and out-of-order issue mode can be 
treated as the delay of data dependency. We 
should still try to study a suitable algorithm, like 
data forward, to eliminate the delay indeed. 



Second, MFU indeed improve the performance, 
even our simulator is asynchronous. But the 
main improvement is come from the out-of-issue. 
Third, the running time can be just a reference, 
because the critical time of each unit is not 
drawn from the real world. We certainly can get 
a more believable result through setting the 
architected parameters based on simulation 
results of the EDA tools. 

Table 6 is the running results and the 
improvement ratio of each mode. Figure 27 
describes the running results. 
 

 
 

 
 

The two running results can be used to 
prove that the asynchronous processor simulator 
is work. Since we have verified the correctness 
of the logicality and the time simulation is near 
to be correct, the reliability of the simulator is 
good enough. 
 

6. Conclusion 
In this paper, we design and implement a 

wanted simulator of asynchronous processors. 
Because the efforts of implementation, we 
design this simulator based on SimpleScalar and 
carefully think about how to maintain the 
timestamps of each stage. We also count the 
number of data dependency and can be helpful 
to the researches of solve the data hazard. This 
free tool set can be used to investigate the 
problems of the asynchronous architecture. 

With this simulator, we can study some 
questions about the asynchronous architecture. 
To improve the performance, we should solve 
the difficulty of data forwarding. We also can 
study the arbitration of core processor and 

off-chip memory. The high power efficiency is 
the advantage of asynchronous design. We can 
trace the power usage and design the architecture 
using less power. 
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