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Abstract 

Multi-dimensional systems are widely used 

to model scientific applications such as image 

processing, geophysical signal processing and 

fluid dynamics. Such systems usually contain 

repetitive groups of operations represented by 

nested loops. The optimization of such loops, 

considering processing resource constraints, is 

required in order to improve their computational 

time. Push_Up Scheduling Method (PUSM) is 

an effective technique that can get the shortest 

schedule table and fully utilize resources. It 

contains two main parts: schedule table 

construction and retiming base selection. In our 

analysis, PUSM can obtain optimal solution in 

the former part, but lacks a complete selecting 

process and uses more constrained conditions in 

the later part. Hence, in this paper, we propose a 

Relax Push_Up Scheduling Method (RPUSM) to 

overcome its shortcomings. In RPUSM, we 

inherit the former part from PUSM, and replace 

the later part by a complete and more relax 

conditions to select more appropriate retiming 

base. According to our analysis, RPUSM can not 

only get better performance than PUSM in some 

cases, but also preserve the advantages of PUSM, 

such as shortest schedule table, fully resource 

utilization, and polynomial scheduling time. 

Keywords: Instruction scheduling, Push-up 

Scheduling, Retiming 

 

1. Introduction 
Multi-dimensional systems are widely used 

to model scientific applications such as image 

processing, geophysical signal processing and 

fluid dynamics [3, 5, 7]. These systems usually 

contain repetitive groups of operations 

represented by nested loops. Since nested loops 

are the time-critical sections in such 

computation-intensive applications, their 

execution time usually dominates the entire 

computational performance. To optimize the 

execution rate of such applications, we need to 

explore the embedded parallelism in repetitive 

patterns of a loop [13, 15]. 

Traditional scheduling methods can be 

divided into five categories [10]: (1) Integer 

Linear Programming (ILP) [2, 4], (2) List 

Scheduling technique [9], (3) Probability Based 

technique [19], (4) Randomized Searching 

Based technique [12], and (5) Transformation 

Based technique [1, 8, 11]. It usually uses 

Multi-dimensional Data-Flow Graph (MDFG) to 

represent iteration, and some techniques such as 

retiming and unfolding are used to regroup 

operations in iterations [1, 8, 11]. After applying 



these scheduling methods, we can get a new 

iteration structure with higher parallelism 

embedded. Among them, Push_Up Scheduling 

Method (PUSM) proposed by [17] is an effective 

technique. It not only can get the shortest 

schedule table and fully utilize resources, but 

also runs in polynomial time. However, it still 

has some shortcomings according to our analysis. 

Therefore, we propose a Relax Push_Up 

Scheduling Method (RPUSM) to overcome its 

shortcomings in this paper. 

In the scheduling algorithm of PUSM, we 

can find it contains two main parts: schedule 

table construction and retiming base selection. 

Since PUSM can get the shortest schedule table 

and fully utilize resources, it already achieves 

the optimal result in the former part. In the later 

part, however, it lacks a complete selecting 

process and its selecting conditions are more 

constrained. In our method, hence, we inherit the 

former part from PUSM, and propose a complete 

and more relax conditions to select more 

appropriate retiming base. According to our 

analysis, RPUSM can not only get better 

performance than PUSM in some cases, but also 

preserve the original advantages of PUSM, such 

as shortest schedule table, fully resource 

utilization, and polynomial scheduling time. 

The remaining of this paper is organized as 

follows. Section 2 introduces some fundamental 

backgrounds and related work. The design issues 

and principles of our Relax Push_Up Scheduling 

Method are introduced in Section 3. In Section 4, 

we give some preliminary analysis of our 

method to demonstrate its figure of merits. 

Finally, some concluding remarks are given in 

Section 5. 

 

2. Fundamental Background and 
Related Work 

Traditional instruction scheduling method 

can be divided into five categories [10]. PUSM 

belongs to Transformation Based technique, 

which is the most popular one. Scheduling 

methods belonged to this category restructure 

the loop body to explore the instruction level 

parallelism, and using the modified repetitive 

pattern can decrease the overall execution time 

[1, 8, 11]. Most of them not only can obtain 

good results, but also need less time and space 

complexity. In this section, we will briefly 

survey basic principles and scheduling algorithm 

of PUSM. 

2.1 Basic Principles [13, 15, 17] 
Most transformation based scheduling 

methods model the nested loop as 

Multi-dimensional Data-Flow Graph (MDFG), 

which is defined as follows. 

Definition 2.1 An MDFG G = (V, E, d, t) is a 

node-weighted and edge-weighted directed 

graph, where V is the set of computation nodes, 

E is the set of dependence edges, d is a function 

from E to Zn, representing the multi-dimensional 

delays between two nodes, where n is the 

number of dimensions, and t is a function from V 

to the positive integers, representing the 

computation time of each node. 

Figure 1 is an example of a nested loop 

and its corresponding MDFG. An equivalent cell 

dependence graph (cell DG) of an MDFG is the 

directed acyclic graph showing the dependencies 

between copies of nodes representing the MDFG. 

The cell dependence graph of the MDFG in 

Figure 1(b) is shown in Figure 2(a). 

An MDFG G = (V, E, d, t) is realizable if 

there exists a schedule vector s such that s‧d ≥ 0,  



 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

where d are loop-carried dependences in G. A 

schedule vector s is the normal vector for a set of 

parallel equitemporal hyperplanes that define a 

sequence of execution [6]. An iteration is 

equivalent to the execution of each node in V 

exactly once. The period during which all 

computation nodes in an iteration are executed, 

according to existing data dependences and 

without resource constraints, is called a cycle 

period. The cycle period of an MDFG is the 

maximum computational time among paths that 

have no delay. It can be shown that the cycle 

period dominates the entire execution time of a 

nested loop. Hence, the goal of most scheduling 

methods is to try to minimize the cycle period. 

Retiming is a popular technique to reduce 

the cycle period of an MDFG [8]. A 

multi-dimensional retiming r is a function from 

V to Zn that redistributes the nodes in the cell DG 

created by the replication of an MDFG G = (V, E, 

d, t). A new MDFG Gr = (V, E, dr, t) is created 

after applying retiming function r, such that each 

iteration still has one execution of each node in 

G. The retiming vector r(u) of a node u 

represents the offset between the original 

iteration and the one after retiming. The delay 

vectors change accordingly to preserve 

dependencies. The definitions and properties of 

retiming are shown in the following definition. 

for i = 1 to m begin 

for j = 1 to n begin 

   D [i, j] = B [i–1, j] × C [i–1, j+2] ; 

   A [i, j] = D [i, j] × 0.5 ; 

   B [i, j] = A [i, j] + 1 ; 

   C [i, j] = A [i, j–1] + 2 ; 

end 

end 

B (1, 0) 

A D (1, -2) (0, 1) 

C 

Figure 1. Nested loop and MDFG. 

Definition 2.2 Given any MDFG G = (V, E, d, t), 

retiming function r, and retimed MDFG Gr = (V, 

E, dr, t), we define the retimed delay vector for 

every edge, path, and cycle respectively by the 

following formulas: 

A B A B
A B A B

C D C D
C D C D (1, 2) (2, 2) 

(2, 2) (1, 2) A B A B
A B A B

C D C D
C D C D (a) dr(e) = d(e) + r(u) – r(v) for every edge 

, u, v ∈  V and e ∈  E. vu e→
(1, 1) (2, 1) (1, 1) (2, 1) 

A D A D

(a) 
(b) dr(p) = d(p) + r(u) – r(v) for every path 

, u, v ∈  V and p ∈  G. vu p→

(b) 

Figure 2. (a) Cell DG, (b) retimed cell DG.

(c) dr(l) = d(l) for any cycle l ∈  G. 
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Figure 3 and 2(b) show the retimed MDFG 

and cell DG, where the nodes originally 

belonging to iteration (1, 1) are marked. A 

prologue is the set of instructions that are moved 

on each dimension and must be executed to 

provide the necessary data for the iterative 

process. An epilogue is the other extreme of the 

cell DG, were a complementary set of 

instructions will be executed to complete the 

process. Considering that the entire problem 

consists of a large number of iterations, the time 

required to run the prologue and epilogue are 

negligible [17]. 

Although retimed MDFG contains smaller 

C

A D(1, -3) (0, 2)

(0, 1) r (A) = (0, 1) 
r (B) = (0, 0) 
r (C) = (0, 0) 
r (D) = (0, 1) 

Figure 3. Retimed MDFG. 



cycle period than original one, we must insure 

that the retimed MDFG is still realizable. A legal 

multi-dimensional retiming r is defined below. 

Definition 2.3 Given a realizable MDFG G, a 

legal multi-dimensional retiming for G is the 

multi-dimensional retiming function r that 

transforms G in Gr, such that Gr is still 

realizable. 

As we mention before, an MDFG G is 

realizable if there exists a schedule vector s such 

that s ‧ d ≥ 0, where d are loop-carried 

dependences in G. Similarly, a schedule vector s 

can be found if the retimed MDFG Gr is 

realizable, too. The following theorem describes 

the relationship between schedule vector s and 

legal multi-dimensional retiming function r. 

Theorem 2.1 Let G = (V, E, d, t) be a realizable 

MDFG, s a schedule vector such that s‧d ≥ 0 

where d is non-zero dependence in G, and u ∈ V 

a node with all the incoming edges having 

non-zero delays. A legal multi-dimensional 

retiming function r(u) is any vector orthogonal 

to s. 

Proof: It can be found in [15].  

Corollary 2.2 Let G = (V, E, d, t) be a realizable 

MDFG, s a schedule vector that realizes G, and u 

∈ V. If r(u) is a legal multi-dimensional retiming 

function, then (k × r)(u), where k is a positive 

integer, is also a legal multi-dimensional 

retiming. 

Proof: It can be found in [15, 17].  

According to Theorem 2.1, we can find a 

legal multi-dimensional retiming function from 

the original MDFG directly. We have introduced 

the basic principles using in PUSM above, and 

the detail description of PUSM will be contained 

in the next subsection. 

2.2 Push_Up Scheduling Method [17] 

The main principle of PUSM is to 

schedule operations as early as possible, so that 

it obtains a schedule with minimum length under 

some particular resource constraints. At first, we 

define a schedulable node below: 

Definition 2.4 (Scheduling Conditions) Given 

an MDFG G = (V, E, d, t) and a node u ∈ V, u is 

schedulable at a control step cs if it satisfies one 

of the conditions below: 

1. u has no incoming edges; 

2. all incoming edges of u have a non-zero 

multi-dimensional delay; 

3. all the predecessors of u, connected to u by 

a zero-delay edge, have been scheduled to 

earlier control steps. 

Retiming technique will change the delay 

value of an edge, so it can be used to change a 

zero-delay edge to a non-zero one and vice versa. 

Therefore, if a node has some incoming edges 

with zero-delay and is not schedulable, we can 

use retiming technique to make it become 

schedulable. PUSM uses this feature to schedule 

each node as early as possible to fully utilize the 

resources, so it can always get a shortest 

schedule table under some particular resource 

constraints. 

The first step of PUSM is to select a 

suitable retiming base r. The selecting conditions 

is similar to Theorem 2.1, but it uses s‧d > 0 and 

r ⊥  s to guarantee that the retimed MDFG is 

strictly realizable. After applying PUSM, we will 

get a schedule table with minimum length and 

the retiming degree of each node. The retiming 

function of each node is the production of the 

retiming base r and its retiming degree. The 

maximum retiming degree is called retiming 

depth d. The complete PUSM algorithm can be 

found in [17]. 



Although PUSM can always obtain a 

shortest schedule table, it still has two 

shortcomings. The first one is that it doesn’t 

contain a complete process to select the retiming 

base, and the second one is that its selecting 

condition of retiming base is more constrained. 

Hence, we propose a Relax Push_Up Scheduling 

Method (RPUSM) to overcome these two 

shortcomings in the next section. 

 

3. Relax Push-Up Scheduling Method 
In the scheduling algorithm of PUSM, we 

can find it contains two main parts. One is how 

to obtain the schedule table and retiming degree 

of each node, and the other is how to select the 

retiming base. In the following, we give an 

example to illustrate its constrained selecting 

condition. 

Given a nested loop with depth two and 

the corresponded MDFG as shown in Figure 1, 

and here we assume variables m and n equal to 

10 and 8 respectively. After applying PUSM, we 

will obtain retiming base (1, -3) and retiming 

degree of each node. If both multiply and add 

operations need 1 cycle to execute, we can 

calculate that the overall execution time is 195 

cycles. Noted that the execution sequence is not 

regular. On the other hand, if we violate the 

selecting condition in PUSM and select retiming 

base (0, 1), the overall execution time will 

decrease to 170 cycles. The schedule table and 

two retimed MDFGs are shown in Figure 4. 

From this example, we can see that the retiming 

base selected by PUSM is not always optimal. 

Therefore, our RPUSM will focus on the 

selecting algorithm design of retiming base. 

Since the nested loops used in scientific 

applications are usually two-dimensional, we use  

 CS Mul. Adder 
P D C  
P A  

 1 D C 
2 A B  
E  B 

 P : prologue  E : epilogue 
 (a) 
 

B B (0, 3) (1, -1) (1, -3) (0, 1) 
A D A D  (1, -2) (1, -2)(0, 1) (0, 1) 

C C  

 

 

r (A) = (1, -3)  r (B) = (0, 0) 
r (C) = (1, -3)  r (D) = (1, -3)

r (A) = (0, 1)  r (B) = (0, 0) 
r (C) = (0, 1)  r (D) = (0, 1) 

(b) (c)
 

 

 

Figure 4. (a) Schedule table, (b) retimed 

MDFG, (c) retimed MDFG. 

nested loop with depth two as an example to 

explain RPUSM clearly. Nevertheless, RPUSM 

can be extended to cover nested loop with depth 

more than two easily similar to PUSM. 

Before introducing RPUSM, we use 

Lemma 3.1 and 3.2 to present the influence of 

schedule vector on execution time. Additional 

variables used in these Lemmas are defined at 

first. Lengthlist and lengthPUSM are the schedule 

lengths of loop body produced by List 

Scheduling Method [9] or PUSM. List 

Scheduling Method is a simple scheduling 

method without restructuring the loop body, so it 

usually can’t obtain the shortest schedule length. 

Prologue and epilogue are the time needed to 

execute the extra codes produced by PUSM for 

the same name, and d is the corresponding 

retiming depth. 

Lemma 3.1 Given a nested loop with depth two, 

and its loop bounds of outer and inner loops are 

m and n respectively. We use PUSM to schedule 

it on uniprocessor architecture. If the schedule 

vector used in PUSM is (1, 0), then the entire 



execution time is lengthPUSM ×  m(n – d) + 

(prologue + epilogue) × m. 

Proof: The schedule vector s is (1, 0), that 

corresponds to the normal execution sequence, 

so we can simply select retiming base (0, 1) that 

is orthogonal to s. Because the retiming base and 

retiming depth are (0, 1) and d, md iterations 

should be moved into prologue and epilogue. 

After applying PUSM, it produces m(n – d) 

restructured loop bodies and m pairs of prologue 

and epilogue. Since the system architecture is 

uniprocessor, it is directly that the execution 

time is lengthPUSM × m(n – d) + (prologue + 

epilogue) × m.  

Lemma 3.2 Given a nested loop with the same 

assumption as Lemma 3.1, and use PUSM to 

schedule it on uniprocessor architecture. If the 

schedule vector used in PUSM is (s1, s2), both s1 

and s2 are positive integers, then the entire 

execution time is lengthPUSM × (m – s2d)(n – s1d) 

+ (prologue + epilogue) × (s1m + s2n – s1s2 – 

2ds1s2) + lengthlist × s1s2d(d + 1). 

Proof: The schedule vector s is (s1, s2), both s1 

and s2 are positive integers, so we can simply 

select retiming base (s2, -s1) that is orthogonal to 

s. Because the execution sequence is not normal, 

the scheduling result is much complex. Figure 

5(b) shows the changed iteration space after 

applying PUSM with retiming depth d and 

retiming base (s2, -s1), and the thick lines 

represent the equitemporal hyperplanes. In this 

figure, we can see the iteration space is 

partitioned into three regions. Region A contains 

(m – s2d)(n – s1d) iterations, which are loop 

bodies produced by PUSM. Region B contains 

d(s1m + s2n – s1s2 – 2ds1s2) iterations, which 

forms m pairs of prologue and epilogue. Region 

C contains the remainder s1s2d(d + 1) iterations, 

which must execute using List Scheduling 

Method because it is out of the nested loop. 

Therefore, the entire execution time is 

lengthPUSM × (m – s2d)(n – s1d) + (prologue + 

epilogue) ×  (s1m + s2n – s1s2 – 2ds1s2) + 

lengthlist × s1s2d(d + 1).  

  

 

 

 

 (s1, s2)

 m × n iterations 
C A B  

(a) (b)  

 
Figure 5. (a) Original, (b) modified iteration space. 

According to above two Lemmas, 

Theorem 3.1 shows that using schedule vector (1, 

0) always can get shorter execution time. 

Theorem 3.1 Given a nested loop with the same 

assumption as Lemma 3.1, and use PUSM to 

schedule it with schedule vector (1, 0) and (s1, s2) 

respectively. The overall execution time with 

schedule vector (1, 0) is always shorter than that 

of it with schedule vector (s1, s2). 

Proof: Execution time with these two schedule 

vectors can be obtained from Lemma 3.1 and 3.2 

directly. For the convenience, we use variables 

T1 and T2 to represent them respectively. We 

have the following expressions: 

T1 = lengthPUSM ×  m(n – d) + (prologue + 

epilogue) × m 

T2 = lengthPUSM × (m – s2d)(n – s1d) + (prologue 

+ epilogue) × (s1m + s2n – s1s2 – 2ds1s2) + 

lengthlist × s1s2d(d + 1) 

T2 – T1 = lengthPUSM × d(m + s1s2d – s1m – s2n) 

+ (prologue + epilogue) × (s1m + s2n – 

s1s2 – 2ds1s2 – m) + lengthlist × d(s1s2d + 

s1s2) (1) 



Since PUSM can always obtain the 

shortest schedule table but List Scheduling 

Method can’t, we have lengthlist ≥ lengthPUSM. 

Because lengthlist ≥ lengthPUSM, formula (1) can 

be rewritten as 

T2 – T1 ≥ lengthPUSM × d(m + 2s1s2d – s1m – s2n 

+ s1s2) + (prologue + epilogue) × (s1m + 

s2n – s1s2 – 2ds1s2 – m) (2)        

Since prologue and epilogue contain d 

iterations and PUSM can get the shortest 

schedule table, we have prologue + epilogue ≥ 

lengthPUSM × d. Because prologue + epilogue ≥ 

lengthPUSM × d, formula (2) can be rewritten as 

T2 – T1 ≥ lengthPUSM × d(m + 2s1s2d – s1m – s2n 

+ s1s2) + lengthPUSM × d(s1m + s2n – s1s2 – 

2ds1s2 – m) = 0 

Hence, we have T2 ≥ T1 and complete this 

proof.  

From Theorem 3.1, we should select 

schedule vector (1, 0) as far as possible when we 

use PUSM to schedule a nested loop with depth 

two. It can not only decrease overall execution 

time, but also simplify the complexity of the 

retimed nested loop. In the following, we will 

analyze the conditions that can select schedule 

vector (1, 0). 

Given a two-dimensional MDFG G = (V, 

E, d, t) and use PUSM to schedule it. If we want 

to select schedule vector (1, 0), we have to 

guarantee that the retimed MDFG Gr = (V, E, dr, 

t) with retiming base (0, 1) is still realizable. As 

mentioned in Section 2.1, an MDFG G = (V, E, d, 

t) is realizable if there exists a schedule vector s 

such that s‧d ≥ 0, where d are loop-carried 

dependences in G. In the other words, an MDFG 

is realizable if there exists an execution sequence 

that makes all dependences be flow-dependences. 

That is to say that we have to guarantee the 

retimed MDFG Gr with retiming base (0, 1) 

doesn’t contain any anti-dependence. 

Since we use retiming base (0, 1), the 

retiming function of each node will be the model 

of (0, a) where a ≥ 0. According to the definition 

of retiming technique, only dependence with 

distance (0, a), a ≥ 0, may become 

anti-dependence after retiming. Therefore, we 

only have to check dependences with this model 

in the original MDFG. Theorem 3.2 shows the 

conditions that we can select schedule vector (1, 

0) and retiming base (0, 1) respectively. 

Theorem 3.2 Given a two-dimensional MDFG 

G = (V, E, d, t) and use PUSM to schedule it. 

Without loss of generality, we consider G only 

containing flow-dependences. After applying 

PUSM, we will obtain the retiming degree rd (v) 

of each node v ∈  V. We can select schedule 

vector s equals to (1, 0) under the following 

conditions: 

1. G doesn’t contain any dependence with 

distance (0, a), a > 0. 

2. G contains dependence  and rd 

(u) + a ≥ rd (v), where u, v ∈  V, a > 0. 

vu a → ),(0

Proof: Since we only consider flow-dependence, 

the dependence distances in G can be classified 

into four models: (0, a), (b, 0), (c, d) and (e, -f), 

where the six variables are all positive. Our goal 

is to shown that the retimed MDFG Gr = (V, E, 

dr, t) with retiming base (0, 1) is still realizable 

with schedule vector (1, 0). 

In the first condition, G doesn’t contain 

dependence with distance (0, a), a > 0. It is to 

say that dependence distances in G can be 

classified into three models: (b, 0), (c, d) and (e, 

-f), where the five variables are all positive. 

Because the retiming function of each node will 

be the model of (0, a), a ≥ 0, dependence 



distances in Gr can also be classified into three 

models as above. Since the inner products of (1, 

0) and these three models are all positive, Gr is 

realizable with schedule vector (1, 0). 

In the second condition, G may contain 

four dependence distance models: (0, a), (b, 0), 

(c, d) and (e, -f), where the six variables are all 

positive. The last three models are the same as 

the first condition, so we only consider 

dependence with distance (0, a). According to 

the definitions of this condition and retiming 

technique, dependence (0, a) becomes to (0, a + 

rd (u) – rd (v)) after applying PUSM. Because rd 

(u) + a ≥ rd (v), the inner product of (1, 0) and (0, 

a + rd (u) – rd (v)) is still positive. 

Therefore, we can select schedule vector 

(1, 0) and retiming base (0, 1) if G satisfies these 

two conditions.  

As mentioned above, PUSM contains two 

main parts: schedule table construction and 

retiming base selection. The former part is 

already achieved to the optimal solution, but the 

later part still can be improved. Hence, in our 

Relax Push_Up Scheduling Method (RPUSM), 

we replace the later part by the result of 

Theorem 3.2 and inherit the former part to 

preserve its original advantages. The complete 

algorithm of RPUSM is shown in Figure 6. 

 

4. Preliminary Performance Analysis 
In this section, we use six examples to 

present our method. These examples are selected 

from [14, 16, 18, 20], which represent DSP 

applications. Figure 7 shows their MDFGs, 

where we use rectangle and circle to represent 

multiplication and addition respectively. 

According to the number of multiplications and 

additions in each application, we use different  
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Figure 6. Complete scheduling algorithm of RPUSM. 

umber of multipliers and adders to balance their 

tilization. Assume that both multiplication and 

ddition require one clock cycle to complete and 

very application contains 30 × 30 iterations. 

he resources constraints and scheduling results 

re shown in Table 1 and 2. 

In Table 2, we can find that RPUSM can’t 

enefit from examples Transmission Lines and 

IR Filter because schedule vectors selected in 

USM and RPUSM are the same. According to 

electing conditions of PUSM and RPUSM, if 

riginal MDFG doesn’t contain dependence with 

istance (0, a), a > 0, they will select the same 

chedule vector (1, 0). RPUSM can’t obtain  



 

PUSM RPUSM  

Schedule 

vector 

Execution 

time 

Schedule 

vector 

Execution 

time 

Filter 1 [14] (1, 1) 1916 (1, 0) 1802 

Filter 2 [16] (1, 1) 2759 (1, 0) 2701 

Model A [20] (3, 1) 4143 (1, 0) 3605 

Transmission 

Lines [17] 
(1, 0) 3603 (1, 0) 3603 

IIR Section 

[18] 
(1, 1) 3773 (1, 0) 3603 

IIR Filter [17] (1, 1) 3881 (1, 1) 3881 

 

better performance in this situation. Otherwise, 

since PUSM won’t select schedule vector (1, 0) 

but RPUSM will, RPUSM may get shorter 

execution time. 

In the following, we use example Model A 

to compare the performance between PUSM and 

RPUSM with the scale of application size. 

Figure 8 shows the growing up of execution time 

and the percentage of their difference. In this 

figure, we can find that only if RPUSM can 

benefit from PUSM, its execution time will be 

always shorter because it uses less time to 

execution prologue and epilogue. But repetitive 

patterns will dominate the entire execution time 

with the growing of application size, so its 

percentage of difference is decreasing gradually. 

 

5. Concluding Remarks 
In this paper, we have proposed a Relax 

Push_Up Scheduling Method to schedule a 

nested loop on uniprocessor architecture, and 

compare its performance with original Push_Up 

Scheduling Method. RPUSM contains two main 

parts like PUSM: schedule table construction 

and retiming base selection. The former part is 

inherited from PUSM, since it already can 

achieve optimal solution. The later one contains 

a complete process and a more relax condition to 

select retiming base, which is the shortcomings 

of original PUSM. Hence, RPUSM can not only 

preserve the advantages of PUSM such as 

shortest schedule length and fully resource 

utilization, but also get better performance in 

some cases. 

Table 2. Scheduling result.

In addition to previous features, there are 

still several promising issues in future researches. 

The first one is the scheduling algorithm 

modification. According to our observation, 

although PUSM can always get shortest 

schedule table, it usually produces much longer 

prologue and epilogue compared with 

Multi-dimensional Rotation Algorithm [17]. This 

feature may indirectly affect the overall 

execution time, especially when the schedule 

vector is not normal. Therefore, we can try to 

modify its scheduling algorithm to get a new 

schedule table, which with shortest length and 

smaller prologue and epilogue. The second one 

is the extension to multiprocessor architecture. 

Intuitively, PUSM and RPUSM can be used in 

multiprocessor architecture directly, which 

replaces the resource constraint from function 

unit to processor. This is a simple extension 

method, but it may cause slight communication 

overhead and loss the advantage of locality. 

Hence, we can try to combine PUSM (RPUSM) 

with loop transformation techniques such as loop 

skewing and permutation to form a new 

Two-Level Scheduling Method. Since PUSM 

(RPUSM) and loop transformation techniques 

are independent of the expected granularity of 

parallelism, combining these two techniques will 

be a very instructing research topic in the future. 
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Figure 8. (a) Execution time, (b) difference percentage. 
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Figure 7. (a) Filter 1, (b) Filter 2, (c) Model A, (d) Transmission Lines, (e) IIR Section, (f) IIR Filter.


