
RPUSM: An Effective Instruction Scheduling Method for

Nested Loops
Yi-Hsuan Lee, Ming-Lung Tsai and Cheng Chen

Department of Computer Science and Information Engineering
1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050, Republic of China

Tel: (8863) 5712121 EXT: 54734, Fax: (8863) 5724176
E-mail: {yslee, mltsai, cchen}@csie.nctu.edu.tw

Abstract

Multi-dimensional systems are widely used

to model scientific applications such as image

processing, geophysical signal processing and

fluid dynamics. Such systems usually contain

repetitive groups of operations represented by

nested loops. The optimization of such loops,

considering processing resource constraints, is

required in order to improve their computational

time. Push_Up Scheduling Method (PUSM) is

an effective technique that can get the shortest

schedule table and fully utilize resources. It

contains two main parts: schedule table

construction and retiming base selection. In our

analysis, PUSM can obtain optimal solution in

the former part, but lacks a complete selecting

process and uses more constrained conditions in

the later part. Hence, in this paper, we propose a

Relax Push_Up Scheduling Method (RPUSM) to

overcome its shortcomings. In RPUSM, we

inherit the former part from PUSM, and replace

the later part by a complete and more relax

conditions to select more appropriate retiming

base. According to our analysis, RPUSM can not

only get better performance than PUSM in some

cases, but also preserve the advantages of PUSM,

such as shortest schedule table, fully resource

utilization, and polynomial scheduling time.

Keywords: Instruction scheduling, Push-up

Scheduling, Retiming

1. Introduction
Multi-dimensional systems are widely used

to model scientific applications such as image

processing, geophysical signal processing and

fluid dynamics [3, 5, 7]. These systems usually

contain repetitive groups of operations

represented by nested loops. Since nested loops

are the time-critical sections in such

computation-intensive applications, their

execution time usually dominates the entire

computational performance. To optimize the

execution rate of such applications, we need to

explore the embedded parallelism in repetitive

patterns of a loop [13, 15].

Traditional scheduling methods can be

divided into five categories [10]: (1) Integer

Linear Programming (ILP) [2, 4], (2) List

Scheduling technique [9], (3) Probability Based

technique [19], (4) Randomized Searching

Based technique [12], and (5) Transformation

Based technique [1, 8, 11]. It usually uses

Multi-dimensional Data-Flow Graph (MDFG) to

represent iteration, and some techniques such as

retiming and unfolding are used to regroup

operations in iterations [1, 8, 11]. After applying

these scheduling methods, we can get a new

iteration structure with higher parallelism

embedded. Among them, Push_Up Scheduling

Method (PUSM) proposed by [17] is an effective

technique. It not only can get the shortest

schedule table and fully utilize resources, but

also runs in polynomial time. However, it still

has some shortcomings according to our analysis.

Therefore, we propose a Relax Push_Up

Scheduling Method (RPUSM) to overcome its

shortcomings in this paper.

In the scheduling algorithm of PUSM, we

can find it contains two main parts: schedule

table construction and retiming base selection.

Since PUSM can get the shortest schedule table

and fully utilize resources, it already achieves

the optimal result in the former part. In the later

part, however, it lacks a complete selecting

process and its selecting conditions are more

constrained. In our method, hence, we inherit the

former part from PUSM, and propose a complete

and more relax conditions to select more

appropriate retiming base. According to our

analysis, RPUSM can not only get better

performance than PUSM in some cases, but also

preserve the original advantages of PUSM, such

as shortest schedule table, fully resource

utilization, and polynomial scheduling time.

The remaining of this paper is organized as

follows. Section 2 introduces some fundamental

backgrounds and related work. The design issues

and principles of our Relax Push_Up Scheduling

Method are introduced in Section 3. In Section 4,

we give some preliminary analysis of our

method to demonstrate its figure of merits.

Finally, some concluding remarks are given in

Section 5.

2. Fundamental Background and
Related Work

Traditional instruction scheduling method

can be divided into five categories [10]. PUSM

belongs to Transformation Based technique,

which is the most popular one. Scheduling

methods belonged to this category restructure

the loop body to explore the instruction level

parallelism, and using the modified repetitive

pattern can decrease the overall execution time

[1, 8, 11]. Most of them not only can obtain

good results, but also need less time and space

complexity. In this section, we will briefly

survey basic principles and scheduling algorithm

of PUSM.

2.1 Basic Principles [13, 15, 17]
Most transformation based scheduling

methods model the nested loop as

Multi-dimensional Data-Flow Graph (MDFG),

which is defined as follows.

Definition 2.1 An MDFG G = (V, E, d, t) is a

node-weighted and edge-weighted directed

graph, where V is the set of computation nodes,

E is the set of dependence edges, d is a function

from E to Zn, representing the multi-dimensional

delays between two nodes, where n is the

number of dimensions, and t is a function from V

to the positive integers, representing the

computation time of each node.

Figure 1 is an example of a nested loop

and its corresponding MDFG. An equivalent cell

dependence graph (cell DG) of an MDFG is the

directed acyclic graph showing the dependencies

between copies of nodes representing the MDFG.

The cell dependence graph of the MDFG in

Figure 1(b) is shown in Figure 2(a).

An MDFG G = (V, E, d, t) is realizable if

there exists a schedule vector s such that s‧d ≥ 0,

where d are loop-carried dependences in G. A

schedule vector s is the normal vector for a set of

parallel equitemporal hyperplanes that define a

sequence of execution [6]. An iteration is

equivalent to the execution of each node in V

exactly once. The period during which all

computation nodes in an iteration are executed,

according to existing data dependences and

without resource constraints, is called a cycle

period. The cycle period of an MDFG is the

maximum computational time among paths that

have no delay. It can be shown that the cycle

period dominates the entire execution time of a

nested loop. Hence, the goal of most scheduling

methods is to try to minimize the cycle period.

Retiming is a popular technique to reduce

the cycle period of an MDFG [8]. A

multi-dimensional retiming r is a function from

V to Zn that redistributes the nodes in the cell DG

created by the replication of an MDFG G = (V, E,

d, t). A new MDFG Gr = (V, E, dr, t) is created

after applying retiming function r, such that each

iteration still has one execution of each node in

G. The retiming vector r(u) of a node u

represents the offset between the original

iteration and the one after retiming. The delay

vectors change accordingly to preserve

dependencies. The definitions and properties of

retiming are shown in the following definition.

for i = 1 to m begin

for j = 1 to n begin

 D [i, j] = B [i–1, j] × C [i–1, j+2] ;

 A [i, j] = D [i, j] × 0.5 ;

 B [i, j] = A [i, j] + 1 ;

 C [i, j] = A [i, j–1] + 2 ;

end

end

B (1, 0)

A D (1, -2) (0, 1)

C

Figure 1. Nested loop and MDFG.

Definition 2.2 Given any MDFG G = (V, E, d, t),

retiming function r, and retimed MDFG Gr = (V,

E, dr, t), we define the retimed delay vector for

every edge, path, and cycle respectively by the

following formulas:

A B A B
A B A B

C D C D
C D C D (1, 2) (2, 2)

(2, 2) (1, 2) A B A B
A B A B

C D C D
C D C D (a) dr(e) = d(e) + r(u) – r(v) for every edge

, u, v ∈ V and e ∈ E. vu e→
(1, 1) (2, 1) (1, 1) (2, 1)

A D A D

(a)
(b) dr(p) = d(p) + r(u) – r(v) for every path

, u, v ∈ V and p ∈ G. vu p→

(b)

Figure 2. (a) Cell DG, (b) retimed cell DG.

(c) dr(l) = d(l) for any cycle l ∈ G.

B (1, -1)

Figure 3 and 2(b) show the retimed MDFG

and cell DG, where the nodes originally

belonging to iteration (1, 1) are marked. A

prologue is the set of instructions that are moved

on each dimension and must be executed to

provide the necessary data for the iterative

process. An epilogue is the other extreme of the

cell DG, were a complementary set of

instructions will be executed to complete the

process. Considering that the entire problem

consists of a large number of iterations, the time

required to run the prologue and epilogue are

negligible [17].

Although retimed MDFG contains smaller

C

A D(1, -3) (0, 2)

(0, 1) r (A) = (0, 1)
r (B) = (0, 0)
r (C) = (0, 0)
r (D) = (0, 1)

Figure 3. Retimed MDFG.

cycle period than original one, we must insure

that the retimed MDFG is still realizable. A legal

multi-dimensional retiming r is defined below.

Definition 2.3 Given a realizable MDFG G, a

legal multi-dimensional retiming for G is the

multi-dimensional retiming function r that

transforms G in Gr, such that Gr is still

realizable.

As we mention before, an MDFG G is

realizable if there exists a schedule vector s such

that s ‧ d ≥ 0, where d are loop-carried

dependences in G. Similarly, a schedule vector s

can be found if the retimed MDFG Gr is

realizable, too. The following theorem describes

the relationship between schedule vector s and

legal multi-dimensional retiming function r.

Theorem 2.1 Let G = (V, E, d, t) be a realizable

MDFG, s a schedule vector such that s‧d ≥ 0

where d is non-zero dependence in G, and u ∈ V

a node with all the incoming edges having

non-zero delays. A legal multi-dimensional

retiming function r(u) is any vector orthogonal

to s.

Proof: It can be found in [15].

Corollary 2.2 Let G = (V, E, d, t) be a realizable

MDFG, s a schedule vector that realizes G, and u

∈ V. If r(u) is a legal multi-dimensional retiming

function, then (k × r)(u), where k is a positive

integer, is also a legal multi-dimensional

retiming.

Proof: It can be found in [15, 17].

According to Theorem 2.1, we can find a

legal multi-dimensional retiming function from

the original MDFG directly. We have introduced

the basic principles using in PUSM above, and

the detail description of PUSM will be contained

in the next subsection.

2.2 Push_Up Scheduling Method [17]

The main principle of PUSM is to

schedule operations as early as possible, so that

it obtains a schedule with minimum length under

some particular resource constraints. At first, we

define a schedulable node below:

Definition 2.4 (Scheduling Conditions) Given

an MDFG G = (V, E, d, t) and a node u ∈ V, u is

schedulable at a control step cs if it satisfies one

of the conditions below:

1. u has no incoming edges;

2. all incoming edges of u have a non-zero

multi-dimensional delay;

3. all the predecessors of u, connected to u by

a zero-delay edge, have been scheduled to

earlier control steps.

Retiming technique will change the delay

value of an edge, so it can be used to change a

zero-delay edge to a non-zero one and vice versa.

Therefore, if a node has some incoming edges

with zero-delay and is not schedulable, we can

use retiming technique to make it become

schedulable. PUSM uses this feature to schedule

each node as early as possible to fully utilize the

resources, so it can always get a shortest

schedule table under some particular resource

constraints.

The first step of PUSM is to select a

suitable retiming base r. The selecting conditions

is similar to Theorem 2.1, but it uses s‧d > 0 and

r ⊥ s to guarantee that the retimed MDFG is

strictly realizable. After applying PUSM, we will

get a schedule table with minimum length and

the retiming degree of each node. The retiming

function of each node is the production of the

retiming base r and its retiming degree. The

maximum retiming degree is called retiming

depth d. The complete PUSM algorithm can be

found in [17].

Although PUSM can always obtain a

shortest schedule table, it still has two

shortcomings. The first one is that it doesn’t

contain a complete process to select the retiming

base, and the second one is that its selecting

condition of retiming base is more constrained.

Hence, we propose a Relax Push_Up Scheduling

Method (RPUSM) to overcome these two

shortcomings in the next section.

3. Relax Push-Up Scheduling Method
In the scheduling algorithm of PUSM, we

can find it contains two main parts. One is how

to obtain the schedule table and retiming degree

of each node, and the other is how to select the

retiming base. In the following, we give an

example to illustrate its constrained selecting

condition.

Given a nested loop with depth two and

the corresponded MDFG as shown in Figure 1,

and here we assume variables m and n equal to

10 and 8 respectively. After applying PUSM, we

will obtain retiming base (1, -3) and retiming

degree of each node. If both multiply and add

operations need 1 cycle to execute, we can

calculate that the overall execution time is 195

cycles. Noted that the execution sequence is not

regular. On the other hand, if we violate the

selecting condition in PUSM and select retiming

base (0, 1), the overall execution time will

decrease to 170 cycles. The schedule table and

two retimed MDFGs are shown in Figure 4.

From this example, we can see that the retiming

base selected by PUSM is not always optimal.

Therefore, our RPUSM will focus on the

selecting algorithm design of retiming base.

Since the nested loops used in scientific

applications are usually two-dimensional, we use

 CS Mul. Adder
P D C
P A

 1 D C
2 A B
E B

 P : prologue E : epilogue
 (a)

B B (0, 3) (1, -1) (1, -3) (0, 1)
A D A D (1, -2) (1, -2)(0, 1) (0, 1)

C C

r (A) = (1, -3) r (B) = (0, 0)
r (C) = (1, -3) r (D) = (1, -3)

r (A) = (0, 1) r (B) = (0, 0)
r (C) = (0, 1) r (D) = (0, 1)

(b) (c)

Figure 4. (a) Schedule table, (b) retimed

MDFG, (c) retimed MDFG.

nested loop with depth two as an example to

explain RPUSM clearly. Nevertheless, RPUSM

can be extended to cover nested loop with depth

more than two easily similar to PUSM.

Before introducing RPUSM, we use

Lemma 3.1 and 3.2 to present the influence of

schedule vector on execution time. Additional

variables used in these Lemmas are defined at

first. Lengthlist and lengthPUSM are the schedule

lengths of loop body produced by List

Scheduling Method [9] or PUSM. List

Scheduling Method is a simple scheduling

method without restructuring the loop body, so it

usually can’t obtain the shortest schedule length.

Prologue and epilogue are the time needed to

execute the extra codes produced by PUSM for

the same name, and d is the corresponding

retiming depth.

Lemma 3.1 Given a nested loop with depth two,

and its loop bounds of outer and inner loops are

m and n respectively. We use PUSM to schedule

it on uniprocessor architecture. If the schedule

vector used in PUSM is (1, 0), then the entire

execution time is lengthPUSM × m(n – d) +

(prologue + epilogue) × m.

Proof: The schedule vector s is (1, 0), that

corresponds to the normal execution sequence,

so we can simply select retiming base (0, 1) that

is orthogonal to s. Because the retiming base and

retiming depth are (0, 1) and d, md iterations

should be moved into prologue and epilogue.

After applying PUSM, it produces m(n – d)

restructured loop bodies and m pairs of prologue

and epilogue. Since the system architecture is

uniprocessor, it is directly that the execution

time is lengthPUSM × m(n – d) + (prologue +

epilogue) × m.

Lemma 3.2 Given a nested loop with the same

assumption as Lemma 3.1, and use PUSM to

schedule it on uniprocessor architecture. If the

schedule vector used in PUSM is (s1, s2), both s1

and s2 are positive integers, then the entire

execution time is lengthPUSM × (m – s2d)(n – s1d)

+ (prologue + epilogue) × (s1m + s2n – s1s2 –

2ds1s2) + lengthlist × s1s2d(d + 1).

Proof: The schedule vector s is (s1, s2), both s1

and s2 are positive integers, so we can simply

select retiming base (s2, -s1) that is orthogonal to

s. Because the execution sequence is not normal,

the scheduling result is much complex. Figure

5(b) shows the changed iteration space after

applying PUSM with retiming depth d and

retiming base (s2, -s1), and the thick lines

represent the equitemporal hyperplanes. In this

figure, we can see the iteration space is

partitioned into three regions. Region A contains

(m – s2d)(n – s1d) iterations, which are loop

bodies produced by PUSM. Region B contains

d(s1m + s2n – s1s2 – 2ds1s2) iterations, which

forms m pairs of prologue and epilogue. Region

C contains the remainder s1s2d(d + 1) iterations,

which must execute using List Scheduling

Method because it is out of the nested loop.

Therefore, the entire execution time is

lengthPUSM × (m – s2d)(n – s1d) + (prologue +

epilogue) × (s1m + s2n – s1s2 – 2ds1s2) +

lengthlist × s1s2d(d + 1).

 (s1, s2)

 m × n iterations
C A B

(a) (b)

Figure 5. (a) Original, (b) modified iteration space.

According to above two Lemmas,

Theorem 3.1 shows that using schedule vector (1,

0) always can get shorter execution time.

Theorem 3.1 Given a nested loop with the same

assumption as Lemma 3.1, and use PUSM to

schedule it with schedule vector (1, 0) and (s1, s2)

respectively. The overall execution time with

schedule vector (1, 0) is always shorter than that

of it with schedule vector (s1, s2).

Proof: Execution time with these two schedule

vectors can be obtained from Lemma 3.1 and 3.2

directly. For the convenience, we use variables

T1 and T2 to represent them respectively. We

have the following expressions:

T1 = lengthPUSM × m(n – d) + (prologue +

epilogue) × m

T2 = lengthPUSM × (m – s2d)(n – s1d) + (prologue

+ epilogue) × (s1m + s2n – s1s2 – 2ds1s2) +

lengthlist × s1s2d(d + 1)

T2 – T1 = lengthPUSM × d(m + s1s2d – s1m – s2n)

+ (prologue + epilogue) × (s1m + s2n –

s1s2 – 2ds1s2 – m) + lengthlist × d(s1s2d +

s1s2) (1)

Since PUSM can always obtain the

shortest schedule table but List Scheduling

Method can’t, we have lengthlist ≥ lengthPUSM.

Because lengthlist ≥ lengthPUSM, formula (1) can

be rewritten as

T2 – T1 ≥ lengthPUSM × d(m + 2s1s2d – s1m – s2n

+ s1s2) + (prologue + epilogue) × (s1m +

s2n – s1s2 – 2ds1s2 – m) (2)

Since prologue and epilogue contain d

iterations and PUSM can get the shortest

schedule table, we have prologue + epilogue ≥

lengthPUSM × d. Because prologue + epilogue ≥

lengthPUSM × d, formula (2) can be rewritten as

T2 – T1 ≥ lengthPUSM × d(m + 2s1s2d – s1m – s2n

+ s1s2) + lengthPUSM × d(s1m + s2n – s1s2 –

2ds1s2 – m) = 0

Hence, we have T2 ≥ T1 and complete this

proof.

From Theorem 3.1, we should select

schedule vector (1, 0) as far as possible when we

use PUSM to schedule a nested loop with depth

two. It can not only decrease overall execution

time, but also simplify the complexity of the

retimed nested loop. In the following, we will

analyze the conditions that can select schedule

vector (1, 0).

Given a two-dimensional MDFG G = (V,

E, d, t) and use PUSM to schedule it. If we want

to select schedule vector (1, 0), we have to

guarantee that the retimed MDFG Gr = (V, E, dr,

t) with retiming base (0, 1) is still realizable. As

mentioned in Section 2.1, an MDFG G = (V, E, d,

t) is realizable if there exists a schedule vector s

such that s‧d ≥ 0, where d are loop-carried

dependences in G. In the other words, an MDFG

is realizable if there exists an execution sequence

that makes all dependences be flow-dependences.

That is to say that we have to guarantee the

retimed MDFG Gr with retiming base (0, 1)

doesn’t contain any anti-dependence.

Since we use retiming base (0, 1), the

retiming function of each node will be the model

of (0, a) where a ≥ 0. According to the definition

of retiming technique, only dependence with

distance (0, a), a ≥ 0, may become

anti-dependence after retiming. Therefore, we

only have to check dependences with this model

in the original MDFG. Theorem 3.2 shows the

conditions that we can select schedule vector (1,

0) and retiming base (0, 1) respectively.

Theorem 3.2 Given a two-dimensional MDFG

G = (V, E, d, t) and use PUSM to schedule it.

Without loss of generality, we consider G only

containing flow-dependences. After applying

PUSM, we will obtain the retiming degree rd (v)

of each node v ∈ V. We can select schedule

vector s equals to (1, 0) under the following

conditions:

1. G doesn’t contain any dependence with

distance (0, a), a > 0.

2. G contains dependence and rd

(u) + a ≥ rd (v), where u, v ∈ V, a > 0.

vu a →),(0

Proof: Since we only consider flow-dependence,

the dependence distances in G can be classified

into four models: (0, a), (b, 0), (c, d) and (e, -f),

where the six variables are all positive. Our goal

is to shown that the retimed MDFG Gr = (V, E,

dr, t) with retiming base (0, 1) is still realizable

with schedule vector (1, 0).

In the first condition, G doesn’t contain

dependence with distance (0, a), a > 0. It is to

say that dependence distances in G can be

classified into three models: (b, 0), (c, d) and (e,

-f), where the five variables are all positive.

Because the retiming function of each node will

be the model of (0, a), a ≥ 0, dependence

distances in Gr can also be classified into three

models as above. Since the inner products of (1,

0) and these three models are all positive, Gr is

realizable with schedule vector (1, 0).

In the second condition, G may contain

four dependence distance models: (0, a), (b, 0),

(c, d) and (e, -f), where the six variables are all

positive. The last three models are the same as

the first condition, so we only consider

dependence with distance (0, a). According to

the definitions of this condition and retiming

technique, dependence (0, a) becomes to (0, a +

rd (u) – rd (v)) after applying PUSM. Because rd

(u) + a ≥ rd (v), the inner product of (1, 0) and (0,

a + rd (u) – rd (v)) is still positive.

Therefore, we can select schedule vector

(1, 0) and retiming base (0, 1) if G satisfies these

two conditions.

As mentioned above, PUSM contains two

main parts: schedule table construction and

retiming base selection. The former part is

already achieved to the optimal solution, but the

later part still can be improved. Hence, in our

Relax Push_Up Scheduling Method (RPUSM),

we replace the later part by the result of

Theorem 3.2 and inherit the former part to

preserve its original advantages. The complete

algorithm of RPUSM is shown in Figure 6.

4. Preliminary Performance Analysis
In this section, we use six examples to

present our method. These examples are selected

from [14, 16, 18, 20], which represent DSP

applications. Figure 7 shows their MDFGs,

where we use rectangle and circle to represent

multiplication and addition respectively.

According to the number of multiplications and

additions in each application, we use different

{ }
{ }

{ }

{ }
{ }

{ }

;,return
;)()(,

endif
;),(else

);,();,(
)()(elseif

);,();,(
),()(if

);()(,
endwhile

endif
;

)(if
;)(),(max)(

;)()(),(max)(
;)()(

);(
);()(

endif
;),(max

;)()(
)()(if

);,(
while

;)(..,
;),()(..,,

;;
;)(;)(

),,,,(:output
),,,(:input

),(

SG
rurdurVu

srsssselect
rs

vrdaurdvu
rs

aaed
uMCmaxMCurdVu

vQueueVQueueV
vINDEGREE

uMCvMCvMC
utuESvESvES
vINDEGREEvINDEGREE

vuv
uESstepcontrolatfutouASSIGN

fuAVAILuES

maxMCuMCmaxMC
uMCuMC

uESfuAVAIL
QueueVuGET

QueueV
uInDEGREEtsVuQueueVQueueV

edtseEEEe
QueueVmaxMC

VuMCVuES
StablescheduletdEVG

tdEVG

r

a

rr

 31
 03
 29

 and 28
10 01 27

 and 26
10 01 25

0for 0! 24
 23
 22
 21
 02

0 19
 18
 17

1 16
such that 15

 14
 13
 12
 11

1 10
 9

 8
 7

0 6
00 5

 0 4
0 0 3

 MDFG 2
MDFG 1

21

0

×←∈∀

⊥=
==

≥+ →∃
==

>=∃
−←∈∀

∪←
=

←
+←

−←
→∀

←

←
+←

<

≠
=∈∪←

≠−←∈∀
←←

←∈∀←∈∀
=

=

φ

φ

n

u

a

e

T

a

b

I

P

s

o

d

s

Figure 6. Complete scheduling algorithm of RPUSM.

umber of multipliers and adders to balance their

tilization. Assume that both multiplication and

ddition require one clock cycle to complete and

very application contains 30 × 30 iterations.

he resources constraints and scheduling results

re shown in Table 1 and 2.

In Table 2, we can find that RPUSM can’t

enefit from examples Transmission Lines and

IR Filter because schedule vectors selected in

USM and RPUSM are the same. According to

electing conditions of PUSM and RPUSM, if

riginal MDFG doesn’t contain dependence with

istance (0, a), a > 0, they will select the same

chedule vector (1, 0). RPUSM can’t obtain

PUSM RPUSM

Schedule

vector

Execution

time

Schedule

vector

Execution

time

Filter 1 [14] (1, 1) 1916 (1, 0) 1802

Filter 2 [16] (1, 1) 2759 (1, 0) 2701

Model A [20] (3, 1) 4143 (1, 0) 3605

Transmission

Lines [17]
(1, 0) 3603 (1, 0) 3603

IIR Section

[18]
(1, 1) 3773 (1, 0) 3603

IIR Filter [17] (1, 1) 3881 (1, 1) 3881

better performance in this situation. Otherwise,

since PUSM won’t select schedule vector (1, 0)

but RPUSM will, RPUSM may get shorter

execution time.

In the following, we use example Model A

to compare the performance between PUSM and

RPUSM with the scale of application size.

Figure 8 shows the growing up of execution time

and the percentage of their difference. In this

figure, we can find that only if RPUSM can

benefit from PUSM, its execution time will be

always shorter because it uses less time to

execution prologue and epilogue. But repetitive

patterns will dominate the entire execution time

with the growing of application size, so its

percentage of difference is decreasing gradually.

5. Concluding Remarks
In this paper, we have proposed a Relax

Push_Up Scheduling Method to schedule a

nested loop on uniprocessor architecture, and

compare its performance with original Push_Up

Scheduling Method. RPUSM contains two main

parts like PUSM: schedule table construction

and retiming base selection. The former part is

inherited from PUSM, since it already can

achieve optimal solution. The later one contains

a complete process and a more relax condition to

select retiming base, which is the shortcomings

of original PUSM. Hence, RPUSM can not only

preserve the advantages of PUSM such as

shortest schedule length and fully resource

utilization, but also get better performance in

some cases.

Table 2. Scheduling result.

In addition to previous features, there are

still several promising issues in future researches.

The first one is the scheduling algorithm

modification. According to our observation,

although PUSM can always get shortest

schedule table, it usually produces much longer

prologue and epilogue compared with

Multi-dimensional Rotation Algorithm [17]. This

feature may indirectly affect the overall

execution time, especially when the schedule

vector is not normal. Therefore, we can try to

modify its scheduling algorithm to get a new

schedule table, which with shortest length and

smaller prologue and epilogue. The second one

is the extension to multiprocessor architecture.

Intuitively, PUSM and RPUSM can be used in

multiprocessor architecture directly, which

replaces the resource constraint from function

unit to processor. This is a simple extension

method, but it may cause slight communication

overhead and loss the advantage of locality.

Hence, we can try to combine PUSM (RPUSM)

with loop transformation techniques such as loop

skewing and permutation to form a new

Two-Level Scheduling Method. Since PUSM

(RPUSM) and loop transformation techniques

are independent of the expected granularity of

parallelism, combining these two techniques will

be a very instructing research topic in the future.

Acknowledgments
This research was supported by the

National Science Council of the Republic of

China under contract numbers: NSC

89-2213-E009-200.

Reference
[1] L. F. Chao and E. H. M. Sha, “Static

Scheduling of Uniform Nested Loops”, Proc.

of 7th International Parallel Processing

Symposium, pp. 1421-1424, Apr. 1993.

[2] C. H. Gebotys, “Optimal Synthesis of

Multichip Architectures”, Proc. of IEEE

International Conference on Computer-Aided

Design, pp. 238-241, Sep. 1992.

[3] Y. C. Hsu and Y. L. Jeang, “Pipeline

Scheduling Techniques in High-Level

Synthesis”, Proc. of 6th Annual IEEE

International ASIC Conference and Exhibit,

pp. 396-403, Sep. 1993.

[4] C. T. Hwang, J. H. Lee and Y. C. Hsu, “A

Formal Approach to the Scheduling Problem

in High-Level Synthesis”, IEEE Trans. on

Computer-Aided Design, Vol. 10, Issue 4, pp.

464-475, April 1991.

[5] S. Y. Kung, VLSI Array Processors,

Prentice Hall, 1988.

[6] L. Lamport, “The Parallel Execution of DO

Loops”, Comm. ACM SIGPLAN, Vol. 17, No.

2, pp. 82-93, Feb. 1974.

[7] T. F. Lee, Allen C. H. Wu, Daniel D. Gajski

and Y. L. Lin, “An Effective Methodology for

Functional Pipelining”, Proc. of IEEE

International Conference on Computer-

Aided Design, pp. 203-233 Nov. 1992.

[8] C. E. Leiserson and J. B. Saxe, “Retiming

Synchronous Circuitry”, Algorithmica, Vol. 6,

No. 1, pp. 5-35, June 1991.

[9] H. De Man, J. Rabaey, P. Six and L. J.

Claesen, “Cathedral-II: A Silicon Compiler

for Digital Signal Processing”, IEEE Design

and Test, Vol. 3, No. 6, pp. 13-25, Dec. 1986.

[10] Keshab K. Parhi, VLSI Digital Signal

Processing Systems: Design and

Implementation, Wiley Inter-Science, 1999.

[11] K. K. Parhi and D. G. Messerschmitt, “Static

Rate-Optimal Scheduling of Iterative

Data-Flow Programs via Optimal Unfolding”,

IEEE Trans. on Computers, Vol. 40, No. 2,

pp. 178-195, Feb. 1991.

[12] I. C. Park and C. M. Kyung, “Fast and Near

Optimal Scheduling in Automatic Data Path

Synthesis”, Proc. of ACM/IEEE 28th Design

Automation Conference, pp. 680-685, 1991.

[13] N. L. Passos, E. H. M. Sha and L. F. Chao,

“Optimizing Synchronous Systems for

Multi-dimensional Applications”, Proc. of

European Design and Test Conference, pp.

54-58, March 1995.

[14] N. L. Passos and E. H. M. Sha, “Synthesis of

Multi-dimensional Applications in VHDL”,

Proc. of IEEE International Conference on

Computer Design: VLSI in Computers and

Processors, pp. 530-535, Oct. 1996.

[15] N. L. Passos and E. H. M. Sha, “Achieving

Full Parallelism using Multi-dimensional

Retiming”, IEEE Trans. on Parallel and

Distributed Systems, Vol. 7, Issue 11, pp.

1150-1163, Nov. 1996.

[16] N. L. Passos, E. H. M. Sha and L. F. Chao,

“Multi-dimensional Interleaving for

Synchronous Circuit Design Optimization”,

IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 16,

Issue 2, pp. 146-159, Feb. 1997.

[17] N. L. Passos and E. H. M. Sha, “Scheduling

of Uniform Multi-dimensional Systems under

Resource Constraints”, IEEE Trans. on VLSI

Systems, Vol. 6, No. 4, pp. 719-730, Dec.

1998.

[18] N. L. Passos and E. H. M. Sha, “Synchronous

Circuit Optimization via Multi-dimensional

Retiming”, Dept. of Computer Science &

Engineering, University of Notre Dame,

Notre Dame, IN 46556.

[19] P. G. Paulin and J. P. Knight, “Forced-

directed Scheduling for the Behavioral

Synthesis of ASIC’s”, IEEE Trans. of

Computer-Aided Design, Vol. 8, pp. 661-679,

June 1989.

[20] M. L. Tsai, A Study of Instruction

Scheduling Techniques for VLIW-based

DSP and Implementation of Its Simulation

and Evaluation Environment, Master

Thesis, National Chiao-Tung University, June

2001.

T

Filter 1 [14]

Filter 2 [16]

Model A [20]

Transmission Line

IIR Section [1

IIR Filter [17

0

2000

4000

6000

8000

10000

12000

10
x1

0

15
x1

5

20

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)
able 1. Characters and resource constrains for each example.

No. of

Multiplier

No. of

Adder
LengthPUSM Lengthlist Prologue Epilogue

Retiming

depth

 1 1 2 3 2 2 1

 1 1 3 4 2 2 1

 1 1 4 5 6 7 2

s [17] 1 2 4 6 5 6 2

8] 2 2 4 5 4 3 1

] 2 2 4 5 8 5 2

x2
0

25
x2

5

30
x3

0

35
x3

5

40
x4

0

45
x4

5

50
x5

0

No. of iterations

PUSM

RPUSM

0

5
10

15

20
25

30

10
x1

0

15
x1

5

20
x2

0

25
x2

5

30
x3

0

35
x3

5

40
x4

0

45
x4

5

50
x5

0

No. of iterations

pe
rc

en
ta

ge
 (

%
)

(a) (b)

Figure 8. (a) Execution time, (b) difference percentage.

(d)

(b)

(a)

(c)

A1 A2

(0, 1)

(1, 0)

M1

M2

A1

A2

(1, 0)

A3

(1, 1) (0, 1)

M1

A2 (1, 1)

A1

A3

A4
(2, 1)

(1, -2)

(0, 1)

M1 M2

M3
M1

(1, 1)

M3

M2

M4
(1, 1)

(1, -1)

(1, -1) A1

A2

A3 A4

A5

A6

A7 A8

(0, 1)

M1M2M3

(0, 1)

M4M5M6

(0, 1)

(0, 1)
M7

(0, 1)

(0, 1)

(1, 0)

(1, 0)

A1 A2

A3A4 A5

A6

A7

A8

M8

(2, 2)

M8

M7

M6

M5

M4

M3

M2

M1

(2, 1)
(2, 0)

(1, 2)
(1, 1)
(1, 0)

(0, 2)

(0, 1)

A8

A4

A3

A2

A1 A5

A6 A7

(e) (f)

Figure 7. (a) Filter 1, (b) Filter 2, (c) Model A, (d) Transmission Lines, (e) IIR Section, (f) IIR Filter.

