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Abstract

A dominating set S of a directed graph D is
a set of vertices such that every vertex not
in S is dominated by at least one vertex of
S. In this paper, we show that there is a
unique minimum distance-k dominating set,
for k = 1, 2, in a directed split-star, which
has recently been developed as a new model
of the interconnection network for parallel
and distributed computing systems.
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1 Introduction

Let D = (V,A) be a directed graph (di-
graph) with vertex set V and arc set A, where
A ⊆ V × V . An arc < u, v > is said to be
directed from u to v, in which case we say
that u dominates v, and v is dominated by
u. The outset of a vertex u in D is the set
O(u) = {v ∈ V | < u, v >∈ A}, while the
closed outset is O[v] = O(v)∪ {v}. For a sub-
set S ⊆ V , we also define O(S) =

⋃
v∈S O(v)

and O[S] = O(S) ∪ S. Let od(v) = |O(v)| be
the outdegree of a vertex v ∈ V , and ∆(D)
the maximum outdegree among all vertices in
the digraph D. Undirected graphs form in a
sense a special class of digraphs, and an undi-
rected edge (u, v) is a pair of arcs <u, v> and
<v, u>.

An independent set S of a digraph D is a
set of vertices such that no two vertices of S

are joined by an arc. A set S ⊆ V is a dom-
inating set of D if every vertex v ∈ V \S is
dominated by at least one vertex of S, where
V \S = {v ∈ V | v 6∈ S}. A dominating set
with the minimum number of vertices is called
a minimum dominating set, and its cardinal-



ity, denoted by γ(D), is termed the domina-
tion number of D. Researches on domination
number and related parameters have much
been attracted by graph theorists for their
strongly practical applications and theoretical
interesting. For instance, consider an inter-
connection network modeled by a graph, for
which vertices represent processors and edges
represent direct communication links between
pairs of processor. Assume that from time
to time we need to collect information from
all processors, and this work must be done
relatively often and fast. Thus we cannot
route this information over too long a path.
This suggests to identify a small set of pro-
cessors (a dominating set) which are close to
all other processors. It is well-know that the
problem of finding a minimum dominating set
is NP-complete for general undirected graphs
and specifically for many restricted classes of
graphs [3]. For a thorough treatment of dom-
ination in graphs, we refer the reader to [4, 5].

Although domination and related topics
have been extensively studied, the respective
analogs on digraphs have not received much
attention. In this paper, we present results
concerning domination in a special class of
digraphs called directed split-stars, which has
recently been developed as a new model of the
interconnection network for parallel and dis-
tributed computing systems. Cheng et al. [2]
gave a variant distributed processor architec-
ture of the star graphs which is known as the
split-stars. Cheng and Lipman [1] proposed
an assignment of orientation to the split-stars
and showed that the resulting digraphs are
not only strongly connected, but, in fact, they
have maximal arc-fault tolerance and a small
diameter.

The n-dimensional directed split-star
−→
S2

n is
a directed graph whose vertices are in a one-
to-one correspondence with n! permutations
[p1, p2, . . . , pn] of the set N = {1, 2, . . . , n},
and two vertices u, v of

−→
S2

n are connected by an
arc <u, v> if and only if the permutation of v

can be obtained from u by either a 2-exchange
or a 3-rotation. Let u = [p1, p2, . . . , pn]. A
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Figure 1: 4-dimensional directed split-star.

2-exchange interchanges the first symbol p1

with the second symbol p2 whenever p1 > p2,
i.e., v = [p2, p1, . . . , pn]. A 3-rotation coun-
terclockwise rotates the symbols in positions
1, 2 and i for some i ∈ {3, 4, . . . , n}, i.e.,
v = [pi, p1, p3, . . . , pi−1, p2, pi+1, . . . , pn]. Fig-
ure 1 depicts an example of

−→
S2

n for n = 4..

The remaining part of this paper is orga-
nized as follows. In Section 2, we study the
problem of finding minimum domination set
on directed split-stars. A result shows that−→
S2

n has a unique minimum dominating set of
size (n − 1)!. In Section 3, we further inves-
tigate the distance-2 domination in directed
split-stars and obtain a similar result as the
previous section. Finally, a concluding remark
is given in the last section.
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2 The Unique Minimum
Dominating Set

Let v = [p1, p2, . . . , pn]. The 2-exchange
neighbor of v is E(v) = [p2, p1, . . . , pn], and
the 3-rotation neighbors of v are F i(v) =
[pi, p1, p3, . . . , pi−1, p2, pi+1, . . . , pn] for 3 ≤
i ≤ n.

Proposition 1 Let u be a vertex of
−→
S2

n. If v

is the 2-exchange neighbor of u, then od(u) =
n− 1 and od(v) = n− 2.

Proof. By definition, u has n − 2 3-
rotation neighbors and one 2-exchange neigh-
bor. Thus, od(u) = n − 1. Since v has no
2-exchange neighbor, od(v) = n− 2.

Q. E. D.

Since each vertex of
−→
S2

n is either a 2-
exchange neighbor of some vertex or a ver-
tex having a 2-exchange neighbor, there are n!

2

vertices with the maximum outdegree in
−→
S2

n.
In particular, ∆(

−→
S2

n) = n− 1. To simplify the
description of our results, we define the fol-
lowing sets. Let Ni = N\{i} for i = 1, 2, and
let N12 = N\{1, 2}, where N = {1, 2. . . . , n}.

Lemma 2 Let S = {[p1, 1, p3, . . . , pn] | pi ∈
N1, i ∈ N2}. Then, S is a minimum domi-
nating set of

−→
S2

n, and γ(
−→
S2

n) = (n − 1)!. In
particular, every vertex not in S is dominated
by exactly one vertex of S.

Proof. It is clear that S is an independent
set of

−→
S2

n and od(v) = ∆(
−→
S2

n) = n−1 for every
vertex v ∈ S. Thus, the total outdegree of the
vertices in S is

∑
v∈S od(v) = n! − (n − 1)!.

Since any vertex in
−→
S2

n can dominate at most
∆(
−→
S2

n) vertices, we have

γ(
−→
S2

n) ≥ n!

∆(
−→
S2

n) + 1
= (n− 1)! = |S|.

Thus we only need to show that S is a dom-
inating set of

−→
S2

n. Suppose that S is not a
dominating set. We claim that there exists
a vertex r ∈ V \S which is dominated by at

least two vertices of S. This can easily be seen
from the fact that the total outdegree of the
vertices in S is equal to the number of vertices
in V \S and there are no arcs between any two
vertices in S.

Let u = [u1, 1, u3, . . . , un] and v =
[v1, 1, v3, . . . , vn] be any two distinct vertices
in S and r ∈ V \S such that r ∈ O(u) ∩O(v).
Since r is dominated by u, either a 2-exchange
or a 3-rotation exists from u to r. Assume
that r is the 2-exchange neighbor of u, i.e.,
r = [1, u1, u3, . . . , un]. Since the symbol 1 is
on the second position of v, r cannot be a
3-rotation neighbor of v. This implies that
r must be the 2-exchange neighbor of v and
u = v, which contradicts that u and v are
two distinct vertices of S. On the other hand,
if r is a 3-rotation neighbor of u, then r =
F i(u) = [ui, u1, u3, . . . , ui−1, 1, ui+1, . . . , un]
for some i ∈ {3, . . . , n}. Since the symbol 1 is
not on the first position of r, r cannot be the
2-exchange neighbor of v. So r must be also a
3-rotation neighbor of v. Since the symbol 1 is
on the ith position of r, it implies r = F i(v) =
[vi, v1, v3, . . . , vi−1, 1, vi+1, . . . , vn]. Thus u =
v, which leads to a contradiction.

Q. E. D.

Theorem 3 Let S = {[p1, 1, p3, . . . , pn] | pi ∈
N1, i ∈ N2}. Then, S is the unique minimum
dominating set of

−→
S2

n.

Proof. Suppose that S′ is a minimum dom-
inating set of

−→
S2

n and S′ 6= S. Then there ex-
ists a vertex u = [u1, 1, u3, . . . , un] of S such
that u /∈ S′. Since S′ is a dominating set, u

must be either a 2-exchange neighbor or a 3-
rotation neighbor of some vertex v ∈ S′. How-
ever, u cannot be the 2-exchange neighbor of
some vertex in S′ since the symbol 1 is on the
second position of u and u1 > 1. Let u =
F i(v) where v ∈ S′ and i ∈ {3, . . . , n}. Then
v = [1, ui, u3, . . . , ui−1, u1, ui+1, . . . , un] =
E([ui, 1, u3, . . . , ui−1, u1, ui+1, . . . , un]). By
Proposition 1, od(v) = n − 2. Recall that∑

w∈S od(w) = |S| · (n − 1) = n! − (n − 1)!.
Since |S′| = |S| and v ∈ S′, the total outde-
gree of the vertices in S′ is at most n!− (n−
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1)!−1 and |V \S′| = n!−(n−1)!. This contra-
dicts to the assumption that S′ is a dominat-
ing set. Therefore, the result directly follows
from Lemma 2.

Q. E. D.

3 The Unique Minimum
Distance-2 Dominating
Set

A set S of vertices in a directed graph D =
(V,A) is called a distance-2 dominating set if
every vertex in V \S is within distance 2 from
some vertex of S. A distance-2 dominating
set with the minimum number of vertices is
called a minimum distance-2 dominating set,
and its cardinality is denoted by γ2(D). The
distance-2 outset of a vertex v ∈ V is given
by O2(v) =

⋃
w∈O(v) O(w). If S ⊆ V then

O2(S) =
⋃

v∈S O2(v). Obviously, a set S is a
distance-2 dominating set if and only if O[S]∪
O2(S) = V .

Let S be a set of vertices in a directed split-
star

−→
S2

n. We denote by X(S) and R(S) the
sets consisting of the 2-exchange neighbors of
S and the 3-rotation neighbors of S, respec-
tively. That is, X(S) = {E(v) | v ∈ S} and
R(S) = {F i(v) | v ∈ S, 3 ≤ i ≤ n}. In order to
give a simple representation of O2(S), we use
the following notation: RX(S) = R(X(S)),
XR(S) = X(R(S)), and RR(S) = R(R(S)).
Note that RX(S)∪XR(S)∪RR(S) = O2(S).

Lemma 4 Let S = {[2, 1, p3, . . . , pn] |
p3, . . . , pn ∈ N12}. The following statements
are true:

Proof. By definition,

X(S) = {[1, 2, p3, . . . , pn] | p3, . . . , pn ∈ N12}
and

R(S) = {[pi, 2, p3, . . . , pi−1, 1, pi+1, . . . , pn] |
p3, . . . , pn ∈ N12, 3 ≤ i ≤ n}.

Clearly, X(S)∩R(S) = ∅. Moreover, O(S) =
X(S) ∪ R(S) = {[p1, 2, p3, . . . , pn] | pi ∈ N2,

i ∈ N2}, i.e., O(S) contains all vertices with

the symbol 2 on the second position. So
O(S) ∩ S = ∅. Also we have

RX(S) = {[pi, 1, p3, . . . , pi−1, 2, pi+1, . . . , pn] |
p3, . . . , pn ∈ N12, 3 ≤ i ≤ n}

and

XR(S) = {[2, pi, p3, . . . , pi−1, 1, pi+1, . . . , pn] |
p3, . . . , pn ∈ N12, 3 ≤ i ≤ n}.

In addition, RR(S) can be partitioned into
the following three sets (where the position of
the second 3-rotation is considered):

RR1(S)={[pj , pi, p3,. . ., pi−1, 1, pi+1,. . ., pj−1,

2, pj+1,. . ., pn]|p3,. . ., pn∈N12, 3≤ i<j≤n},

RR2(S)={[pj , pi, p3,. . ., pj−1, 2, pj+1,. . ., pi−1,

1, pi+1,. . ., pn] | p3,. . ., pn∈N12, 3≤j <i≤n},

and

RR3(S) = {[1, pi, p3, . . . , pi−1, 2, pi+1, . . . , pn] |
p3, . . . , pn ∈ N12, 3 ≤ i ≤ n}.

Furthermore, O2(S) is divided into five
disjoint subsets XR(S), RX(S), RR1(S),
RR2(S) and RR3(S). This shows that the
statement (1) holds. Since there are no ver-
tices of O2(S) having the symbols 2 and 1 in
the foremost two positions, O2(S) ∩ S = ∅.
Similarly, we can verify O2(S) ∩ O(S) = ∅
since O2(S) contains no vertices with the sym-
bol 2 on the second position. Therefore, state-
ment (2) holds. We now prove statement (3)
by contradiction as follows. Let u and v be
any two distinct vertices in O(S) and assume
w ∈ O(u) ∩ O(v). We consider the following
cases.

Case 1: w ∈ RX(S). In this case, u

and v are 2-exchange neighbors of some ver-
tices in S. Let u = [1, 2, u3, . . . , un] and
v=[1, 2, v3, . . . , vn]. Assume that w=F i(u)=
F j(v) for some i, j ∈ {3, . . . , n}. Since
F i(u) = [ui, 1, u3, . . . , ui−1, 2, ui+1, . . . , un]
and F j(v) = [vj , 1, v3, . . . , vj−1, 2, vj+1,

. . . , vn], it implies that i = j and uk = vk for
3 ≤ k ≤ n. This contradicts that u and v are
two distinct vertices in O(S).

The following cases consider that u and v
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are 3-rotation neighbors of some vertices in S,
and let u = [ui, 2, u3, . . . , ui−1, 1, ui+1, . . . , un]
and v = [vj , 2, v3, . . . , vj−1, 1, vj+1, . . . , vn].

Case 2: w ∈ XR(S). In this case, w =
E(u) = E(v). Thus, [2, ui, u3, . . . , ui−1, 1,

ui+1,. . . ,un] = [2,vj ,v3,. . . ,vj−1,1,vj+1,. . . ,vn].
This implies i = j and uk = vk for 3 ≤ k ≤ n.
It again reaches a contradiction that u and v

are two distinct vertices.

Case 3: w ∈ RR1(S). In this case, there
exist i′ and j′ with i < i′ and j < j′

such that w = F i′(u) = F j′
(v). Since

F i′(u) = [ui′ , ui, u3, . . . , ui−1, 1, ui+1, . . . ,

ui′−1, 2, ui′+1, . . . , un] and F j′
(v)=[vj′ , vj , v3,

. . . , vj−1, 1, vj+1, . . . , vj′−1, 2, vj′+1, . . . , vn], it
implies that i = j, i′ = j′, and uk = vk for
3 ≤ k ≤ n, which is a contradiction.

Case 4: w ∈ RR2(S). By considering i′ < i

and j′ < j, a proof similar to that of case 3
gives a contradiction.

Case 5: w ∈ RR3(S). In this case, w =
F i(u) = F j(v). Thus, [1, ui, u3, . . . , ui−1, 2,

ui+1,. . ., un] =[1,vj ,v3,. . . ,vj−1,2,vj+1,. . . ,vn].
This implies i = j and uk = vk for 3 ≤ k ≤ n,
a contradiction.

Q. E. D.

Lemma 5 Let S = {[2, 1, p3, . . . , pn] |
p3, . . . , pn ∈ N12}. Then, S is a minimum
distance-2 dominating set of

−→
S2

n.

Proof. Clearly, |S| = (n − 2)!. Recall that
X(S) ∩ R(S) = ∅, and O(S) = X(S) ∪ R(S)
contains all vertices with the symbol 2 on the
second position. Thus, |O(S)| = (n − 1)!,
|X(S)| = |S| = (n − 2)!, and |R(S)| =
(n − 1)! − (n − 2)!. By Lemma 4, the sets S,
O(S), and O2(S) are pairwise disjoint. Hence,
for proving S is a distance-2 dominating set,
it suffices to show that O2(S) contains exactly
n!− (n− 1)!− (n− 2)! vertices.

For each vertex v ∈ X(S), it has the form
[1, 2, p3, . . . , pn]. Thus v contains n − 2 3-
rotation neighbors. For each vertex v ∈ R(S),
it has the form [pi,2,p3,. . ., pi−1,1,pi+1,. . ., pn].
Since pi > 2, v has n − 2 3-rotation neigh-

bors and one 2-exchange neighbor. Also we
have shown in Lemma 4 that for any two ver-
tices u, v ∈ O(S), O(u) ∩ O(v) = ∅. Thus,
|RX(S)| = (n − 2) · (n − 2)!, |XR(S)| =
|R(S)| = (n−1)!− (n−2)! = (n−2) · (n−2)!,
and |RR(S)| = (n− 2)2 · (n− 2)!. In particu-
lar, RX(S), XR(S), and RR(S) are pairwise
disjoint. Therefore,

|O2(S)| = |RX(S)|+ |XR(S)|+ |RR(S)|
= (n− 2) · (n− 2)! +

(n− 2) · (n− 2)! +

(n− 2)2 · (n− 2)!

= n!− (n− 1)!− (n− 2)!

Let ∆2(
−→
S2

n) = maxv∈V |O(v)|+ |O2(v)|. By
Proposition 1, it is easy to verify that for any
vertex v ∈ V , O2(v) contains at most (n−2) ·
(n− 1) + 1 · (n− 2) = n2 − 2n vertices. Thus
∆2(

−→
S2

n) = (n − 1) + (n2 − 2n) = n2 − n − 1.
Consequently,

γ2(
−→
S2

n) ≥ n!

∆2(
−→
S2

n) + 1
= (n− 2)! = |S|.

This shows that S is a minimum distance-2
dominating set of

−→
S2

n.
Q. E. D.

Now, we can state our main result as fol-
lows.

Theorem 6 Let S = {[2, 1, p3, . . . , pn] |
p3, . . . , pn ∈ N12}. Then, S is the unique min-
imum distance-2 dominating set of

−→
S2

n.

Proof. Suppose that S′ is a minimum
distance-2 dominating set of

−→
S2

n and S′ 6= S.
Clearly, |S′| = |S| = (n − 2)! and |O(S′)| ≤∑

w∈S′ od(w) ≤ |S′| · (n−1) = (n−1)!. Thus,
V \O[S′] contains at least n!−(n−1)!−(n−2)!
vertices. Also, we have shown that for any
vertex w ∈ V the number of vertices contained
in O2(w) is at most n2−2n. An upper bound
of the total outdegree of vertices in O(S′) can
be computed as follows:∑
w∈O(S′)

od(w) ≤ |S′| · (n2 − 2n)

= n!− (n− 1)!− (n− 2)!.
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Since S′ is a distance-2 dominating set, the
two hand sides of the above inequality are
equal. In particular, the outdegree of every
vertex contained in O[S′] is indeed n− 1.

Since S′ 6= S, there exists a vertex
u = [2, 1, u3, . . . , un] of S such that u /∈
S′. Since S′ is a distance-2 dominating
set, u must be contained in one of the
sets X(S′), R(S′), RX(S′), XR(S′), and
RR(S′). However, u cannot be a 2-exchange
neighbor of some vertex since the symbol 2
comes before symbol 1 in u. Hence, u /∈
X(S′) and u /∈ XR(S′). This implies that
there exists a vertex v ∈ O[S′] such that
u = F i(v) where i ∈ {3, . . . , n}. Thus,
v = [1, ui, u3, . . . , ui−1, 2, ui+1, . . . , un] =
E([ui, 1, u3, . . . , ui−1, 2, ui+1, . . . , un]). By
Proposition 1, od(v) = n − 2, which is a con-
tradiction to the above argument.

Q. E. D.

4 Concluding Remark

Cheng et al.[1] gave an orientation to the split-
stars, and showed that the oriented graphs−→
S2

n are maximally arc-connected and arc-fault
tolerant. In this paper, we show that there is
a unique minimum distance-k dominating set,
for k = 1, 2, in a directed split-star. However,
the problem of finding a minimum distance-k
dominating set for k ≥ 3 on directed split-
stars is still unsolvable. Further, a natural
question to ask is whether the distance-k dom-
inating set for k ≥ 3 is unique.
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