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ABSTRACT

Support vector machines (SVMs) have been recognized
as one of the most powerful tools for machine learning,
pattern classification, and function estimation. A num-
ber of different variations for the SVMs have been pro-
posed, such as the ν-SVM, least-squares SVM, proxi-
mal SVM (PSVM), reduced SVM (RSVM), Lagrangian
SVM (LSVM), etc. This paper addresses the issue
of generalization of the proximal SVM. We propose a
mixed-norm proximal support vector classifier (referred
to as the m-PSVC) that combines the characteristics
of 1-norm and 2-norm classification errors jointly. Us-
ing the method of Lagrange multipliers, we derived a
form suitable for efficient implementation. It is found
that the decision boundary of the m-PSVC concides
with that of the PSVC exactly, while the classifica-
tion margin of the former is proportional to the (1 +
C1
C2

)−1 factor. Some demonstrative examples are given
to show the relations among the newly developed m-
PSVC, standard PSVC, and conventional LS-SVC.

Keywords: support vector machines, support vec-
tor classifiers, SVM, PSVC, m-PSVC

1. INTRODUCTION

Support vector machines (SVMs) were introduced by
Vapnik and his colleagues [1, 2] and have become one
of the most popular tools in machine learning, data
minging, pattern classification, and function estima-
tion. Two key ideas are employed in the SVMs, i.e., an
implicit kernel mapping trick, and a maximal margin
classifier. Since the emergence of SVMs, a wide variety
of successful applications have been reported, such as
image processing [3], wireless communications[4], com-
puter vision [5], optical character recognition (OCR)
[6], text categorization [7], time-series prediction [8],
gene expression profile analysis [9], DNA and protein
analysis [10], etc. Vapnik et al .’s statistical learning
theory [2] provides a solid mathematical foundation for
the SVMs.

In spite of the merits possessed by the SVMs, they
also face some challenges that may limit their useful-
ness in practical scenarios. The classical QP-based
approach is not efficient when dealing with problems
with exceedingly large amounts of data because it is
computationally expensive and sometimes leads to ma-
chines with many support vectors, especially when the
classes are significantly overlapped. Lately, Suykens
and Vandewalle [11] proposed a modified version of
the 2-norm support vector classifier (SVC) which they
called least-squares SVC (LS-SVC). In LS-SVC, the
nonequality constraints related to soft margins are re-
placed by equalities. The LS-SVC has a very attrac-
tive advantage regarding the computational efficiency
of training. For the LS-SVC, training requires only
solving a set of linear equations, instead of solving
the complex QP. The price paid is a little degradation
in the generalization performance. Mangasarian and
Fung [12] later proposed another form of the LS-SVC,
which they called the proximal support vector classifier
(PSVC). The main difference between the PSVC and
LS-SVC is the inclusion of a b2/2 term in the design
objective function. The net effect is a slight degrada-
tion in classification performance; however, the equal-
ity constraint

∑l
i=1αiyi = 0 in the dual formulation

then disappears.

This paper addresses the issue of generalization of
the PSVC. Specifically, we developed a generalized PSVC
which we refer to as the mixed-norm proximal support
vector classifier (m-PSVC). The m-PSVC is derived by
incorporating both 1-norm and 2-norm classification
errors into the design objective function. Since both
error norms are included, the conventional PSVC can
be viewed as one of its special cases. Using the method
of Lagrange multipliers, we observe that the solution to
the m-PSVC problem is given by a set of linear equa-
tions, which are similar to those of the conventional
PSVC. However, in the new set of linear equations, a
multiplication factor (1 + C1

C2
) controls the overall per-

formance. Through mathematical derivation and ex-
perimental justification, we have found that the deci-
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sion boundary of the m-PSVC is the same as that of the
conventional PSVC, whereas its classification margin is
proportional to (1+ C1

C2
)−1. Some demonstrative exam-

ples are given to show the relations among the newly
developed m-PSVC, the PSVC, and conventional LS-
SVC. To simplify the presentaion, in this paper we only
focus on the linear support vector classifier. The ex-
tension to the nonlinear case is straightforward.

The rest of this paper is organized as follows. In
Section 2, we give a brief summary of the conventional
1-norm, 2-norm, least-squares, and proximal support
vector classifiers. Then in Section 3, we present the
mixed-norm proximal support vector classifier. Some
examples are given in Section 4. Finally Section 5 con-
cludes this paper.

2. 1-NORM, 2-NORM, LEAST-SQUARES,
AND PROXIMAL SUPPORT VECTOR

CLASSIFIERS

Consider a two-class classification problem with a col-
lection of training data {xxxi, yi}l

i=1 given, where xxxi ∈
Rn is the ith input vector, yi ∈ {+1,−1}, l is the
total number of training data, and n is the dimen-
sion of the input space. A linear classifier is defined
by means of a separating hyperplane in the form of
f(xxx) = (www ·xxx) + b = 0, where www and b should be deter-
mined according to certain optimization criteria. Here
(www ·xxx) denotes the inner product between www and xxx. To
obtain better generalization performance, the separat-
ing hyperplane should be placed such that a maximum
distance between the two classes of data is achieved.
The distance between two classes of data is usually re-
ferred to as margin. The support vector classifier at-
tempts to maximize this margin while minimizes the
classification error. For a linearly separable problem,
the SVC design is expressible as a minimization prob-
lem

min
www,b

1
2
(www ·www) (1)

s.t. yi[(www · xxxi) + b] ≥ 1, i = 1, · · · , l (2)

Sometimes the classification problems encountered are
not linearly separable. Under such circumstances, mod-
ifications to the separable formulation are needed. We
can introduce a soft margin as follows:

min
www,b,ζζζ

1
2
(www ·www) + C

l∑

i=1

ζi (3)

s.t. yi[(www · xxxi) + b] ≥ 1− ζi, i = 1, · · · , l (4)
ζi ≥ 0, i = 1, · · · , l (5)

where C is a regularization parameter to control the
balance between the size of margin and the misclassi-
fication error. This formulation will lead to a solution
that is commonly known as the 1-norm support vector
classifier since the l1 norm error is considered. Another
common way to introduce a soft margin into the clas-
sification problem is instead to use the l2 norm error
which will yield the 2-norm support vector classifier
and gives the following formulation

min
www,b,ζζζ

1
2
(www ·www) +

C

2

l∑

i=1

ζ2
i (6)

s.t. yi[(www · xxxi) + b] ≥ 1− ζi, i = 1, · · · , l (7)

In the 2-norm formulation, the ζi ≥ 0, i = 1, · · · , l
constraint is discarded since it can be shown to be re-
dundant.

Recently, Suykens and Vandewalle [11] proposed a
modified version of the 2-norm SVC which they called
least-squares SVC (LS-SVC). In LS-SVC, the nonequal-
ity constraints related to soft margins are replaced by
equalities. The advantage of this reformulation is that
the quadratic programming solution procedure is no
more needed; instead, the solution comes in a form of
linear system of equations. The price paid is a little
degradation in the generalization performance. Here
we briefly review the problem formulation for the LS-
SVC. The optimization problem defined by the LS-SVC
is given by

min
www,b,ζζζ

1
2
(www ·www) +

C

2

l∑

i=1

ζ2
i (8)

s.t. yi[(www · xxxi) + b] = 1− ζi, i = 1, · · · , l (9)

This equality-constrained minimization problem can be
solved directly in closed form using the method of La-
grange multipliers. The solution can be expressed as
an (l + 1)× (l + 1) linear system given by

[
0 yyyT

yyy RRT + 1
C Il×l

] [
b
ααα

]
=

[
0
1l

]
(10)

where yyy = [y1, y2, · · · , yl]T , R = [y1xxx1, y2xxx2, · · · , ylxxxl]T ,
ααα = [α1, α2, · · · , αl]T is the corresponding Lagrange
multiplier vector, and 1l is a dimension-l vector with
all ones.

The proximal support vector classifier (PSVC) was
proposed by Mangasarian and Fung [12] in 2001 as an
alternative form of the standard LS-SVC. The key dif-
ference between the PSVC and LS-SVC is the inclu-
sion of a b2/2 term in the design objective function.
The net effect is a slight degradation in classification
performance; however, the equality constraint

∑l
i=1αiyi = 0 (11)
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in the dual formulation then disappears. The PSVC
problem is formally stated as

min
www,b,ζζζ

1
2
(www ·www + b2) +

C

2

l∑

i=1

ζ2
i (12)

s.t. yi[(www · xxxi) + b] = 1− ζi, i = 1, · · · , l (13)

3. THE MIXED-NORM PROXIMAL
SUPPORT VECTOR CLASSIFIER

(M-PSVC)

Let us now consider a generalized form of the proximal
support vector classifier (PSVC) that combines the 1-
norm and 2-norm characteristics jointly. This new type
of support vector classifier problem can be formally de-
fined as

min
www,b,ζζζ

1
2
(www ·www + b2) + C1

l∑

i=1

ζi +
C2

2

l∑

i=1

ζ2
i (14)

s.t. yi[(www · xxxi) + b] = 1− ζi, i = 1, · · · , l (15)

where C1 and C2 are regularization parameters that de-
termine the balance among the decision margin, the l1-
type error, and the l2-type error. In this optimization
problem we use a shorthand notation “s.t.” to repre-
sent subject to. This formulation is a direct extension of
the PSVC by adding another 1-norm term to the objec-
tive function so that both 1-norm and 2-norm classifi-
cation errors are considered. As such, the new formula-
tion is referred to as the mixed-norm proximal support
vector classifier. To solve this optimization problem,
we resort to the method of Lagrange multipliers by
first defining the Lagrangian function L(www, b, ζζζ,ααα) as

L(www, b, ζζζ,ααα)
4
=

1
2
(www ·www + b2) + C1

l∑

i=1

ζi

+
C2

2

l∑

i=1

ζ2
i

−
l∑

i=1

αi{yi[(www · xxxi) + b]− 1 + ζi}(16)

Letting the partial derivatives of L(www, b, ζζζ,ααα) be 0 with
respect to www,b,ζζζ, and ααα, we obtain

www =
∑l

i=1αiyixxxi (17)
∑l

i=1αiyi = b (18)

ζi =
αi − C1

C2
, i = 1, · · · , l (19)

yi[(www · xxxi) + b] = 1− ζi, i = 1, · · · , l (20)

Substituting Eqs. (17), (18), and (19) into Eq. (20)
yields

∑l
i=1αjyiyj [(xxxj · xxxi) + 1] + 1

C2
αi = 1 + C1

C2
,

i = 1, · · · , l (21)

Putting in matrix form, these equations can be written
more compactly as

(Q + P +
1
C2

Il×l) ααα = (1 +
C1

C2
)1l (22)

where Qij
4
= yiyj(xxxi · xxxj), 1 ≤ i, j ≤ l, Pij

4
= yiyj , 1 ≤

i, j ≤ l, Il×l is the identity matrix of rank l, and 1l is a
length-l vector of all ones. If the matrix Q+P + 1

C2
Il×l

is nonsingular, then we have

ααα = (Q + P +
1
C2

Il×l)−1(1 +
C1

C2
)1l (23)

Obviously, when C1 equals 0, Eq. (23) will reduce to the
solution of a proximal support vector classifier. Thus
by varying the values of C1 and C2, the performance
of the m-PSVC can be adjusted. In this regard, the
proposed m-PSVC offers an extra degree of freedom to
the fine tuning of classification performance. Once ααα is
obtained, b can be found using Eq. (18).

4. EXAMPLES

This section presents several examples to demonstrate
the behavior of the m-PSVC. Since the m-PSVC can
be viewed as a generalized PSVC, we mainly compare
the performance between these two SVCs. In addi-
tion, the LS-SVC is also included in the comparison to
exhibit its close resemblance to the PSVC. The train-
ing data for the examples consist of 20 points, 10 of
them belong to Class1, while the remaining 10 points
belong to Class2. These data are linearly nonsepa-
rable. The support vector classifier will try to seek
for the best performance by trading-off between the
largest separating margin and generalization capabil-
ity. C1 and C2 are tuning parameters (also called hy-
perparameters) which have to be set before the algo-
rithms start. Here we consider three sets of these pa-
rameters: (1) C1 = 1, C2 = 1, (2) C1 = 1, C2 = 10,
and (3) C1 = 1, C2 = 0.1. Three different C1

C2
ratios

are chosen as this ratio is the dominating factor that
control the overall performance. These parameters are
empirically determined. A good theoretical procedure
to choose proper hyperparameters is currently an open
question and is problem-dependent. The experiments
demonstrate where the decision boundary (or classifi-
cation boundary) is located among the scattered data
and how the values of C1 and C2 affect the moving of
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decision boundary and the width of classification mar-
gin. Figs. 1 through 3 show the results for the three
sets of tuning parameters. Surprisingly, we see that
for these cases the m-PSVC and the PSVC possess the
same decision boundary, although their classification
margins are different. From Figs. 1, 2, and 3, it is clear
that the classification margin increases when the C2

C1
ra-

tio is increased. We now give a theoretical justification
for this kind of behavior. From Eqs. (23) and (18), it
is seen that both b and ααα are proportional to (1 + C1

C2
).

Suppose that the solution for the PSVC problem is de-
fined by bP and αααP , which correspond to the special
case of the m-PSVC solution with C1 = 0. Let the so-
lution to the m-PSVC problem be denoted by bm and
αααm, then the m-PSVC solution can be written as

bm = bP (1 +
C1

C2
) (24)

αααm = αααP (1 +
C1

C2
) (25)

The decision boundary for the LS m-SVC problem is
given by

(
∑l

i=1αi,myixxxi)Txxx + bm = 0 (26)

which reduces to

(
∑l

i=1αi,P yixxxi)Txxx + bP = 0 (27)

Therefore, we conclude that the m-PSVC and PSVC
possess the same decision boundary, whereas the sepa-
ration margin of the m-PSVC is directly proportional
to (1 + C1

C2
)−1. The relation between the m-PSVC and

the LS-SVC is also interesting. For smaller values of
C1
C2

, the 2-norm error dominates, and therefore the de-
cision boundaries of the m-PSVC and the LS-SVC co-
incide with each other. For larger values of C1

C2
, the

1-norm error dominates, the discrepancy between the
m-PSVC and the LS-SVC becomes distinct. These ef-
fects can be seen clearly from Figs. 1 through 3.

5. CONCLUSION

This paper presents a new form of proximal support
vector classifier (PSVC) that combines both the 1-norm
and 2-norm error characteristics. The mixed-norm PSVC
(m-PSVC) can be viewed as a generalized proximal
support vector classifier that includes the standard PSVC
as one of its special cases. It is found that the decision
boundary of the m-PSVC exactly concides with that of
the PSVC, while the classification margin of the former
is proportional to the (1 + C1

C2
)−1 factor. Some demon-

strative examples are given to show the relations among
the newly developed m-PSVC, PSVC, and conventional
LS-SVC. Some issues regarding the m-PSVC deserve

further investigation, including analysis of properties,
tuning of hyperparameters, and applications.
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Fig. 1. A demonstrative example to show the relations among the mixed-norm proximal support vector classifier
(m-PSVC), the proximal support vector classifier (PSVC), and the least-squares support vector classifier (LS-SVC).
In this example, C1 = 1 and C2 = 1.
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Fig. 2. A demonstrative example to show the relations among the mixed-norm proximal support vector classifier
(m-PSVC), the proximal support vector classifier (PSVC), and the least-squares support vector classifier (LS-SVC).
In this example, C1 = 1 and C2 = 10.
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Fig. 3. A demonstrative example to show the relations among the mixed-norm proximal support vector classifier
(m-PSVC), the proximal support vector classifier (PSVC), and the least-squares support vector classifier (LS-SVC).
In this example, C1 = 1 and C2 = 0.1.
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