
An Adaptive Approach to Data Broadcasting

in Mobile Information Systems∗

Ye-In Chang, Shih-Ying Chiu and Jun-Hong Shen

Dept. of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan, R.O.C

E-mail: changyi@cse.nsysu.edu.tw

Abstract

Broadcast data delivery rapidly becomes the

choice for disseminating information to a massive

user population. The main advantage of broadcast

delivery is its scalability. Acharya et al.’s Broad-

cast Disks is one of well-known static algorithms

for efficient broadcast delivery. However, based on

Acharya et al.’s algorithm, some broadcast slots

may be unused, which results in the waste of band-

width and the increase of access time. Therefore,

in this paper, we propose an efficient broadcast

program, the adaptive approach, which prevents

the occurrence of empty slots. The basic idea of

the adaptive approach is to dynamically arrange

the number of slots in each chunk on a disk so

that it is impossible for empty slots to occur, where

a chunk is the unit for broadcast from a disk per

time. From the simulation results, our adaptive

approach generates a smaller number of slots in a

broadcast cycle and shorter mean access time than

Acharya et al.’s algorithm.

(keywords: broadcast disks, broadcast schedule,
mobile information systems.)

1. Introduction

Mobile computing has become a reality due to
the convergence of two technologies: the appear-
ance of powerful portable computers and the de-
velopment of fast reliable networks [5, 19]. In
the mobile wireless computing environment, there
are two sets of entities: servers and mobile clients
(MCs) [11]. In general, servers are powerful sta-
tionary machines with database systems, and MCs
are portable computing devices, e.g., palmtop or
laptop computers. There are some characteristic

∗This research was supported in part by the Na-

tional Science Council of Republic of China under Grant

No. NSC-89-2218-E-110-004 and National Sun Yat-Sen

University.

features of the mobile wireless computing system,
making it different from the traditional wired sys-
tem [5, 22]: (1) asymmetry in communications; (2)
frequent disconnections; (3) power limitations; (4)
screen size.

In the evolving field of mobile computing, there
is a growing concern to provide mobile users
with timely access to large amounts of informa-
tion [12, 17]. Examples of such services include
weather, high-way condition, traffic directions,
news and stock quotes. Each MC will retrieve
data pages via wireless information channels. The
wireless channels consists of two distinct sets of
channels: uplink channels (clients to servers) and
downlink (servers to clients) channels. In the en-
vironment under consideration, the downstream
communication capacity is relatively much greater
than the upstream communication capacity. Such
environments are, hence, called asymmetric com-
munication environment [2].

In such asymmetric communication environ-
ments, using push-based systems is an efficient
way to disseminate a large amount of informa-
tion to MCs [20, 21, 25]. The push-based system
repeatedly broadcasts data stream to unspecified
clients via the downlink channel, and they access
the data of interest in the broadcast stream [13].
In the push-based systems, the number of mo-
bile clients which can simultaneously listen to the
downlink channel can be almost scaled. Using of
push-based systems not only can save the band-
width of the uplink channel and but also can be
scaled to any number of mobile clients who listen
to the publishing report.

To disseminate data via broadcasting, a server
constructs a broadcast program and periodically
transmits data according to the program [8, 9, 18].
The motivation for that work was teletext systems
[4]. In [4], Ammar and Wong, using a stochas-

1

tic Markov Decision Process (MDP) formulation,
concluded that the optimal schedule for a push-
based broadcast will be periodic. In a uniform
broadcast program, all the objects are broadcast
once in a broadcast cycle regardless of their ac-
cess frequencies, as was done in Datacycle [6]. As
a result, the average access time (the time elapsed
from the moment a client requests for an object
to the point when the desired object is download
by the client) of an object will, on average, be half
the time between successive broadcasts of the data
file. On the contrary, a nonuniform broadcast pro-
gram favors objects with higher access frequencies.
Hence, in a broadcast cycle of a nonuniform broad-
cast, while all objects are broadcast, some will ap-
pear more often than others. The resulting effect
is that objects that are more frequently broadcast
will have a shorter access time than those are less
frequently broadcast [23].

Over the past few years, a considerable number
of studies has been conducted on efficient delivery
on the wireless broadcast. For the uniform broad-
cast in which the same data item appears once
in a broadcast cycle, mobile users may query a
set of dependent data items in a query, not only
one data item. According to [16], prior research
work of dependent data broadcast can be cate-
gorized by the following two properties: (1) the
number of broadcast channels considered, single
or multiple channels, and (2) the constraint of the
retrieval sequence of data items in each query, or-
dered, or unordered queries. Several studies in
[14, 20] have been made on the broadcast sched-
ule for unordered queries on the single broadcast
channel. In [10], they concentrated on the broad-
cast schedule for ordered queries on the single
broadcast channel. In [8, 16], they have studied
the issue on data broadcast for unordered queries
in a multi-channel mobile environment. Research
work in [15] considered data broadcast for ordered
queries on the multiple channels. For nonuniform
broadcast in which data items are broadcast ac-
cording to the access frequency, Acharya et al. [1]
proposed Broadcast Disks in a single-channel mo-
bile environment. Chang and Yang [7] solved the
empty slot problem in Acharya et al.’s Broadcast
Disks. The study in [22] focused on partition-
ing data with skewed access patterns into multiple
broadcast channels.

Among those strategies for efficient broadcast
delivery, Acharya et al.’s Broadcast Disks [3] is one
of well-known static algorithms. It constructs a
broadcast program which can emphasize the most

popular items and de-emphasize the less popu-
lar ones. In this way, one can establish a trade-
off between access time for high-priority data and
that of the low-priority items. However, based on
Acharya et al.’s approach, some broadcast slots
may be unused, which results in the waste of band-
width and the increase of access time. Therefore,
in this paper, we propose an efficient broadcast
program, the adaptive approach, in which the case
of empty slots is impossible to occur. Based on our
approach, not only there is no empty slots to occur
in a broadcast cycle, but also the total number of
slots in a broadcast cycle is smaller than Acharya
et al.’s algorithm. From our performance anal-
ysis and simulation, we show that our adaptive
approach generates a smaller number of slots in
one broadcast cycle and shorter mean access time
than Acharya et al.’s algorithm.

The rest of paper is organized as follows. In
section 2, we give a brief description of Acharya et

al.’s algorithm and show an example of the empty
slot problem in Acharya et al.’s algorithm. In sec-
tion 3, we present our adaptive approach to avoid
the occurrence of empty slots. In section 4, we
study the performance of our adaptive approach,
and make a comparison with Acharya et al.’s al-
gorithm. Finally, section 5 gives the conclusion.

2. Background

Acharya et al. have proposed the use of a peri-
odic dissemination architecture in the context of
mobile systems. They call the architecture Broad-

cast Disks [1, 3]. It can construct a memory hi-
erarchy in which the highest level contains a few
items and broadcasts them with high frequency
while subsequent levels contain more and more
items and broadcast them with less and less fre-
quency. The architecture imposes a Multi-disk
structure on the broadcast medium in a way that
allows substantial flexibility in fitting the relative
broadcast frequencies of data items to the access
probabilities of a client population. The broad-
cast is created by assigning data items to differ-
ent “disks” of varying sizes and speeds, and then
multiplexing the disks on the broadcast channel.
Items stored on faster disks are broadcast more of-
ten than items on slower disks. Given the amount
of data pages D and the number of multiple disks
S, the algorithm has the following steps:

1. Order the pages (= D) from the hottest (the
most popular) one to the coldest one.

2. Partition these ordered pages (= D) into mul-

2

tiple disks (= S disks), where each range con-
tains pages with similar access probabilities.

3. Choose the relative frequency Ri of broadcast
for each disk i. For example, given two disks,
if we choose R1 = 3, and R2 = 2, it means
that disk 1 could be broadcast three times for
every two times that disk 2 is broadcast.

4. Partition each disk into a number of smaller
units, called chunks Cij , where Cij denotes
the jth chunk in disk i. First, calculate L as
the LCM (Least Common Multiple) of the rel-
ative frequencies. Then, split each disk i into
NCi = L/Ri chunks, where NCi denotes the
number of chunks in disk i. In the previous
example, NC1 would be 2, while NC2 would
be 3.

5. Create the broadcast program by interleav-
ing the chunks of each disk in the following
manner:

01 for i := 1 to L
02 for j := 1 to S
03 begin
04 k := ((i − 1) mod NCj) + 1;
05 Broadcast chunk Cj,k;
06 end;

Figure 1 shows an example of a broadcast pro-
gram generated by Acharya et al.’s algorithm,
in which several empty slots can occur. Given
D = 15 and S = 3, 15 pages are sorted from the
hottest one to the coldest one. Next, these 15
pages are partitioned into 3 groups according to
their relative frequencies. Let Ki denote the num-
ber of pages on disk i: K1 = 2, K2 = 4, and K3 =
9. Moreover, R1 = 3, R2 = 2, and R3 = 1. Then,
these disks are split into chunks according to Step
4 of the algorithm. That is, L is 6, so we have
NC1 = 2, NC2 = 3, and NC3 = 6. The resulting
broadcast program consists of 6 minor cycles, and
has a period of 30 slots with 7 empty slots. Note
that the chunks of different disks can be of differ-
ent sizes, but the size of chunks in a disk is fixed.
Finally, the resulting broadcast consists of 6 mi-

nor cycles (containing one chunk from each disk)
which is the LCM of the relative frequencies.

3. The Adaptive Approach
In the multi-disks architecture of Acharya et

al.’s algorithm, each disk will spin out one unit

1 3 7 8 9Database
 (pages) 101112HOT

Disks 1 7 8 9 101112

1314155 642 COLD

2 3 4 65

21 3

13 1514

C1,1

Chunks 1

C1,2

2 3 EE5 6

2,3C2,2C2,1C

7 E E8 9 10 1112 14 15 E13

3,6C3,5C3,4CC3,33,2C3,1C

1

E : Empty Slot

1 2 3

1 12 2 23 35 6 E E E E EE7 5 68 9 10 11 12 13 14 15

4 5 6 7 8 9 10 11 12 13 14 1615 17 18 19 20 21 22 23 24 25 26 27 28 29 30

3,6C2,3C1,2C3,5C2,2CC1,13,4C2,1C1,2C3,3C2,3CC1,13,2C2,2C1,2C3,1C2,1CC1,1

Minor Cycle

Major Cycle

4

4 E 4

K K K

Figure 1: A broadcast program with 7 empty slots
based on Acharya et al.’s algorithm

of a chunk every time. The number of chunks
on each disk can be different, but the number of
slots in each chunk on a disk is the same. That is
why empty slots may occur. In our approach, we
can prevent the occurrence of empty slots as we
dynamically arrange the number of slots in each
chunk on a disk.

By observing Acharya et al.’s algorithm, we
find two interesting phenomena. One is that
empty slots occur when Ki mod NCi 6= 0, where
Ki is the number of pages in disk i and NCi is
the number of chunks in disk i, and the other is
that the number of slots in every chunk on a disk
is always the same. Let NSCij be the number of
slots in the jth chunk of disk i. When Ki mod
NCi 6= 0, NSCij is always equal to dKi/NCie.
In this case, the total number of slots in disk i
will be greater than the number of pages in disk
i (

∑NCi

j=1 NSCij > Ki) and empty slots can oc-
cur. The basic idea of the adaptive approach is
to adjust NSCij such that

∑NCi

j=1 NSCij = Ki.
Therefore, finally, the total number of slots in a
major cycle will be less than or equal to the one
computed from Acharya et al.’s algorithm.

For the previous example shown in Figure 1,
since we have K2 = 4 and NC2 = 3, resulting in
K2 mod NC2 6= 0, two empty slots occur in disk 2.
If we let the number of slots in both chunks 2 and
3 on disk 2 be one, i.e., C22 containing page 5 and
C23 containing page 6, then there will be no empty
slots on disk 2, where Cij denotes the jth chunk in
disk i. That is, we can prevent the occurrence of
empty slots by adopting different number of slots
in each chunk on a disk.

3

3.1. Assumptions

This paper focuses on wireless broadcast envi-
ronment. Some assumptions should be restricted
in order to make our work feasible [11]. These
assumptions include:

1. The client population and their access pat-
terns do not change. This implies that the
content and the organization of the broadcast
program remains static.

2. Data is read-only; there are no pages updated
either by the clients or at the servers.

3. Clients make no use of their upstream com-
munications capability and retrieve required
data items from the broadcast; they provide
feedback to servers and there is no prefetch-
ing.

4. Clients are simple and without a great
amount of memory; there is no cache scheme
on the clients.

5. When a client switches to the public chan-
nel, it can retrieve data pages immediately.
The delay for hardware/software preparation
to begin monitoring the broadcast channel is
so short to be ignored.

6. The broadcast infrastructure is reliable; each
item transmitted by the server is always re-
ceived correctly by each clients.

7. A query result contains only one page.

8. The server broadcasts pages over a single
channel. All clients retrieve data pages from
this single channel.

9. The length of each page is fixed. This as-
sumption makes the time slots of each page
are equal.

10. The number of pages (Ki) in a disk i has to be
greater than or equal to the number of chunks
(NCi) in a disk i. That is, the condition,
Ki > NCi, must be satisfied.

3.2. The Algorithm

Now, we present the proposed algorithm which
partitions D pages into S broadcast disks such
that no empty slot occurs. In the proposed algo-
rithm, the following variables are used:

1. D: the number of pages;

2. Pi: the ith page in a decreasing order of de-
mand frequency, 1 ≤ i ≤ D;

3. S: the number of disks;

4. Ri: the relative frequency of disk i, 1 ≤ i ≤ S;

5. L: the least common multiple of Ri, 1 ≤ i ≤
S, i.e., L = LCM (R1, R2, ..., RS);

6. Ki: the number of pages in disk i, 1 ≤ i ≤ S,
and

∑S
i=1 Ki = D;

7. NCi: the number of chunks in disk i, and
NCi = L/Ri, 1 ≤ i ≤ S;

8. NSCij : the number of slots in the jth chunk
in disk i, 1 ≤ j ≤ NCi, 1 ≤ i ≤ S;

9. Cij : the jth chunk in disk i, 1 ≤ i ≤ S.

10. Oijk: the kth slot of the jth chunk in disk i,
1 ≤ i ≤ S.

The proposed algorithm is processed as follows:

1. Order the pages from the hottest (most pop-
ular) one to the coldest one.

2. Partition the list of pages into multiple disks
(= S disks), provided with Ki < Ki+1, 1 ≤
i < S, where each range contains pages with
similar access probabilities.

3. Choose the relative frequency Ri of broadcast
for each disk i, provided with Ri > Ri+1,
1 ≤ i < S.

4. Partition each disk into a number of smaller
units, called chunks Cij , where Cij denotes
the jth chunk in disk i. First, calculate L
as the LCM (Least Common Multiple) of the
relative frequencies. Then, split each disk i

into NCi = L/Ri chunks, where NCi denotes
the number of chunks in disk i.

5. Call Procedure Partition to decide the num-
ber of slots in every Cij , called NSCij , where
NSCij denotes the number of slots of the jth
chunk in disk i.

6. Create the broadcast program by interleaving
the chunks of each disk following the same
way as Step 5 in Acharya et al.’s BD algo-
rithm.

4

From Step 1 to Step 4, the adaptive approach
decides the value of Ki, Ri, L, and NCi. In Step
5, we calculate NSCij by processing the Parti-

tion procedure as shown in Figure 2. Note that
in Acharya et al.’s algorithm, for a certain disk i,
NSCij always equals dKi/NCie, 1 ≤ j ≤ NCi.
In the Partition procedure, if (Ki mod NCi) = 0,
then we have NSCij = dKi/NCie = bKi/NCic,
1 ≤ j ≤ NCi. In this case , the result of NSCij

is the same as that of the Acharya et al.’s algo-
rithm. If (Ki mod NCi) 6= 0, then we need to
adjust NSCij to an appropriate value such that
∑NCi

j=1 NSCij = Ki and NSCij ≥ NSCi(j+1),
1 ≤ j < NCi. Basically, Ki can be divided into
two groups in the following ways, if bKi/NCic =
dKi/NCie − 1, i.e., Ki mod NCi 6= 0, where
dKi/NCie = b and (Ki mod NCi) = a:

Ki = bKi/NCic × NCi + (Ki mod NCi)
= (dKi/NCie − 1)×NCi + (Ki mod NCi)
= (b − 1) × NCi + a
= (b − 1) × a + (b − 1) × (NCi − a) + a

=
∑a

j=1(b − 1) +
∑NCi

j=a+1(b − 1) +
∑a

j=1 1

=
∑a

j=1((b − 1) + 1) +
∑NCi

j=a+1(b − 1)

=
∑a

j=1 b +
∑NCi

j=a+1(b − 1).

Therefore, for a certain disk i, there are two
possible values of NSCij , i.e., dKi/NCie or
dKi/NCie − 1. That is, we can divide these NCi

chunks into two groups: one is from the first
chunk to the ath chunk, and the other is from
the (a + 1)th chunk to the last chunk. The num-
ber of slots in each chunk in the first group equals
b, while the number of slots in the other group
equals (b − 1). Therefore, there will be no empty
slots in each chunk.

For the same input data, S = 3 and D = 15,
as shown in Figure 1, Figure 3 shows the re-
sult based on our adaptive approach, in which
no empty slots occur. First, we order these 15
pages from the hottest one to the coldest one.
Second, we partition these 15 pages into 3 disks
and let K1 = 2, K2 = 4, and K3 = 9. Third,
given R1 = 3, R2 = 2, and R3 = 1, we have
L = LCM(3, 2, 1) = 6. Fourth, we figure out
that NC1 = L/R1 = 2, NC2 = L/R2 = 3 and
NC3 = L/R3 = 6. Fifth, we call the Partition

procedure to decide the number of slots in ev-
ery chunk on each disk, i.e., to decide the value
of NSCij . Take disk 3 as an example, we have
NC3 = d6/1e = 6 chunks. Therefore, we let
a = (K3 mod NC3) = 9 mod 6 = 3 and par-
tition these 6 chunks into two groups. The first

01 Procedure Partition;

02 begin

03 for i := 1 to S do

04 begin

05 if (Ki mod NCi = 0) then

06 for j := 1 to NCi do

07 NSCij := Ki div NCi

08 else

09 begin

10 a := Ki mod NCi;

11 b := d Ki

NCi
e;

12 for j := 1 to a do

13 NSCij := b;

14 for j := (a + 1) to NCi do

15 NSCij := b − 1;

16 end;

17 end;

18 end;

Figure 2: The Partition procedure

group is from the first chunk to the third chunk,
while the second group is from the fourth chunk
to the sixth chunk. Therefore, for j = 1 to 3, we
have NSC3j = b = dK3/NC3e = 2; in the mean-
while, for j = 4 to 6, we have NSC3j = b − 1 =
dK3/NC3e − 1 = 1. Finally, the resulting broad-
cast program consists of 6 minor cycles, and has
a period of 23 slots without any empty slot.

As compared with the result based on Acharya
et al.’s algorithm shown in Figure 1, the size of
each minor cycle in our adaptive approach is not
the same and is always less than or equal to that
in Acharya et al.’s algorithm, and no empty slots
can occur. Obviously, as compared with Acharya
et al.’s algorithm, the total number of slots in a
broadcast cycle in our adaptive approach, which
can be computed by summing the size of all minor
cycles, is less than or the same as that in Acharya
et al.’s algorithm. Therefore, the expected mean
access time in our adaptive approach will also be
shorter than or equal to that in Acharya et al.’s
algorithm, which will also be verified by the per-
formance study as discussed later.

4. Performance Study
In this section, we study the performance of our

complementary approach and make a comparison
with Acharya et al.’s algorithm. Our experiments
were performed on a PentiumIII 733 MHz, 128
MB of main memory, running Windows ME.

5

1 3 7 8 9Database
 (pages) 101112HOT

Disks 1 7 8 9 101112

1314155 642 COLD

2 3 4 65

21 3

13 1514

C1,1

Chunks 1

C1,2

2 3

2,3C2,2C2,1C

7 8 9 10 1112

3,6C3,5C3,4CC3,33,2C3,1C

1

E : Empty Slot

1 2 3

23 57 8

4 5 6 8 9

1,2C3,1C2,1CC1,1

Minor Cycle

65 1514

9

C2,2

10

C3,2

1

C1,1

6 11 12 2 3

13

13 1 5

C2,3 C C3,3 1,2 C2,1 C C3,4 1,1 2,2C

14

C3,5

2 6 15

C2,3 C3,6C1,2

7 10 11 12 13 14 15 16 1817 19 20 21 22 23

Major Cycle

4 4

4

K K K

Figure 3: A broadcast program based on the adap-
tive approach

Table 1: Parameters used in the simulation

S the number of disks

D the number of distinct pages to be broadcast

Ki the number of pages in disk i

Ri the relative frequency of disk i

∆ the broadcast shape parameter

θ the Zipf factor for partition size

γ the Zipf factor for frequency of access

4.1. The Simulation Model

The parameters used in the model are shown in
Table 1. S is the number of disks in the broadcast
program, and D is the number of distinct pages to
be broadcast. Ki is the number of pages in disk
i; therefore, the sum of Ki over all i is equal to
D, where 1 ≤ i ≤ S (i.e., D =

∑S
j=1 Ki). Ri is

the relative frequency of disk i, where 1 ≤ i ≤ S.
When we simulate the process of Acharya et al.’s
algorithm, we need to decide the values of Ri’s,
which can be dependent on ∆. That is, ∆ is a
factor used to measure the relative frequencies of
broadcast of each disk. Using ∆, the frequency of
broadcast Ri of each disk i, can be computed rela-
tive to RS , the broadcast frequency of the slowest
disk (disk S) as follows [3, 23]:

Ri

RS
= (S − i)∆ + 1, and RS = 1, 1 ≤ i ≤ S.

When ∆ is zero, the broadcast is flat: all disks
spin at the same speed. As ∆ is increased, the
speed differentials among the disks increase. For
example, for a 3-disk broadcast, when ∆ = 4, the

Table 2: Relative frequencies ((): LCM)

S ∆ = 4 ∆ = 5
3 1, 5, 9 (45) 1, 6, 11 (66)
4 1, 5, 9, 13 (585) 1, 6, 11, 16 (528)

relative frequencies are 9, 5, and 1 for disks 1, 2,
and 3, respectively. Table 2 shows examples of the
relative frequencies and their LCM when ∆ = 4
and 5.

Moreover, when we simulate the process of
Acharya et al.’s algorithm, we need to decide the
values of Ki’s, which can be decided based on the
Zipf distribution [3, 23]. The Zipf distribution
is typically used to model nonuniform access pat-
terns [3]. The Zipf distribution can be expressed

as pi = (1/i)θ

∑
M

j=1
(1/j)θ

, 1 ≤ i ≤ M , where θ is a

parameter named access skew coefficient or Zipf
factor and M ∈ N . Different values of θ yield dif-
ferent Zipf distribution. When θ = 0, we have
the uniform distribution. When θ = 1, we have
the highly nonuniform Zipf distribution. That is,
it produces access patterns that become increas-
ingly skewed as θ increases—the probability of ac-
cessing any page numbered i is proportional to
(1/i)θ. For example, when M = 3, θ = 1, we have
p1 = 6

11 , p2 = 3
11 , and p3 = 2

11 . Therefore, Ki in
Acharya et al.’s algorithm can be decided based
on the Zipf -like distribution as follows [3, 23]:

Ki = D ×
(1

S−i+1
)θ

∑
S

j=1
(1/j)θ

.

Here, K1 has the fewest pages, K2 has the next
fewest pages, and KS has the most number of
pages.

When we consider the demand frequency of
data access for page i (denoted by DFPi), we also
apply the Zipf distribution with a Zipf factor γ.
Here, we partition the pages into regions (= num-
ber of disks) of Ki pages each, where 1 ≤ i ≤ S,
and we assume that the probability of accessing
any page within a region is uniform; that is, the
Zipf distribution is applied to these regions [3].
Therefore, we model the demand frequency of ac-
cess of the ith disk (DFDi) using the Zipf distri-
bution as follows:

DFDi = (1/i)γ

∑
S

j=1
(1/j)γ

,

where γ is the Zipf factor of the Zipf distribu-
tion. In this case, the first disk (K1), which has
the least number of records, is the most frequently
accessed, the second disk (K2) is next, and so

6

on. Since each page w in disk i has the same de-
mand frequency DFPw, we have DFPw = DFPi,
i ≤ i ≤ S.

Two performance measures are considered in
this comparison:

1. The total number of slots in one broadcast
cycle.

2. The mean access time (or the expected time
delay) which equals multiply the probability
of access for each page i (DFPi) with the ex-
pected delay for that page (EDPi) and sum
the results, where EDPi denotes the average
expected delay time for page i in disk k with
the relative frequency = Rk.

4.2. Performance Analysis

For the total number of slots (denoted by TS)
in one broadcast cycle, it can be computed by
summing the total number of slots in each minor
cycle (denoted by MSm, the mth minor cycle).
There are L minor cycles in a major cycle. Let
the size of a minor cycle be denoted by MSm,
1 ≤ m ≤ L. Based on the Acharya et al.’s algo-
rithm, the size of each minor cycle is the same,
i.e., MSm =

∑S
i=1 NSi, 1 ≤ m ≤ L, where NSi

denotes the number of slots in a chunk of disk i,
1 ≤ i ≤ S. Therefore,

TS =
∑L

m=1 MSm

=
∑L

m=1

∑S
i=1 NSi

= L ×
∑S

i=1 NSi.

However, in the adaptive algorithm, the size of
each minor cycle is different and can be computed
as follows.

MSm =
∑S

p=1 NSCp,q,
where q = ((m − 1) mod NCp) + 1, 1 ≤ p ≤ S,
1 ≤ m ≤ L.

For instance, for the example shown in Figure
3, the number of slots in the first minor cycle is
different from that in the second minor cycle. For
the first minor cycle:

MS1 =
∑3

p=1 NSCp,q

= NSC1,1 + NSC2,1 + NSC3,1

= 1 + 2 + 2
= 5.

For the second minor cycle:
MS2 =

∑3
p=1 NSCp,q

= NSC1,2 + NSC2,2 + NSC3,2

= 1 + 1 + 2
= 4.

Similar to the Acharya et al.’s algorithm, TS in
the adaptive algorithm can be calculated by sum-
ming the total number of slots in each minor cycle,
that is:

TS =
∑L

m=1 MSm

=
∑L

m=1(
∑S

p=1 NSCp,q),
where q = ((m − 1) mod NCp) + 1. For instance,
for the example shown in Figure 3, the total num-
ber of a broadcast cycle is:

TS =
∑6

m=1 MSm

= MS1+MS2+MS3+MS4+MS5+MS6

= 5 + 4 + 4 + 4 + 3 + 3
= 23.

We can find that in the adaptive approach, the
size of each minor cycle is either equal to or less
than that of Acharya et al.’s algorithm. Obvi-
ously, TS in the adaptive approach is always less
than or equal to that in Acharya et al.’s algorithm.

The mean access time (denoted by AccessT) is
calculated by multiplying the probability of access
for each page a (DFPa) with the expected delay
for that page (EDPa) and summing the results.

That is, AccessT =
∑D

a=1 EDPa × DFPa. For
each page a, we let Oijk to represent the page
arranged in the kth slot of the jth chunk in the
ith disk. For instance, for the example shown in
Figure 3, page 6 is in the first slot of the third
chunk in the second disk, so we use O231 to denote
it.

Page Oijk will occur Ri times in a major cycle
and occur respectively in the (j + LCM

Ri
× Z)′th

minor cycle, where 0 ≤ Z ≤ (Ri − 1). Let Mm
Oijk

represent the minor cycle where the mth occur-
rence of page Oijk and it can be computed as fol-
lows.

Mm
Oijk

= j + LCM
Ri

× (m − 1) .

For instance, for the example shown in Figure
3, page O231 occurs two times in a major cycle.
First, it occurs in the M1

O231
th minor cycle. Then,

it occurs in the M2
O231

th minor cycle, where

M1
O231

= 3 + 6
2 × (1 − 1) = 3, and

M2
O111

= 3 + 6
2 × (2 − 1) = 6.

Let SNm
Oijk

represent the corresponding se-
quence number of the mth occurrence of page
Oijk.

SNm
Oijk

=
∑Mm

Oijk
−1

p=1 MSp +
∑i−1

p=1 NSCp,q + k,

where q = ((Mm
Oijk

− 1) mod NCp) + 1.

For instance, for the example shown in Figure 3,
the two corresponding sequence numbers of page
O231 are:

7

SN1
O231

=
∑3−1

p=1 MSp +
∑2−1

p=1 NSCp,q + k
= (MS1 + MS2) + NSC1,1 + 1
= (5 + 4) + 1 + 1
= 11.

SN2
O231

=
∑6−1

p=1 MSp +
∑2−1

p=1 NSCp,q + k
= (MS1 + MS2 + MS3 + MS4 + MS5)

+NSC1,2 + 1
= (5 + 4 + 4 + 4 + 3) + 1 + 1
= 22.

Let SPn
Oijk

denote the nth distance between the
same page Oijk in a major cycle and it can be
computed as follows. When n 6= Ri, SPn

Oijk
=

SN
(n+1)
Oijk

−SNn
Oijk

. When n = Ri, SPRi

Oijk
= TS−

SNRi

Oijk
+ SN1

Oijk
.

Finally, we have
EDPOijk

= (1/TS) ×
∑Rk

m=1((SPm
Oijk

− 0.5)+

(SPm
Oijk

− 1 − 0.5) + ...+

(SPm
Oijk

− (SPm
Oijk

− 1) − 0.5))

= (1/TS) ×
∑Rk

m=1(SPm
Oijk

2/2)

= (1/TS)× (
∑Rk−1

m=1 ((SNm+1
Oijk

−SNm
Oijk

)2/2)+

(TS − SNRi

Oijk
+ SN1

Oijk
)2/2).

Take page O231 (page 6) as an example, we have
EDPO231

= (1/23) × ((
∑2−1

m=1(SNm+1
O231

− SNm
O231

)2/2)+

(23 − SN2
O231

+ SN1
O231

)2/2)
= (1/23) × ((SN2

O231
− SN1

O231
)2/2+

(23 − SN2
O231

+ SN1
O231

)2/2)
= (1/23) × ((22 − 11)2/2 + (23 − 22 + 11)2/2)
= (1/23) × (102/2 + 122/2)
= 1/23) × (100/2 + 144/2)
= 5.304.

4.3. Simulation Results

In this simulation, we let θ = 0.8, γ = 0.9. We
consider 12 test samples which include the combi-
nations of S = 3 and 4 and ∆ = 4 and 5, respec-
tively, for a fixed D that is a random value between
10000 and 11000 to assure that Ki ≥ NCi . For
each test sample, we compute the average result
for 1000 values of D. The parameters and their
default settings are shown in Table 3.

The total number of slots in a major cycle
equals summing the total number of slots in
each minor cycle. In the Acharya et al.’s algo-
rithm, the size of each minor cycle equals MS
(=

∑S
i=1 NSi =

∑S
i=1d

Ki×Ri

L e). However, in the
adaptive algorithm, the size of each minor cycle
either equals MS or is less than MS. Therefore,

Table 3: The parameters and their default settings

Parameter Default value
S 3..4
D 10000..11000
∆ 4..5
θ 0.8
γ 0.9

Table 4: ∆ = 4, Ri = (S − i) × 4 + 1, 1 ≤ i ≤ S

S Adaptive BD TWS of BD Max. TWS

3 40144 40203 59 115

4 53874 54991 1117 2016

obviously, the total number of slots in the adap-
tive approach is less than that in Acharya et al.’s
algorithm.

When ∆ = 4 and 5, the detailed simulation re-
sults about the total number of slots in one broad-
cast cycle in the adaptive approach and Acharya
et al.’s algorithm for 1000 executions are shown
in Tables 4 and 5, respectively, where Adaptive
denotes the adaptive approach, BD denotes the
Acharya et al.’s broadcast disk approach, TWS
of BD denotes the total number of wasted slots
in Acharya et al.’s broadcast disk approach, and
Max. TWS denotes the maximum number of
wasted slots in Acharya et al.’s broadcast disk ap-
proach. From the results, we show that our adap-
tive approach always generates a smaller number
of slots than Acharya et al.’s algorithm. As ∆ is
increased, the total number of slots is increased
in both the adaptive approach and Acharya et

al.’s algorithm. As S is increased, the total num-
ber of slots and the percentage of the total num-
ber of wasted slots are also increased in both the
adaptive approach and Acharya et al.’s algorithm.
When S = 4 and ∆ = 4, up to 2016 slots are empty
among 54991 slots in Acharya et al.’s algorithm.
(Note that as shown in Table 2, when ∆ = 4, it
has the maximum value of LCM among the cases
of ∆ = 4 and 5, since each Ri can not be divided
by each other. But considering the results shown
in Tables 4 and 5, a test sample with the maxi-
mum LCM (∆ = 4) does not generate the maxi-
mum number of slots in one broadcast cycle; the
maximum number of slots in one broadcast cycle
occurs in the case of ∆ = 5.)

A comparison of the mean access time (in terms

8

Table 5: ∆ = 5, Ri = (S − i) × 5 + 1, 1 ≤ i ≤ S

S Adaptive BD TWS of BD Max. TWS

3 47555 47644 88 179

4 64716 65705 988 1750

Table 6: A comparison of the mean access time:
Adaptive vs. BD

Adaptive BD

S ∆ = 4 ∆ = 5 ∆ = 4 ∆ = 5

3 2536.971 2888.545 2540.726 2893.961

4 2010.891 2311.529 2052.620 2346.846

of the time units) in the Acharya et al.’s algorithm
and the adaptive approach for 1000 executions is
shown in Table 6.

From this result, we show that the mean access
time in our adaptive approach is always smaller
than or equal to that in Acharya et al.’s algorithm.
As S is increased, the access time is decreased in
both the adaptive approach and Acharya et al.’s
algorithm. As ∆ is increased, the access time
is increased in both the adaptive approach and
Acharya et al.’s algorithm. When S = 4 and ∆ =
4, our adaptive approach can save 42 time units as
compared with Acharya et al.’s algorithm. When
S = 4 and ∆ = 5, our adaptive approach can save
35 time unit as compared with Acharya et al.’s
algorithm.

5. Conclusion

Acharya et al. have proposed the use of a pe-
riodic dissemination architecture in the context
of mobile systems, called Broadcast Disks. This
strategy can construct a memory hierarchy in
which the highest level contains a few items and
broadcasts them with high frequency while sub-
sequent levels contain more and more items and
broadcast them with less and less frequency. In
this way, one can establish a trade-off between ac-
cess time for high-priority data and that of the
low-priority items. However, based on Acharya
et al.’s approach, some broadcast slots may be
unused, which results in the waste of bandwidth
and the increase of access time. In this paper,
we have presented an adaptive approach to pre-
vent the occurrence of the empty slots. Although
there is a constraint, Ki ≥ NCi, the proposed ap-
proach guarantees no empty slots, which can save
bandwidth. From our performance analysis and

simulation, we have shown that our adaptive ap-
proach generates a smaller number of slots in one
broadcast cycle and shorter mean access time than
Acharya et al.’s algorithm. In an environment
where different clients may listen to different num-
ber of broadcast channels, the schedules on differ-
ent broadcast channels should be coordinated so
as to minimize the access time for most clients
[24]. Therefore, how to design efficient broadcast
programs for the case of broadcasting over multi-
ple channels is one of the possible future research
directions.

References

[1] S. Acharya, M. Franklin, S. Zdonik, and
R. Alonso, “Broadcast Disks: Data Manage-
ment for Asymmetric Communications Envi-
ronments,” Proc. of ACM SIGMOD Int. Conf.

on Management of Data, pp. 199–210, 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik,
“Dissemination-Based Data Delivery Using
Broadcast Disks,” Personal Comm., Vol. 2,
No. 6, pp. 50–60, Dec. 1995.

[3] S. Acharya, M. Franklin, and S. Zdonik,
“Prefetching from a Broadcast Disk,” Proc. of

the 12th IEEE Int. Conf. on Data Eng., pp.
276–285, 1996.

[4] M. H. Ammar and J. W. Wong, “On the Opti-
mality of Cyclic Transmission in Teletext Sys-
tems,” IEEE Trans. on Communications, Vol.
35, No. 1, pp. 68–73, Jan. 1987.

[5] D. Barbara, “Mobile Comput-
ing and Database—A Survey,” IEEE Trans.

on Knowledge and Data Eng., Vol. 11, No. 1,
pp. 108–117, 1999.

[6] T. F. Bowen, G. Gopal, G. Herman, T. Hickey,
K. C. Lee, W. H. Mansfield, J. Raitz and
A. Weinrib, “The Datacycle Architecture,”
CACM, Vol. 35, No. 12, pp. 71–81, Dec. 1992.

[7] Y. I. Chang and C. N. Yang, “A Complemen-
tary Approach to Data Broadcasting in Mobile
Information Systems,” Data and Knowledge

Eng., Vol. 40, No. 2, pp. 181–194, Feb. 2002.

[8] Y. I. Chang and S. Y. Chiu, “A Hybrid Ap-
proach to Query Sets Broadcasting Scheduling
for Multiple Channels in Mobile Information
Systems,” Journal of Information Science and

Eng., Vol. 18, No. 5, pp. 641–666, Sept. 2002.

9

[9] Y. I. Chang and W. H. Hsieh, “An Ef-
ficient Scheduling Method for Query-Set-
based Broadcasting in Mobile Environments,”
Proc. of IEEE the 2nd Int. Workshop on Mo-

bile Distributed Computing, pp. 478–483, 2004.

[10] Y. C. Chehadeh, A. R. Hurson and
M. Kavehrad, “Object Organization on a Sin-
gle Broadcast Channel in the Mobile Comput-
ing Enviorment,” Multimedia Tools and Appli-

cations, Vol. 9, No. 1, pp. 69–94, July 1999.

[11] C. C. Chen, “Compression-based Broadcast
Data for Reducing Access Time in Wireless
Environment,” Proc. of 1999 National Com-

puter Symp., Vol. 3, pp. 539–546, 1999.

[12] M. S. Chen, K. L. Wu and P. S. Yu, “Op-
timizing Index Allocation for Sequential Data
Broadcasting in Wireless Mobile Computing,”
IEEE Trans. on Knowledge and Data Eng.,
Vol. 15, No. 1, pp. 161–173, Jan./Feb. 2003.

[13] Y. D. Chung and M. H. Kim, “QEM: A
Scheduling Method for Wireless Broadcast
Data,” Proc. of the 6th Int. Conf. on Database

Systems for Advanced Applications, pp. 135–
142, 1999.

[14] Y. D. Chung, S. H. Bang and M. H. Kim, “An
Efficient Broadcast Data Clustering Method
for Multipoint Queries in Wireless Information
Systems,” The Journal of Systems and Soft-

ware, Vol. 64, No. 3, pp. 173–181, Dec. 2002.

[15] J. L. Huang, M. S. Chen and W. C. Peng,
“Broadcasting Denpendent Data for Ordered
Queries Without Replication in a Multi-
Channel Mobile Environment,” Proc. of the

19th Int. Conf. on Data Eng., pp. 692–693,
2003.

[16] J. L. Huang and M. S. Chen, “Dependent
Data Broadcasting for Unordered Queries in a
Multiple Channel Mobile Evironment,” IEEE

Trans. on Knowledge and Data Eng., Vol. 16,
No. 9, pp. 1143–1156, Sept. 2004.

[17] T. Imielinski and S. Viswanathan, and B.R.
Badrinath, “Data on Air: Organization and
Access,” IEEE Trans. on Knowledge and Data

Eng., Vol. 9, No. 3, pp. 353–371, May/June,
1997.

[18] S. Jung, B. Lee and S. Pramanik, “A Tree-
Structured Index Allocation Method with

Replication over Multiple Broadcast Channels
in Wireless Environments,” IEEE Trans. on

Knowledge and Data Eng., Vol. 17, No. 3,
pp. 311–325, March 2005.

[19] J. Juran, A. R. Hurson, N. Yijaykrishnan
and S. Kim, “Data Organization and Retrieval
on Parallel Air Channels: Performance and
Energy Issues,” Wireless Networks, Vol. 10,
No. 2, pp. 183–195, March 2004.

[20] G. Lee and S. C. Lo, “Broadcast Data Al-
location for Efficient Access of Multiple Data
Items in Mobile Environments,” Mobile Net-

works and Applications, Vol. 8, No. 4, pp. 365–
375, Aug. 2003.

[21] S. C. Lo and A. L. P. Chen, “An Adap-
tive Access Method for Broadcast Data Under
an Error-Prone Mobile Environment,” IEEE

Trans. on Knowledge and Data Eng., Vol. 12,
No. 4, pp. 609–620, July/Aug. 2000.

[22] W. C. Peng, J. L. Huang, and M. S. Chen,
“Dynamic Leveling: Adaptive Data Broad-
casting in a Mobile Computing Environment,”
Mobile Networks and Applications, Vol. 8,
No. 4, pp. 355–364, Aug. 2003.

[23] K. L. Tan, J. X. Yu, and P. K. Enk, “Sup-
porting Range Queries in a Wireless Environ-
ment with Nonuniform Broadcast,” Data and

Knowledge Eng., Vol. 29, No. 2, pp. 201–221,
Feb. 1999.

[24] N. H. Vaidya and S. Hameed, “Scheduling
Data Broadcast in Asymmetric Communica-
tion Environments,” Wireless Networks, Vol.
5, No. 3, pp. 171–182, May 1999.

[25] X. Yang and A. Bouguettaya, “Adaptive
Data Access in Broadcast-Based Wireless
Enivornments,” IEEE Trans. on Knowledge

and Data Eng., Vol. 17, No. 3, pp. 326–338,
March 2005.

10

