
讓視障者用聽覺建構圖像

Constructing Scenes by Hearing of the Visual Disabilities

Dyi-Rong Duh
Department of Computer
Science and Information

Engineering
National Chi Nan

University
drduh@csie.ncnu.edu.tw

Chia-Wei Lu
Department of Computer
Science and Information

Engineering
National Chi Nan

University
s1321008@ncnu.edu.tw

Kai-Hsun Wang
Department of Computer
Science and Information

Engineering
National Chi Nan

University
s1213020@ncnu.edu.tw

摘要

視覺是人類感受外在環境最重要的方式，這方

面對視覺障礙者是非常的不方便的，因為他們得要

用其他的感官去感覺外在的世界，所以我們期望發

展一套工具幫助盲人用聽覺去感覺物體的輪廓然

後猜出是什麼東西。此外，如果他們能感覺到危險

物體的接近，也可以讓他們更安全。我們基本的想

法是從左到右，一行一行的將輪廓轉成不同頻率的

聲音。在本論文中，我們在個人電腦上模擬和驗證

此想法。我們發現實驗結果非常有趣。

關鍵詞： 視覺障礙，頻率，影像輪廓，視覺輔助裝

置

Abstract

Vision is the most important way for people to

sense the external environment. The visual

disabilities are so inconvenient that they could only

use their other senses to feel out the outside world.

We present a technique that helps the visual

disabilities to sense curves of an object by their

hearing. By hearing the sound, they could guess what

the object might be. Furthermore, if they could sense

the object closing to them, it might help them to keep

the danger away. The basic idea of this paper is to

traverse the image caught by a webcam from left to

right per column at a time and produce the sound of

different frequencies according to the position of the

sketch. In this paper, we simulate and verify our idea

on PC, and the experimental result is very interesting.

Keywords: Visual disability, frequency, image sketch,

assistive vision device

1. Introduction

Eyes are vital organs of sight and the important

sense of human for observing the external

environment. The visual disabilities (people with

seeing loss or impairments) have no vision and are so

inconvenient because they could only use their other

senses to feel out the outside world. Fortunately, in

general, they have very sensitive hearing, smelling,

and touch. They learn everything through hearing and

touch. The most desirable way to provide information

to pedestrians with visual disability that is to provide

assistive devices with audible information. Our goal

is to make an assistive vision device (a low cost

embedded system) to help the visual disabilities to

construct the scenes by their hearing as Figure 1

illustrated. However, in this paper, we only simulate

our work on PC. In our developed system, we first

use a webcam to take a picture from outside world

into PC using the program derived by Mbogho [4].

Then we extract the sketch image from the picture we

taken [9] and examine the image to produce a stereo

sound. The dataflow of our work is shown in Figure 2.

Although at this time we implement all our work on

PC to simulate and evaluate our idea, it can be

transplanted into an embedded system with low cost

and low energy constrains in the near future.

Figure 1. Our device to help the visual disabilities.

Figure 2 The dataflow of our system.

The original idea of drawing image sketch by

sounds of different frequencies comes from Yeh and

Lin [8]. In their work, they use Intel 8051

microcontroller and Yamaha YM2413B sound IC to

implement an embedded system for scanning images

by sound. They send the sketch data from the

notebook to the embedded system via the parallel

port and make the sound IC to produce the mono

sound. They also developed some efficiently

algorithms in frequency domain to improve the

judgment of listener. What we do here is to make a

new system simulated on PC to further examine and

evaluate their idea. The experimental results of this

work show that the idea is valuable and attractive.

This paper is organized as follows. In the next

section, we describe the principle and process of our

work. In section 3, the experimental results of our

implementation are stated. Finally, we conclude our

result and list some tasks for the further research in

Section 4.

2. Principle and Process

We explain our work step by step as we go

through the paper. First, we will tell the idea of

transformation form image to sound in detail. Then

we will talk a little bit about BMP format. After that,

we will see how the extracting program works to

extract sketchs from the image. Next, we will use

DirectSound API [5] to produce stereo sound

according to the sketch image.

2.1 The Idea

How exactly do we transform an sketch image

to sound? At first, we preset sounds of different

frequencies to each row within the image. From the

bottom row to the top row are sounds of low

frequency to high frequency. We then scan the image

from left to right per column at a time. The wave of

corresponding frequency on each row is sounded out

if the scanning column intersects with the sketch at

the corresponding row. For example, the sound of

sketch image in Figure 3 would be like a wave of low

frequency at first, the frequency then gradually

increases and ends in a wave of high frequency. By

this mechanism, some simple objects, such as line,

triangle, and rectangular, can be easily present and

recognized by one without any extra training. Notice

that circle and ellipse are very difficult to recognize

by anyone.

Figure 3. A line from bottom to top.

2.2 BMP Format

The BMP file [2], [3] is a bitmap image format

developed by Microsoft Corporation. It is stored in a

device independent bitmap (DIB) format, so that this

format can display an image on any type of display

device.

The BMP contains two parts; one is the header

that contains the information of the bitmap, and the

other is the bitmap data. In bitmap data, the scan line

are stored from bottom up, so the beginning pixel of

the image is in the lower-left corner of the bitmap and

the last pixel is in the upper-right corner of the

bitmap. In other words, an image in bmp format is

stored from left to right and from bottom to top.

Furthermore, if each pixel is represented by 24 bits

red-green-blue (RGB) it would be changed to

blue-green-red order. We use Figure 4 as an example

to show the content of the bitmap file. The bitmap

data of Figure 4 is illustrated in Table 1.

Figure 4. A sample BMP image.

Table 1.The BMP Data of Figure 4

We can get some information from the Table 1

and describe them as follows:

 0x0000-0x0001: 0x42 and 0x4D are the ASCII

characters “B” and “M”.

 0x0002-0x0005: 0x00038436 (= 230454) means

that the file size is 230454 bytes.

 0x000a-0x000d: 0x00000036 (= 54) means that

that bitmap data start from offset “0036h”.

 0x000e-0x0011: 0x00000028 (= 40) means that

the header size is 40 bytes.

 0x0012-0x0015: 0x00000140 (= 320) means

that the image’s horizontal length is 320 pixels.

 0x0016-0x0019: 0x000000F0 (= 240) means

that the image’s vertical length is 240 pixels.

 0x001c-0x001d: 0x0018 (= 24) means that there

are 24 bits per pixel.

 0x0036-: They are the bitmap data from 0x0036

to the end of the file.

According to the Header information, we can

easily know the detail of the image, for example, the

“bitmap data offset” can help us to catch the actually

image data, the “Width” and “Height” show us how

many pixels the image has, and we can catch “Bits

per pixel” to decide whether we should transform it

Offset BMP Data (in hexadecimal)

0x0000 42 4D 36 84 03 00 00 00

0x0008 00 00 36 00 00 00 28 00

0x0010 00 00 40 01 00 00 F0 00

0x0018 00 00 01 00 18 00 00 00

0x0020 00 00 00 84 03 00 00 00

0x0028 00 00 00 00 00 00 00 00

0x0030 00 00 00 00 00 00 FF 5A

0x0038 BB FF 59 BA FF 5D C2 FF

0x0040 5B C0 FF 61 BE FF 65 C2

0x0048 FF 63 C4 FF 58 B9 FF 5F

．．． ．．．．．．．．．．．

to 8 bits per pixel or not because we just use 8 bits

per pixel and gray scale image in our simulation.

2.3 Extracting a Sketch

In order to extract the sketch of an image

effectually, we first transform the original color 24

bits image to an 8 bits gray scale image; then we

calculate where the color tones has a large change

and record it. These two steps are stated in the

following.

Step 1. (Transforming a color image to a gray scale

image): We calculate the average value of each

pixel’s red, green, and blue values as a gray scale

value. Although it is not the actually gray scale

value in this way, the result is not too bad. We must

consider the performance if we use a complex

algorithm to calculate the gray scale value, because

it must reaction in time when we implement it in

an embedded system with performance constraint.

Step 2. (Extracting the sketch): There are many ways

to perform edge detection. However, the most may

be grouped into two categories, gradient and

Laplacian. The gradient method detects the edges

by looking for the maximum and minimum in the

first derivative of the image. We apply gradient

method to calculate the variation of the gray scale

value [10]. If one pixel’s gradient value is larger

than a threshold, we would record it as the image

sketch. In mathematics, a gradient value is equal to

f2
x+f2

y, where fx = f(x+1, y) – f(x, y), fy = f(x, y+1) –

f(x, y), and f(x, y) is the gray scale value of the

pixel at coordinate (x, y).

We use Figure 5 as an example to test our

algorithm. The result image is shown in Figure 6 and

Figure 7.

Figure 5. The original image from a webcam.

Figure 6. The result of Step 1 from Figure 5.

Figure 7. The result of Step 2 from Figure 6.

It is important to decide an appropriate

threshold for extracting the sketch because we would

get a complicated sketch when using a too small

threshold and get an incomplete sketch when using a

too big threshold. We use following figures as

examples to illustrate our meaning. The original

image is shown in Figure 8 and other three figures are

the results after extracting. The threshold of Figure 9

is 50, the threshold of Figure 10 is 150, and the

threshold of Figure 11 is 250.

Figure 8. The original image 1.

Figure 9. Threshold = 50.

Figure 10. Threshold = 150.

Figure 11. Threshold = 250.

We need an uncomplicated but complete sketch

to display the sound of image, but it is difficult to

decide an appropriate threshold for every landscape

picture. For example, the testing in Figure 8, if the

threshold is 50 (as shown in Figure 9), it will extract

a complicated sketch; if the threshold is 150 (Figure

10), it will extract a good sketch. In the following, the

image shown in Figure 12 is tested. If the threshold is

50 the result is uncomplicated as shown in Figure 13.

The result is incomplete as shown in Figure 14, if the

threshold is 150.

As described above, we know that if the

boundary chromatic aberration of the image’s is not

very explicit then the threshold should be low for

extracting the complete sketch. Otherwise, the

threshold should be high for extracting the

uncomplicated sketch. This is why the threshold is

difficult to decide.

Figure 12. The original image 2.

Figure 13. Threshold = 50.

Figure 14. Threshold = 150.

In our solution, we use standard deviation to

represent the similarity degree of the image’s hues.

We have two steps that are stated in the following.

Step 1. (Finding an appropriate threshold): We

calculate the standard deviation of the pixels value

in an image. Let n be the number of pixels, xi be

the value of a pixel i, 1≤i≤n, and X be the mean

of pixels value of the testing image. The standard

deviation S is stated in Equation (1).

S =
1

n−1∑
i=1

n

(xi− X)2

 =
1

n−1((∑
i=1

n
x2

i)−n X 2) (1)

Based on Equation (1), we could determine an

appropriate threshold by analyzing the standard

deviation. According to our experiments shown in

Figure 15, we find that the standard deviation

value is direct proportion to the threshold. So in

our assumption, we recommend a small threshold

for a small standard deviation value and vice versa,

but there are still some exceptions.

Figure 15. Our experiments data.

Step 2. (Simplifying the image): If one pixel is

surrounded by up, down, left, and right four pixels,

we name that pixel the inner pixel and mark the

inner pixel CAN’T-DELETED. Then for each

inner pixel, we delete surrounding four pixels if

they are not marked CAN’T-DELETED. As shown

in Figure 16, after simplification process we

proposed, red pixels are those being preserved and

black pixels are those being deleted. Thus, as we

can see, only the framework of the picture is

preserved. Repeat this process until no more pixels

are deleted during a process.

Figure 17 is a sample image for testing our

simplification method. The resulting image is shown

in Figure 18. The result seems good for our

simulation because the framework of picture is

preserved. In words, the resulting image has less

unnecessary pixels around the sketch. Consequently,

it would be more easily to listen to these pixels by

sound.

Figure 16. Our simplified method.

Figure 17. Image for testing simplified method.

Figure 18. Simplified result of Figure 17.

2.4 Making Sound

We choose DirectSound API which is a part of

DirectX to make the computer sound [5]. In

DirectSound, every sound must first be written into

buffer to be sounded out. There are two kinds of

buffers primary and secondary. User could only have

one primary buffer and the sound inside the primary

buffer is the sound coming out from speaker at last.

Normally user doesn’t access the primary buffer

directly. Instead, we modify secondary buffers. It is

very easy for DirectSound to combine various

different sounds. User only needs to write different

sounds into different secondary buffers and play them

together at the same time. DirectSound then

combines all of them into the primary buffer and

plays them out. Therefore, after extracting the sketch

image from the photo taken from the webcam, we

create a secondary buffer for each row in the image.

We then write waves of different frequencies into

each secondary buffer; starting from the bottom row

to the top row are waves of low frequencies to waves

of high frequencies. When the image is being

scanned from left to right per column at a time, the

corresponding wave is sounded out if the scanning

column intersects with the sketch at the

corresponding row.

In DirectSound, there are two ways to write

wave data into the sound buffer: static and streaming

[6]. Static method writes whole data into buffer at

once. Streaming method writes data gradually while

buffer is playing. For simplicity, we use the static

method in our work, but this results in discontinue

sound and costs a lot of memory to retain wave data.

2.5 Sounding with Stereo

To improve the quality of sound and make the

visual disabilities aware of sound more easily, we

have implemented sound to have stereo. More

specifically, we implemented sound to have 44.1kHz

sample rate, 16-bit bit-depth and 2 channels. We also

set the position of sound source according to its

position in the image. DirectSound supports 3-D

sound implementation. In DirectSound, 3-D space is

represented by Cartesian coordinates which are

values on three axes: the X-axis, the Y-axis and the

Z-axis as shown in Figure 19. Values along with the

X-axis increase from left to right, along with the

Y-axis from bottom to top, and along with the Z-axis

from near to far [5]. The default position of the

listener is on the right of the coordinate (0, 0, 0)

facing forward to the positive Z-axis as Figure 19

illustrated.

Figure 19. The coordinate system in DirectSound.

By using the function SetPosition of

IDirect3DBuffer interface in DirectSound, we set the

sound position according to its vector in 3-D space.

We make z component to have a fixed positive value

and change x, y components according to its

corresponding dot pixel in the image. Therefore,

when the scanning column is on the left side, we

could hear louder sound coming out from the left

speaker and vice versa. Moreover, we could feel that

the sound is slightly higher if the sketch is on the

upper region.

3. Experimental Results

The implemented system includes a webcam

and a notebook with Pentium M CPU running MS

Windows XP SP2. The system we made is shown in

Figure 20.

Figure 20. The implemented system.

We use a webcam to take some pictures and

send them to the notebook via a USB port. Then we

can hear the sounds corresponding to these pictures

by our simulation. We have taken eight pictures for

testing our work. The tested pictures are Figure 22,

Figure 23, Figure 25, Figure 27, Figure 29, Figure 31,

Figure 33, and Figure 35 and their sketch images are

Figure 22, Figure 24, Figure 26, Figure 28, Figure 30,

Figure 32, Figure 34, and Figure 36, respectively. We

describe the sound of each picture following the

sketches of the picture. The experimental results are

described as follows.

Figure 21. Tested picture 1.

Figure 22. Image sketch of Figure 22.

Result of Figure 21:

We first hear a low frequency sound for a short

time, then the frequency suddenly jump to high and

have other lower frequencies noise, but we could hear

the higher frequency clearly. We could recognize that

there is an oblong shape object in the middle.

Figure 23. Tested picture 2.

Figure 24. Image sketch of Figure 23.

Result of Figure 23:

We hear two consecutive sounds. The former

one’s frequency is increased from low to high and

decreased to low again. The later one is like the first

one but its frequency’s gap is smaller and the

frequency is changed more slowly than the first

sound.

Figure 25. Tested picture 3.

Figure 26. Image sketch of Figure 30.

Result of Figure 30:

We first hear that one frequency is increased

from low to high slowly and then some high

frequencies is decreased from high to low with a

short time break. After that some frequencies is

changed from low to high with some frequencies as

noise for a long time.

Figure 27. Tested picture 4.

Figure 28. Image sketch of Figure 34.

Result of Figure 34:

We hear some low and short frequencies in the

beginning, and then we hear some frequencies

changed from low to high and high to low rapidly.

Although we could not judge there is a person

standing on the right of the picture, we could make

sure there is something in the right of the picture.

Figure 29. Tested picture 5.

Figure 30. Image sketch of Figure 29.

Result of Figure 29:

We hear some frequencies with lot of noise

from low to high, and the frequencies changed

irregularly. It is too complex and difficult to judge

what it is.

Figure 31. Tested picture 6.

Figure 32. Image sketch of Figure 31.

Figure 33. Tested picture 7.

Figure 34. Image sketch of Figure 33.

Figure 35. Tested picture 8.

Figure 36. Image sketch of Figure 35.

Results of Figure 31, Figure 33, and Figure 35:

We continually took three pictures as shown in

Figure 31, Figure 33, and Figure 35, and we could

hear the frequencies changed similarly from the three

pictures by our simulation. The frequencies produced

by the three pictures are all from low to high and then

from high to low clearly, but the average frequency of

Figure 32 is the lowest one; the average frequency of

Figure 36 is the highest one. According to the sounds

produced by our system in accordance with the

sketches of these three pictures, we could judge that

there is an object closing to us.

4. Conclusion and Future Work

According to the result of our implementation,

we could judge the simple sketch graph and we could

sense one object getting closer to us by taking some

continuing pictures, but it is difficult to judge the

complex sketch graph. Although our algorithm for

extracting sketch simplifies the complex sketch and

makes our judgment less noise, one still could not

judge objects in very complex pictures.

For the future work, we list four tasks to

improve our current system. First, we could add an

ultrasonic device to detect the distance of the center

point of the image. Then the volume could be adjust

according to the distance. For example, if the distance

of the object is short, we make sound louder to warn

the user; then the user would be watchful. Second, we

could improve our sketch extracting program to

extract the biggest or only the nearest object.

Therefore, the user can only concentrate on the most

dangerous object. Thirdly, the quality of sound is still

not good. We could use streaming method to write

wave data in the future to make the sound better and

make the usage of memory smaller. Fourthly, we

could study some researches regarding the hearing of

human and improve the proposed image extracting

algorithm.

References

[1] 井上誠喜, 八木伸行, 林正樹, 中須英輔, 三谷

公二, 奧井誠人, 利用微分擷取影像的輪廓, C

語言數位影像處理, 全華圖書, 2005.

[2] M. Luse, Bitmapped Graphics Programming in

C++, CA, Addison Wesley, 1993.

[3] M. Luse, "The BMP File Format," Dr. Dobb's

Journal, Vol. 9, No. 10, pp. 18-22, 1994.

[4] A. Mbogho, “Video for Windows Single-Frame

Capture Class Without MFC,” February 1, 2005,

http://www.codeguru.com/Cpp/G-M/multimedia/

video/article.php/c4723.

[5] Microsoft Corporation, DirectSound,

http://msdn.microsoft.com/library/default.asp?url

=/library/en-us/directx9_c/directx/htm/directsoun

d.asp.

[6] M. J. Norton, “Creating DirectSound Objects,

Creating DirectSound Buffers and Writing

DirectSound Buffers,” in Spells of Fury: Building

Windows 95 Games Using DirectX 2, Waite

Group, 1996.

[7] X.-B. Peng, L.-P. Chen, F.-L. Zhou, and J. Zhou,

“Singularity Analysis of Geometric Constraint

Systems”, Journal of Computer Science and

Technology, Vol. 17, No. 3, pp. 314-323, 2002.

[8] H.-C. Yeh and T.-C. Lin, “An Embedded System

for The visual disabilities Seeing Scenes by

Ears,” Project Report, Department of Computer

Science and Information Engineering, National

Chi Nan University, 2004.

[9] D. Vernon, Machine Vision, NJ, Prentice-Hall,

1991.

[10] L. Zimet, M. Shahram, and P. Milanfar, “An

Adaptive Framework for Image and Video

Sensing, Department of Electrical Engineering,

University of California, available at

http://www.cse.ucsc.edu/~milanfar/EI5678-15Fin

al.pdf.

