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Abstract

A current high-priority phase of human genomics in-
volves the development of a full Haplotype Map of
the human genome [15]. It will be used in large-
scale screens of populations to associate specific hap-
lotypes with specific complex genetic-influenced dis-
eases. Phylogenetic networks are models of sequence
evolution that go beyond trees, allowing biological op-
erations that are not tree-like. The problem is to find
a phylogenetic network that derives an input set of se-
quences.

Recently Ding and Gusfield [4] propose a linear
time algorithm for theperfect phylogeny treeinference
problem. In this paper, we generalize the linear time
tree inference algorithm as the base case and propose
efficient algorithms that inferphylogenetic networks
satisfying given pre-specified types and/or conditions
of recombination by using theconflict tabledata struc-
ture.

Keywords: bioinformatics, SNP, haplotype inference,
phylogenetic network, recombination.

1 Introduction

Building a Haplotype Map of the human genome
has become a central NIH promoted goal [15]. The in-
ternational Haplotype Map Project is focussed on de-
termining the common SNP haplotypes in several di-
verse human populations. It is widely expected that the
relation between specific haplotypes and genotypes
(such as certain disease) will allow the rapid location
of gene that influence those disease. However, col-
lecting genotypes is cheaper and easier than collecting
haplotypes. So it is the main approach that collecting

genotype data and computationally inferring to haplo-
type data pairs.

1.1 SNP, Genotype, Haplotype

Mutation in DNA is the principle factor that is respon-
sible for the phenotypic differences among human be-
ings, and SNPs (single nucleotide polymorphisms) are
the most common mutations. A SNP is defined as a
position in a chromosome where each one of two (or
more) specific nucleotides is observed in at least10%
of the population [18]. The nucleotides involved in a
SNP are calledalleles.

In diploid organisms, such as human, there are two
“copies” of each chromosome. A description of the
data from a single cope is called a haplotype, and
the mixed data on the two copies is called a geno-
type. In complex disease (affected by more than single
gene,) it is more informative to have haplotype data
than to have genotype data. On the other hand, it is
not feasible to examine the two haplotypes separately
in general, and genotype data rather than haplotype
data is usually obtained. Computational methods for
inference of haplotype information from the observed
genotype data are thus highly demanding in the current
trend of computational biology.

We represent each ofn genotypes as a vector, each
with m site, where each value in a site is either0,1 or
2. A site i in genotype vectorg has a value0 (respec-
tively 1) if site i has value0 (respectively1) on both
the underlying haplotypes (homozygous site), and has
value2 otherwise (heterozygous site).

2 The Phylogenetic Networks

Despite the existence of many well-studied effi-
cient algorithms [9, 1, 5, 4] for inferring the (perfect)
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phylogenetic tree haplotype information, the growth
of genetic data reveals that much haplotyped (SNP)
sequences do not fit the evolutionary tree (coalescent)
models. Aphylogenic networkis a generalization of
a phylogenetic tree, allowing structural properties that
are not tree-like. In the phylogenetic networks,recom-
bination is an important situation between the evolu-
tion. It means a chimeric sequence derived by com-
bining another two gene sequences. In populations
it is the key element underlying techniques that are
widely hoped to locate genes influencing genetic dis-
eases. In graph theory, it can be represented as an
cycle in a undirect graph. The phylogenetic network
problem (with recombination) was introduced by Hein
[13, 14]. The goal is to construct a phylogenetic net-
work that derives a given set of binary sequences with
minimizing the number of recombinations used. The
minimization criterion is motivated by the general util-
ity of parsimony in biological problems, and because
most evolutionary histories are thought to contain a
small number of observable recombinations [10]. Un-
fortunately, the problem is shown to be NP-hard [19].

In a phylogenic network, there are four compo-
nents needed to specify: a directed acyclic graph, an
assignment of sites on edges, an assignment of a se-
quence to each non-recombination, an assignment of
a recombination point, and a sequence to each recom-
bination node. Figure 1 is an example for a phylo-
genetic network. The phylogenetic network generated
by a matrixM [n,m] is shown at the right. There are
exactlyn nodes without incoming edges. Each node
except root has either one or two incoming edges. A
node with two incoming edges is call a “recombina-
tion node”. There are two labelsP andS on the in-
coming edges of recombination node;P means the
“prefix” and S means the “suffix” to the recombina-
tion sequence, and the number on the recombination
node means the site of sequence that recombined.

The recombination events have some special or
important biological meaning, and also are the req-
uisite role in evolution of species. In this paper, we
propose some algorithms to reconstruct the recombi-
nation sequences and the phylogenetic networks. First,
we use the linear time algorithm proposed by Gusfield
[4] to construct theperfect phylogeny tree, and then
add the recombination sequences derived by our algo-
rithms to form a phylogeny network. Given the bi-
ologically specified weights, the algorithm distinguish
more important or meaningful sequences from the oth-
ers; thus higher weighted sequences are considered as
higher priority in processing the genotype matrix. The
proposed phylogenetic network inference algorithms
thus generate results that reflects these priorities.

3 The Linear-Time Perfect Phylogeny
Haplotyping Algorithm (LPPH)

Given an input set ofn genotype vectors of length
m, theHaplotyping Inference (HI)problem is to find
2n binary haplotype vectors such that thesen geno-
types can be generated by the associated pairs of hap-
lotype vectors. This would be impossible without the
implicit or explicit use of some genetic model, either
to assess the biological fidelity of any proposed solu-
tion, or to guide the algorithm in constructing a so-
lution. The most powerful such genetic model is the
population-genetic concept of acoalescent[20, 16].
The coalescent model is an evolution history of2n
haplotypes without recombination; it can be viewed
as a rooted tree with2n leaves, and each of them sites
labels exactly one edge on the tree. In computer sci-
ence terminology, the coalescent model says that the
2n haplotypes fit aperfect phylogeny.

The PPH problem was introduced in [9] with a
solution whose running time isO(nmα(nm)). The
nearly linear time algorithm is based on the linear-time
reduction of the PPH problem to the graph realization
problem. But the graph realization problem is some
what complicate resulting a PPH algorithm hard to un-
derstand and implement. In [9], it is conjectured that
the real linear-time algorithm to PPH problem should
be possible.

Another two slower and easier methods in [1, 5]
were based on “conflict-pairs” rather than graph mod-
els. The running time of both methods areO(nm2).
Related research has examined extensions, modifica-
tions or specializations of the PPH Problem [2, 3,
6, 11, 17], or examined the problem when the data
or solutions are assumed to have some special form
[12, 8, 7].

Recently, a really linear-time algorithm for PPH
problem was proposed in [4]. The algorithm makes no
assumptions about the form of data or the solution. It
is based on a directed, rooted graph, called “shadow
tree”. The algorithm uses some standard operations
which could be executed rapidly to ensure the prop-
erties of the shadow tree. Furthermore, the algorithm
has been fully implemented. The method provides an
implicit representation of all the PPH solutions. The
value of a linear-time algorithm for the PPH problem
is partly conceptual and partly for use in the inner-
loop of algorithm for more complex problem, where
the PPH problem must be solved repeatedly.

3.1 The Shadow Tree

The shadow tree is a kind of data structure which can
express distinct PPH solutions by flipping the class.
In shadow tree, there are two types of edges:tree
edgeand shadow edge, which are both directed to-
wards to root. The tree and shadow edges are labelled
by columns from the genotype matrixM (with the
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Figure 1: A phylogenetic Network with Two Recombination Nodes

shadow edge having bars over the labels for distinc-
tion). For each tree edgei, there is a shadow edgēi
in the shadow tree. The tree edgei means that the site
i occurred a mutation in history. Relatively, the path
from ancestor to the leaves which across the shadow
edgēi means the sitei has no mutation in the histori-
cal path.

There is another important data structure in
shadow tree, called “links”. In the graph theory stand-
point, the links are also edges in a tree, but in order
to distinguishing between the tree (shadow) edges and
links, the word “edge” is reversed for tree and shadow
edges. However, there are also two types of links:free
link and fixed link. Tree edges, shadow edges, and
fixed links are organized intoclasses. In a class, the
relation of position of these edges is fixed. A free link
connects two classes, and a fixed link is contained in a
single class.

There are three operations used to modify the
shadow tree-edge addition, class flipping, andclass
merging. The three operations can be executed rapidly
to ensure the properties of shadow tree.

3.2 Invariant Properties

The LPPH problem processes the input genotype ma-
trix M one row a time, starting at the first row. At ev-
ery step, the algorithm should ensure the correctness
of the following properties and the running time of the
a shadow tree.

Property 1 : For any columni in M, the edge la-
belled byi is in the shadow tree if and only if
the shadow treēi is; i and̄i are in the same class,
and are in different subtrees of the class (expect
for the root class).

Property 2 : Each class (expect for the root class) at-
taches to exactly one other class, and the two

join points are in different subtrees of the parent
class unless it is the root class.

Property 3 : Along any directed path towards the
root the column numbers of the edges (tree or
shadow edges) strictly decrease. Also, for any
two edgesE and E′, if E was added to the
shadow tree while processing a rowk, andE′

was added when processing a row greater than
k, then theE′ can never be aboveE on a path to
the root in the shadow tree.

According above properties, the algorithm can cre-
ate shadow tree in linear time. The more details and
proofs described in [4].

4 The Phylogenetic network algorithms

Prior to the LPPH algorithms, columns of the
genotype matrixM are arranged according to decreas-
ing leaf count, with the column containing the largest
leaf count on the left, and the position of rightmost 1-
entry in each row is arranged decreasingly, with the
first row containing the rightmost 1-entry inM . Ac-
cording to the arrangement ofM , LPPH algorithm can
construct a larger shadow tree. The means of “larger”
is more rows inM could be processed and the shape
of shadow tree is larger.

In the course of processing the genotype matrixM
containing the recombination sequences, LPPH algo-
rithm stops at certain point and report a recombination
occurred in the evolution history. The condition of
recombination can be checked by the method, called
three-gamete test. If any two columnsi, j in haplo-
type sequences contain three rows with the pair(1, 0),
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Figure 2:x is a recombination node, and we use a dotted line to represent the recombination. In type C1, sitei and
j mutate separately and recombine the sequence1, 1. In type C2, sitej mutates beforei does, the recombination
sequence is1, 0. And in type C3, sitei mutates beforej, the recombination sequence is0, 1

(0, 1), and(1, 1), then the two columns are calledcon-
flict. The sequences containing conflict pairs imply re-
combination events. There are three cases of recombi-
nation, as illustrated in Figure 2.

Theorem 1 Two sitesi andj (j > i) is a conflict pair.
There will be three recombination types in the phylo-
genetic networks.

Note that the algorithm arrange the matrixM be-
fore peforming the LPPH algorithm; it follows that
more useful sequences are processed (as coalescent se-
quences) earlier. If the recombination occurred, less
important sequence would be detected and the algo-
rithm stopped. So we can get a recombination se-
quence by executing the LPPH once, and this sequence
is useless or less important than the other two se-
quences. We use a structure call “conflict table” to
record all sequences and construct the recombination
sequences in the following steps.

4.1 Conflict Table

The conflict tableCT is maintained as a two dimen-
sional array such that each entry is aconflict link. The
rows of CT are indexed by three kinds of conflict
pairs: (0, 1), (1, 0), and(1, 1). Each column ofCT
is indexed by each pair of(i, j)-sites within the SNP
sequences for each1 < i < j < m. Each value in
CT is a link list to the row numbers of haplotype se-
quences. As an example, suppose the given haplotype
matrixM is represented as the following.

M :
[

100
010

]

It follows that the corresponding conflict table forM
is the following

CT(M) (1,2) (2,3) (1,3)
10 1 2 1
01 2 0 0
11 0 0 0

Table1
Note that the entries inCT are the linked list of row
numbers. If certain recombination sequence add in
CT , it must causes all values of certain column ofCT
are greater than0. We put the column numbers into
a set of recombination site, called “RS”. The recom-
bination sequence can be construct by most|RS| − 1
recombing. For example, if the third row110 added
in M , it cause the recombination occurred. The table
CT (M) become:

CT(M) (1,2) (2,3) (1,3)
10 1 2,3 1,3
01 2 0 0
11 3 0 0

Table2

In column1, the values of three rows are all greater
than0, the column pair is added intoRS; thusRS =
{1, 2}. The sequence of row3 of M can be derived
by recombing the two arbitrary sequences of column
1 and row1, 2 of CT . The LPPH algorithm stops
when it encounters a recombination sequence; so we
know which sequence is derived by recombing. We
can delete this sequence fromM , and restart the LPPH
algorithm. Finally, a shadow tree for matrixM \R can
be constructed, whereR is the set of recombination
sequences. We use LPPH algorithm to select recom-
bination sequences, and the conflict table to construct
these sequences; until finally produce a phylogenetic
network after linking these recombined sequences on
the initial perfect phylogeny tree derived by LPPH. It
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PN(M,R)
Input: A arranged genotype matrixM and recombination sequence setR.
Output:The haplotype sequencesH.

1 LH ← LPPH(M \R)
2 if LPPH stop in rowi before finishing
3 then R ← R + i
4 PN(M, R) ¤ Restart this algorithm.
5 return CT(LH, R)

Figure 3: The Phylogenetic Network Algorithm.

CT(LH, R)
Input: The sequencesLH derived from LPPH and recombination sequencesR.
Output:The haplotype sequencesH.

1 H ← LH
2 ADD-CT(LH )
3 for each rowk ∈ R do
4 ADD-CT(k)
5 if CT [n, (i, j)] > 0, ∀n ∈ CT
6 then RS ← RS + i + j
7 rs ← recombine two sequences of column(i, j)
8 H ← H + rs
9 ADD-CT(rs)
10 return H

ADD-CT(S)
Input: The sequencesS.

1 for each rowk and columni, j ∈ S, (∀j > i) do
2 if (S[k, i], S[k, j]) = (1, 0)
3 then Insertk into theCT [(1, 0), (i, j)] linked list
4 elseif(S[k, i], S[k, j]) = (0, 1)
5 then Insertk into theCT [(0, 1), (i, j)] linked list
6 elseif(S[k, i], S[k, j]) = (1, 1)
7 then Insertk into theCT [(1, 1), (i, j)] linked list

Figure 4: The Conflict Table Algorithm.

is easily verified that the total time complexity for get-
ting a perfect phylogeny tree and those recombination
sequences isO(mn2). The time needed for construct-
ing the recombination sequences isO(m2n). Thus the
running time of our phylogenetic networks algorithm
is O(mn2 + m2n).

4.2 The Phylogenetic Network Algo-
rithm

Our phylogenetic network algorithm is shown in Fig-
ure 3. The input is genotype matrixM and recombi-
nation sequencesR, R is ∅ initially. The basic idea
is to utilize LPPH algorithm into producing a perfect
phylogeny tree for sequences without recombination.
Later on, the conflict table is used to determine se-
quences and sites implying recombinations. First, we
use the LPPH algorithm to deal with the matrixM .
Once the algorithm stops in rowi before finishing, it
means rowi is a recombination sequence. We addi

into recombination matrixR in line 3 and restart the
PN algorithm. Note that the input of LPPH algorithm
is matrixM \R in second running; thus the rowi is ex-
cluded as an input of LPPH. We use theCT procedure
to construct the recombination sequences.

In the conflict table algorithmCT shown in Fig-
ure 4, we first callADD-CT to record all sequences of
LH into conflict table. If the value pair of rowk and
columni, j is (0, 1), add the numberk in to the link list
of CT [(0, 1), (i, j)]. There is no conflict situation oc-
curred now. Then, the steps3 to 9, record the sequence
one by one of the recombination matrixR and deter-
mine the conflict situation. If the all values of certain
column(i, j) in CT (one column) are greater than0,
that means the conflict occurred in the three sequences
of column(i, j) and separate rows (10), (01), and (11).
We put the numberi, j into RS, and construct the se-
quencers by recombining some sequences. For ex-
ample, there is a conflict situation in Table2, and the
3rd row can be constructed by recombining the1st and
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2nd sequences at site1, 2. Finally, addrs into matrix
H and return the sequences matrixH.

In the phylogenetic network algorithm, we use
LPPH algorithm to construct the sequences with no
recombination and determine the recombination se-
quences. Then use the conflict table to determine the
sequences and site which recombination occurred and
reconstruct the recombination sequences.

5 The Priority Sequences

It is possible to associate each sequence of the
given genomic data with a weight as an indication
of the biological importance, probability of coales-
cent (non-recombinant,) or reliability of each obtained
genotype sequence. These factors can be useful and
considered in the construction of haplotype inference.
Thus we can arrange the genotype matrixM by adding
the priority of each row, and arrangeM by decreasing
the priority, with the highest priority sequence on the
first row. Then process one row at a time, start at first
row. This method can avoid the important sequences
be removed formM . For an example, we consider
four sequences in a genotype matrixM . The order of
processing of LPPH algorithm isA,B,C, D, respec-
tively, as shown in the following.

M :

A
B
C
D




1100
0011
0110
1110




SequenceC is conflicted withA andB on sites pair
(2, 3), and sequenceB is conflict with A andD on
(1, 3) or (2, 3). In LPPH, B and C sequences are
determined as the recombination sequences; however,
other different possibilities exist. For example, if the
priority of these four sequences isD,A, B, C. By
processing the sequences according the priority, the
sequenceB will be determined a recombination se-
quence, but the next sequenceC is allowed.

LPPH Priority
non-recombination A,D A,C, D

recombination B, C B

Table3

Although the LPPH algorithm can determine the more
important sequencesA and D, but the number of
non-recombination sequences is less than the prior-
ity method. The method retains the meaningful se-
quences and determines the recombination sequences
which conflicted with these sequences.

5.1 The Phylogenetic Network Algo-
rithm with Priority Sequences

In the line1 to 3 of phylogenetic network algorithm
with priority sequences shown in Figure 5, we add
the weight of priority for each sequence and arrange
the matrixM with priority. The priority may be the
meaning of biology or the relationship for some spe-
cial disease or populations. Then, the following steps
are the same with thePN algorithm. In this algorithm,
the more important sequences would be proceeded by
LPPH earlier, relatively the chance to be retained is
higher than others.

6 Conclusion and Further Work

In this paper we propose phylogenetic network in-
ference algorithm by using the LPPH algorithm to
determine a maximal non-recombinant phylogenetic
sequences in building a perfect phylogenetic tree as
the base case. In producing the shadow tree corre-
sponded to genotype matrix, it can also determine se-
quences that is constituted through the recombination
event. We can use the conflict table to find the se-
quences and sites causing recombination and construct
the recombination sequence, and the time complexity
is O(mn2 + m2n). As a variant of our phylogen-
tic network algorithm, our algorithm also deals with
sequences with different weights that reflect different
meaning or information, importance, or reliability. In
such case, we consider priorities of sequences and re-
tain the most sequences in the course of computing.

Most of common genetic related diseases are
caused by more than one gene. The distance between

PSPN(M)
Input: The genotype matrixM .
Output:The haplotype sequencesH.

1 for each rowi ∈ M do
2 Add the weight of priority or importance on rowi
3 Sort the matrixM by decreasing the degree of priority
4 H ← PN(M,∅)
5 return H

Figure 5: The Phylogenetic Network Algorithm with Priority Sequences.
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those genes may be very far, and the possibility of re-
combination between those genes is higher. For set-
ting up the course of evolving, the situation of recom-
bination should be considered. In the further, we will
collect the data for the specific disease in some true
families, and try to compute the possible evolutionary
history for the various specific diseases.
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