
A Linear Time Algorithm for Binary Tree Sequences

Transformation Using Left-arm and Right-arm

Rotations

Ro-Yu Wu1,2, Jou–Ming Chang3, Yue-Li Wang1,4,∗

1 Department of Information Management, National Taiwan University of Science and Technology,

Taipei, Taiwan, ROC

2 Department of Industrial Engineering Management, Lunghwa University of Science and Technology,

Taoyuan, Taiwan, ROC

3 Department of Information Management, National Taipei College of Business, Taipei, Taiwan, ROC

4 Department of Computer Science and Information Engineering, National Chi Nan University,

Nantou, Taiwan, ROC

Abstract

In this paper we consider a transformation on bi-
nary trees using new types of rotations. Each of
the newly proposed rotations is permitted only at
nodes on the left-arm or the right-arm of a tree.
Consequently, we develop a linear time algorithm
with at most n− 1 rotations for converting weight
sequences between any two binary trees. In par-
ticular, from an analysis of aggregate method for a
sequence of rotations, each rotation of the proposed
algorithm can be performed in a constant amortized
time. Next, we show that a specific directed rooted
tree called rotation tree can be constructed using
one of the new type rotations. As a by-product, a
naive algorithm for enumerating weight sequences
of binary trees in lexicographic order can be imple-
mented by traversing the rotation tree.

Keywords: Algorithms; Amortized analysis; Binary
trees; Rotations; Tree transformation; Enumera-
tion; Lexicographic order;

∗All correspondence should be addressed to Professor
Yue-Li Wang, Department of Information Management, Na-
tional Taiwan University of Science and Technology, No.
43, Section 4, Kee-Lung Road, Taipei, Taiwan, Republic
of China. (Phone: 886–2–27376768, Fax: 886–2–27376777,
Email: ylwang@cs.ntust.edu.tw).

1 . Introduction

Binary trees are a fundamental data structure in
computer science and has been widely studied over
the past 40 years [1, 2, 4, 36]. One of the most
common operations for reconstructing binary trees
is the use of rotations. The usual rotations in the
past researches are the left/right rotations for bal-
ancing binary search trees [17]. Thus a sequence of
rotations can be viewed as a transformation that
changes a tree into another tree with the same
number of nodes. Since tree transformation us-
ing rotations has application on edge-coloring of
binary trees [12] and is closely related to the prob-
lem of morphing (i.e., continuously deforming) one
simple polygon into another [11, 13, 14], many re-
searches have focused on the design of efficient way
for tree transformation, especially a transformation
such that the number of utilized rotations coin-
cides with a measure called rotation distance (i.e.,
the least number of rotations necessary to convert
one tree into the other). Unfortunately, it remains
an open question whether rotation distance can be
computed in polynomial time if the usual rotations
on binary trees are applied. Therefore, it seems
natural to consider restricted rotations in order to
obtain more simple transformation. On the other
hand, one can also consider variant types of rota-
tions (especially, massive rotations) in order to ob-
tain more efficient transformation.

According to the fact that any restricted rota-
tion distance is bounded below by the usual rota-

1

tion distance, many restricted rotations have been
introduced to estimate the usual rotation distance
efficiently. Bonnin and Pallo [6] restricted the usual
rotations to a special case where rotations are al-
lowed only at nodes with a leaf as its left subtree.
They showed that the rotation distance between
two binary trees in this case can be computed in
quadratic time. Sundar [38] studied tree transfor-
mation when only a single direction of rotation,
called right rotation, is permitted. More recently,
Cleary [8] considered the case when the rotation
is permitted only at two nodes, the root and the
right child of the root. He proved that 12n ro-
tations are sufficient to complete the transforma-
tion between any two binary trees when this re-
striction is adopted. This bound was improved to
4n− 8 by Cleary and Taback [9], and shown to be
sharp. Pallo [28] generalized this case to the situ-
ation where rotations are restricted only at nodes
on the right-arm of the tree. In addition, he estab-
lished an efficient algorithm to compute this right-
arm rotation distance. For more information about
tree transformation, please refer to [10, 24, 37] for
general concept, [20, 21, 24, 25, 26, 29] for restricted
rotation operations, and [22, 23, 27, 33, 37] for the
computation of usual rotation distance.

In contrast, if we provide a set of variant types
of massive rotations that contains the usual rota-
tions as a special case, then this type of rotation
distance is bounded above by the usual rotation
distance. However, up to now only a few attention
has been given to the variant instances of massive
rotations for tree transformation. In [7], Chen et al.
generalized the usual rotations by considering the
four types of rotations used in AVL trees. They
proposed an efficient algorithm that constructs a
sequence of rotations for estimating this type of ro-
tation distance. In this paper, we introduce new
type rotations which can rotate a massive part of a
tree. All newly proposed rotations are unusual and
differ from those of the past. We allow rotations
to be performed at nodes on the right-arm (i.e.,
the path from the root to its rightmost leaf) or the
left-arm (i.e., the path from the root to its leftmost
leaf) of the tree. Consequently, we develop a sim-
ple linear time algorithm that uses no more than
n − 1 rotations to transform any two binary trees.
The proposed algorithm takes the left weight se-
quence as input which will be defined in the next
section. From an analysis of aggregate method for
a sequence of weight renewals, we show that each
rotation in the algorithm has a constant amortized
time. Next, we show that the rotation graph with
respect to one of the new type rotations is indeed
a directed rooted tree, which will be called a ro-
tation tree preferably. Then, we demonstrate that
enumerating binary tree sequences in lexicographic
order can be made by traversing the rotation tree.

2 . Preliminaries

In this section we give some definitions and present
preliminary results. An extended binary tree is a
binary tree where each internal node (non-leaf)
has exactly two children [17]. Further when we
talk about binary trees, we mean extended binary
trees. Let Bn denote the set of binary trees with
n internal nodes (and thus with n + 1 leaves) and
T ∈ Bn. We assume that all internal nodes of T
are numbered from 1 to n, according to the inorder
traversal of T (i.e. visit recursively the left sub-
tree, the root and then the right subtree of T).
We shall not distinguish between a node and its
number. For each internal node i ∈ T , the left
subtree (respectively, right subtree) of i is the sub-
tree of T rooted at the left child (respectively, right
child) of i. Then the left-weight of i, denoted by
wl(T, i), is the number of leaves in the left sub-
tree of i. In [24], Pallo defined the integer se-
quence wl(T) = (wl(T, 1), wl(T, 2), . . . , wl(T, n)) as
the left-weight sequence (LW-sequence for short) of
T and showed that every binary tree can be char-
acterized as follows (see also reference [39]). An
integer sequence w = (w1, w2, . . . , wn) is the LW-
sequence of a binary tree with n internal nodes if
and only if for all i ∈ [1, n] the following conditions
are satisfied: (1) 1 ≤ wi ≤ i and (2) i−wi ≤ i′−wi′

for all i′ ∈ [i−wi+1, i]. Obviously, the LW-sequence
of T can be obtained from the inorder traversal of
T in O(n) time.

In this paper the number of leaves in the right
subtree of a node i ∈ T is called the right-
weight of i and is denoted by wr(T, i). Simi-
larly, we refer the sequence wr(T) = (wr(T, 1),
wr(T, 2), . . . , wr(T, n)) as the right-weight sequence
(RW-sequence for short) of T . It is easy to ver-
ify that every binary tree can also be character-
ized by its RW-sequence, i.e., an integer sequence
w = (w1, w2, . . . , wn) is the RW-sequence of a bi-
nary tree with n internal nodes if and only if for all
i ∈ [1, n] the following conditions are satisfied: (1)
1 ≤ wi ≤ n−i+1 and (2) i+wi ≥ i′+wi′ for all i′ ∈
[i, i+wi−1]. Moreover, since the nodes of T are la-
beled by the inorder traversal, the number of leaves
of node i in the left-arm (respectively, right-arm) is
i (respectively, n−i+1). We write PL(T) as the left-
arm consisting of nodes {i ∈ T : wl(T, i) = i}, and
PR(T) as the right-arm consisting of nodes {i ∈ T :
wr(T, i) = n− i + 1}. For example, Figure 1 shows
a tree T ∈ B9 with wl(T) = (1, 2, 1, 1, 3, 6, 1, 1, 3)
and wr(T) = (1, 4, 2, 1, 1, 4, 2, 1, 1).

Let TL and TR be the left subtree and right
subtree of the root in a binary tree T , respec-
tively. The mirror image m(T) of T is re-
cursively defined as follows: m(T)L = m(TR),
m(T)R = m(TL), and m(�) = �, where � de-

2

1 7

8

92

3

4

5

6

wl(T) = (1, 2, 1, 1, 3, 6, 1, 1, 3)

wr(T) = (1, 4, 2, 1, 1, 4, 2, 1, 1)

T

Figure 1: The LW-sequence and the RW-sequence
of a tree T .

notes a null tree. For a weight sequence w, let
m(w) be the reverse sequence of w. Then we
have wr(T) = m(wl(m(T))). For example in
Figure 1, wl(m(T)) = (1, 1, 2, 4, 1, 1, 2, 4, 1) and
m(1, 1, 2, 4, 1, 1, 2, 4, 1) = (1, 4, 2, 1, 1, 4, 2, 1, 1) =
wr(T). Using the technique of mirror image, we can
obtain a right weight sequence of a tree T in O(n)
time. In the rest of this section, we will provide
a non-recursive procedure for obtaining the RW-
sequence of T if the LW-sequence of T is given.

For a node i ∈ T , if wl(T, i) = 1 (respectively,
wr(T, i) = 1), then we say that i has the uni-left-
weight (respectively, uni-right-weight) in T . Also,
we denote L1(T) = {i ∈ T : wl(T, i) = 1} and
R1(T) = {i ∈ T : wr(T, i) = 1}.

Lemma 1 Let T ∈ Bn be a binary tree. Then,
|L1(T)| ≥ bn

2 c+ 1 or |R1(T)| ≥ bn
2 c+ 1.

Proof. Since T contains n + 1 leaves and each leaf
is either the left child or the right child of a node,
we have |L1(T)|+ |R1(T)| = n+1. Thus, the result
follows directly. �

A rotation is a simple operation for reconstruct-
ing a binary tree into another tree and preserving
their inorder. Usually, we design such an opera-
tion to be performed in a constant time (e.g., four
primitive types of rotations for balancing AVL-trees
[1]). In this paper, we introduce new type rota-
tions that each of them can be performed only at
nodes on the left-arm or the right-arm of a tree.
In order to detect whether a node is on the left-
arm or the right-arm of some subtree, we need
to provide the left-weight and the right-weight of
nodes. In particular, r is the root of T if and only
if wl(T, r) + wr(T, r) = n + 1. For convenience, we

write pT (i) for the parent of a node i ∈ T . The fol-
lowing lemma shows that if both weight sequences
of a tree are given, we can determine whether a spe-
cific node is contained in the left-arm or the right-
arm of a subtree.

Lemma 2 Let TL(i) and TR(i) be the left subtree
and the right subtree of a node i ∈ T , respectively.
If x is a descendant of i, then the following state-
ments are true.

(1) x is contained in the left-arm of TR(i) if and
only if x− wl(T, x) = i;

(2) x is contained in the right-arm of TL(i) if and
only if x + wr(T, x) = i.

Proof. (1) For the “if part”, it is obviously that
if x ∈ TL(i) then x < i. Moreover, if x ∈ TR(i)
but it is not contained in the left-arm of TR(i) then
x − i > wl(T, x). Conversely, if x is on the left-
arm of TR(i), the number of internal nodes in the
left subtree of x is (x − 1) − i. Thus, the number
of leaves in the left subtree of x (i.e., wl(T, x)) is
x− i, which gives the desired result. (2) The proof
is similar to case (1). �

Corollary 3 For each node x ∈ T which is not the
root, pT (x) can be computed as follows:

(1) If x is a right child of a node, then pT (x) =
x− wl(T, x);

(2) If x is a left child of a node, then pT (x) =
x + wr(T, x).

Proof. (1) It directly follows from Lemma 2 by
considering that x is the root (and thus on the left-
arm) of the right subtree of pT (x). (2) The proof
is similar to case (1). �

Thus, we can compute pT (i) of a node i ∈ T
in a constant time if we already know that i is a
right child or a left child. Also, an easy observation
shows that if i is a right child, then wr(T, pT (i)) =
wl(T, i) + wr(T, i). Therefore, using the result of
Corollary 3, we can compute the RW-sequence of
a binary tree T ∈ Bn easily if its LW-sequence is
available.

Algorithm LW-sequence-to-RW-sequence

for i = 1 to n do

wr(T, i)← 0;
enddo

for i = n downto 1 do

if (wr(T, i) = 0) then

wr(T, i)← 1;
endif

p← i− wl(T, i);
if (p > 0 and wr(T, p) = 0) then

3

wr(T, p)← wl(T, i) + wr(T, i);
endif

enddo

Similarly, if the RW-sequence of a binary tree
T ∈ Bn is provided, we can design an analogous al-
gorithm to compute the LW-sequence of T in linear
time.

3 . Left-arm and Right-arm Ro-
tations

In what follows, we give the formal definition of
rotations on the left-arm and/or the right-arm of a
tree T (See Figure 2 for visual illustrations):

(a) The left-arm left-rotation (LL-rotation for
short) at a node i ∈ PL(T) with wr(T, i) 6= 1:
At first, we assume that k is the right child
of i and let j be the node with the smallest
(inorder) number in the right subtree of i (i.e.,
j = i + 1). It is possible that k and j are
the same node. Also, if i is not the root of
T , let p = pT (i). After applying this opera-
tion, p becomes the new parent of k if it ex-
ists, i becomes the new left child of j, the right
child of i is replaced by a leaf, and all the rest
in the tree remain unchanged. Note that all
the right-weights of nodes are preserved under
this rotation except the change wr(T, i) = 1.
Moreover, for each node x in the path from j
to k, the left-weight wl(T, x) is augmented to
wl(T, x) + wl(T, i).

(b) The left-arm right-rotation (LR-rotation for
short) at a node i ∈ PL(T) with wr(T, i) = 1:
This operation requires an extra parameter w
for indicating which part of the tree T will be
converted into the right subtree of i. We per-
form this rotation only in the case that the
node p = i + w is located in the left-arm (i.e.,
p is an ancestor of i). Let j = pT (i) and k
be the left child of p. It is possible that k
and j are the same node. If we complete this
rotation, p becomes the new parent of i, k be-
comes the new right child of i, the left child
of j is replaced by a leaf, and the remaining
part of the tree is unchanged. Note that all
the right-weights of nodes are unaltered ex-
cept the change wr(T, i) = w after rotation.
Moreover, for each node x in the path from
j to k, the left-weight wl(T, x) is reduced to
wl(T, x)− wl(T, i).

(c) The right-arm right-rotation (RR-rotation for
short) at a node i ∈ PR(T) with wl(T, i) 6= 1:

This operation is a symmetric case to the LL-
rotation by exchanging “left” with “right” in
all situations. We substitute the nodes g and h
for the nodes k and j, respectively. So h = i−1
is the node with the largest number in the left
subtree of i before rotation. When the rotation
is terminated, all related positions of nodes are
shown in Figure 2(b).

(d) The right-arm left-rotation (RL-rotation for
short) at a node i ∈ PR(T) with wl(T, i) = 1:
This operation is the mirror image of the LR-
rotation. Let w denote the weight that will
be converted into the left subtree of i. We
perform this rotation only in the case that the
node p = i − w is located in the right-arm,
where w is an extra parameter as stated in the
definition of LR-rotation. All related positions
of nodes before operation and the adjustment
after operation are shown in Figure 2(b).

RR-rotation(i)T1

T2

T3

i

p

T1 T2

T3

i

p

g

h

g

h
RL-rotation(i, w)

T1

T2

T3

i

p

T1

T2 T3

i

p

LR-rotation(i, w)

LL-rotation(i)

j

j

k

k

(a)

(b)

Figure 2: The left-arm and right-arm rotations.

According to the above definition, every single ro-
tation requires updating three pointers in the tree.
However, under the weight representation of a tree,
it only needs to maintain the left-weights and the
right-weights of nodes. We now implement the cor-
responding functions as follows (where T represents
the current tree before rotation):

Function LL-rotation(i)
wr(T, i)← 1;
for each node x in the path from j = i + 1
up to k do

wl(T, x)← wl(T, x) + wl(T, i);
enddo

end LL-rotation

4

Function LR-rotation(i, w)
p← i + w;
if (p ∈ PL(T)) then

wr(T, i)← w

for each node x in the path from
j = p(i) up to k do

wl(T, x)← wl(T, x)− wl(T, i);
enddo

endif

end LR-rotation

Function RR-rotation(i)
wl(T, i)← 1;
for each node x in the path from
h = i− 1 up to g do

wr(T, x)← wr(T, x) + wr(T, i);
enddo

end RR-rotation

Function RL-rotation(i, w)
p← i− w;
if (p ∈ PR(T)) then

wl(T, i)← w

for each node x in the path from
h = p(i) up to g do

wr(T, x)← wr(T, x)− wr(T, i);
enddo

endif

end RL-rotation

For each function described above, by Corollary 3
we are easy to trace a path from a given node
up to its ancestors for maintaining a sequence of
weights. To determine which is the last node in this
path, we can examine the condition of Lemma 2
for LL-rotations and RR-rotations (e.g., for an LL-
rotation, every node contained in the path from j
to k is on the left-arm of the right subtree of i).
Oppositely, for LR-rotations and RL-rotations, the
node p has been recognized before weight renewal.
Indeed, we guarantee p ∈ PL(T) for LR-rotations
and p ∈ PR(T) for RL-rotations when these func-
tions are invoked by the main algorithm which will
be introduced in the next section. Thus each of
these two rotations can process the renewal along
the path until p is arrived. Obviously, rotations of
these types take O(n) time. Interestingly, in the
next section we will show that using the aggregate
method of amortized analysis for a sequence of n ro-
tations takes the worst case time O(n) in total for
maintaining the weight sequences of nodes. Thus,
each rotation can be run in a constant amortized
time.

4 . An Algorithm of Tree Trans-
formation

In this section, we describe our algorithm for con-
verting T into T ′, where T, T ′ ∈ Bn. T is called the
source tree and T ′ is the destination tree. Just the
same as the input of algorithms in [24, 25, 28], we
assume that both T and T ′ are given by their LW-
sequences. Our algorithm has two phases, where
the first phase converts the source tree into a skew
tree, and the second phase converts the skew tree
into the destination tree. Note that a left-skew tree
(respectively, right-skew tree) is a skew tree in which
every node in the tree has a uni-right-weight (re-
spectively, uni-left-weight). Based on the scheme,
we need to decide that which of the left-skew tree or
the right-skew tree will be treated as an intermedi-
ate tree in the algorithm. Let L1(T) and R1(T)
(respectively, L1(T ′) and R1(T ′)) denote the set
of nodes in T (respectively, T ′) with the uni-left-
weight and the uni-right-weight, respectively. An
essential resolution of the above criterion is that
we choose a converting path passing through a skew
tree such that it has a shorter length. The selec-
tion depends on the measure of the difference be-
tween |L1(T)| + |L1(T ′)| and |R1(T)| + |R1(T ′)|.
If |L1(T)| + |L1(T ′)| ≤ |R1(T)| + |R1(T ′)|, then
the left-skew tree is chosen as an intermediate tree.
In this case, LL-rotations and LR-rotations will be
used in the transformation. On the other hand
(i.e., |L1(T)| + |L1(T ′)| > |R1(T)| + |R1(T ′)|), the
right-skew tree is chosen as an intermediate tree
and only RR-rotations and RL-rotations are used
in the transformation. The following is our algo-
rithm which takes wl(T) and wl(T ′) as the input.

Algorithm Tree-Conversion

1. Compute the RW-sequences wr(T) and wr(T ′);
2. if (|L1(T)|+ |L1(T ′)| ≤ |R1(T)|+ |R1(T ′)|)

then

2.1. for i = 1 to n do

if (i ∈ PL(T) and wr(T, i) 6= 1) then

Perform LL-rotation(i);
endif

enddo

2.2. for i = n downto 1 do

if (wr(T ′, i) 6= 1) then

Perform LR-rotation(i, wr(T ′, i));
endif

enddo

3. else

3.1. for i = n downto 1 do

if (i ∈ PR(T) and wl(T, i) 6= 1) then

5

Perform RR-rotation(i);
endif

enddo

3.2. for i = 1 to n do

if (wl(T ′, i) 6= 1) then

Perform RL-rotation(i, wl(T ′, i));
endif

enddo

endif

We now give an example to illustrate Algo-
rithm Tree-Conversion. Figure 3(a) shows a
source tree T with |L1(T)| = 3 and |R1(T)| = 4,
and a destination tree T ′ with |L1(T ′)| = 3 and
|R1(T ′)| = 4. According to the criterion in Step 2,
the algorithm uses LL-rotations and LR-rotations
for tree transformation. The detail of converting
steps is shown in Figure 3(b). In Step 2.1, the
right weights of nodes 2 and 4 are not 1. There-
fore, an LL-rotation is performed at each of these
two nodes in that order. After that, a left-skew tree
is obtained. In Step 2.2, since only nodes 4 and 2
have wr(T, 4) 6= 1 and wr(T, 2) 6= 1, respectively,
one LR-rotation is performed for each of these two
nodes in that order. Moreover, since wr(T ′, 4) = 2
(respectively, wr(T ′, 2) = 4), the LR-rotation per-
formed on node 4 (respectively, 2) is LR(4,2) (re-
spectively, LR(2,4)). After stpes 2.1 and 2.2, a
source tree T has been transformed to a destina-
tion tree T ′.

4

1

2

3 5

6

LL(2)

wl = (1, 2, 1, 4, 1, 2)

wr = (1, 2, 1, 3, 1, 1)

4

1

2

3

5

6

wr = (1, 1, 1, 3, 1, 1)

wl = (1, 2, 3, 4, 1, 2)

LL(4)

wl = (1, 2, 3, 4, 5, 6)

wr = (1, 1, 1, 1, 1, 1)

4

1

2

3

5

6

LR(4, 2)

4

1

2

3 5

6

wl = (1, 2, 3, 4, 1, 6)

wr = (1, 1, 1, 2, 1, 1)

LR(2, 4)

wr = (1, 4, 1, 2, 1, 1)

wl = (1, 2, 1, 2, 1, 6)

41

2

3 5

6

6

5

4

3

2

1

T

6

5

4

3

2

1

T
′

wl(T) = (1, 2, 1, 4, 1, 2)

wr(T) = (1, 2, 1, 3, 1, 1) wr(T
′) = (1, 4, 1, 2, 1, 1)

wl(T
′) = (1, 2, 1, 2, 1, 6)

(RR, RL)-rotation

(LL, LR)-rotation

(a)

(b)

|L1(T)| + |L1(T
′)| ≤ |R1(T)| + |R1(T

′)|

|L1(T)| + |L1(T
′)| > |R1(T)| + |R1(T

′)|

Figure 3: An example of tree transformation.

Lemma 4 The sequence of rotations performed in
Algorithm Tree-Conversion has length no more
than n− 1.

Proof. By Lemma 1, we have |L1(T)| ≥ bn
2 c + 1

or |R1(T)| ≥ bn
2 c + 1 and |L1(T ′)| ≥ bn

2 c + 1
or |R1(T ′)| ≥ bn

2 c + 1. With the fact |L1(T)| +
|L1(T ′)| = |R1(T)|+ |R1(T ′)| = n + 1, this implies
that max{|L1(T)|+ |L1(T ′)|, |R1(T)|+ |R1(T ′)|} ≥
n + 1. Recall that the tree transformation of Algo-
rithm Tree-Conversion is designed to have two
phases. We assume that the condition |L1(T)| +
|L1(T ′)| ≤ |R1(T)|+ |R1(T ′)| fulfills and hence we
prove that Step 2.1 (the first phase) and Step 2.2
(the second phase) use at most n−1 rotations. For
the other case (i.e., |L1(T)|+ |L1(T ′)| > |R1(T)|+
|R1(T ′)|), it can be proved by a similar way.

The first phase uses LL-rotations to transform T
into a left-skew tree which has a uni-right-weight in
every node. Since the number of nodes with uni-
right-weight is adjusted by adding 1 for every LL-
rotation, there are exactly n−|R1(T)| LL-rotations
to be performed in this phase. Contrastively, since
we need to perform LR-rotations only at nodes i
with wr(T ′, i) 6= 1, there are exactly n − |R1(T ′)|
LR-rotations to be performed in the second phase.
Thus, we totally use 2n − (|R1(T)| + |R1(T ′)|) ≤
2n−(n+1) = n−1 rotations and the lemma follows.
�

6

Theorem 5 Given the left-weight sequences of
two binary trees T, T ′ ∈ Bn, Algorithm Tree-
Conversion correctly produces a sequence of rota-
tions to convert T into T ′ in O(n) time. In particu-
lar, every rotation in the algorithm takes a constant
amortized time.

Proof. First of all, both the RW-sequences of T
and T ′ can be obtained by using Algorithm LW-
sequence-to-RW-sequence in O(n) time. From
the symmetry, we only prove that Step 2 can cor-
rectly convert T into T ′. Certainly, Step 2.1 can
convert T into a left-skew tree using a sequence of
LL-rotations. We consider Step 2.2 as follows. For
each LR-rotation at node i, let Tc and T ′

c be the
current tree before rotation and after rotation, re-
spectively. Since i is located on the left-arm of Tc

and T ′
c, we have wl(Tc, i) = wl(T ′

c, i) = i. More-
over, the right-weight of i is changed from 1 to
w = wr(T ′, i) and never updated again. Thus,
wr(T ′

c, i) = wr(T ′, i). Let p = i + w be a node
in Tc and p(i) be the parent of i in T ′

c. Then,
p = wl(Tc, i) + wr(T ′, i) = wl(T ′

c, i) + wr(T ′
c, i) =

wl(T ′
c, p(i)) = p(i). These equalities hold because

i is the left child of p(i) and p(i) is located on the
left-arm of T ′

c. Therefore, p is also contained in
the left-arm of Tc. This shows that the parameter
w = wr(T ′, i) in the LR-rotation can correctly con-
vert a part of the tree into the right subtree of i.
As a result, the destination tree T ′ can be derived
from a sequence of LR-rotations. Since every rota-
tion accurately maintains the LW-sequence and the
RW-sequence of the current tree, the correctness of
the algorithm can be achieved.

To show that the time complexity of Algo-
rithm Tree-Conversion is linear, by Lemma 4,
we need to prove that the entire sequence of no
more than n − 1 rotations in each of Step 2 or
Step 3 takes at most O(n) time even if a single
rotation might be expensive. Indeed, we want to
show that in the worst case the sequence of n − 1
rotations for each type requires updating weights
at most O(n) times. Again by the symmetry, we
omit the case of Step 3. Since an LR-rotation can
be viewed as a reverse function of an LL-rotation,
let us merely analyze a sequence of LL-rotations
in Step 2.1. According to the definition, we have
known that every LL-rotation has exactly a single
right-weight renewal, so the analysis is inclined to
attain the aggregation of the number of left-weight
renewals. Since the sequence of LL-rotations is per-
formed at nodes in increasing order (from 1 to n)
to reconstruct a left-skew tree, if an LL-rotation at
node i is carried out then the left-weight of nodes
j with j ≤ i has never been changed again. Fur-
thermore, the change of the left-weight for a node
x can occur only in the case that x is moved from
the left-arm of the right subtree of a node i to the

left-arm of the current tree (see Figure 2(a)). By
the fact that every node can be moved to the left-
arm of the left-skew tree at most once, the sequence
of rotations takes a total of O(n) time for weight
renewals. Thus, the average cost of a rotation is
O(1). Usually, we assign the amortized cost of each
operation to be the average cost in an aggregate
analysis. Therefore, each type of rotations in the
algorithm has a constant amortized time. �

5 . Enumeration of Binary Tree
Sequences

Many algorithms have been published for gener-
ating all binary trees with n nodes. In most of
the algorithms, the trees are encoded as integer se-
quences and all such sequences are enumerated by
lexicographic order. See, for example, the codeword
representation [18, 41], the weight sequence [24, 39],
the bitstring [3, 30, 35, 40], the distance representa-
tion [23], and the tree permutation [16, 34]. In [19],
Lucas et al. showed that there exist strong relation-
ships among various representations of binary trees.
In this section, we will construct a directed rooted
tree Tn using RL-rotation defined in the previous
section such that every node of Tn corresponds to
the LW-sequence of a binary tree with n nodes.
Consequently, a naive algorithm for enumerating
all binary tree sequences can be implemented by
traversing Tn.

The rotation graph Gn is a digraph with vertex
set consisting of all binary trees of Bn, and two
vertices are connected by an arc if there is a sin-
gle rotation that converts one tree into the other.
For convenience, we use LW-sequences instead of
binary trees to represent the nodes of Gn. Using
the left-arm and right-arm rotations defined in Sec-
tion 3, the rotation graph with respect to Bn is de-
termined uniquely. In particular, if we restrictedly
use only RL-rotations, the resulting digraph is def-
initely a directed rooted tree with (1, 1, . . . , 1) (i.e.,
the right-skew tree) as its root.

Lemma 6 The rotation graph Gn with respect to
RL-rotations is a directed rooted tree.

Proof. For any RL-rotation(i, w) performed in a
tree T with n nodes, node i is contained in the right-
arm of T by definition. Since every profitable rota-
tion requires w ≥ 2 and all the left-weights of nodes
in T are unaltered except that wl(T, i) is changed
from 1 to w after rotation, the LW-sequence of T
will be converted into a sequence with largely lexi-
cographic order. This shows that the resulting di-
graph is acyclic. In particular, the node (1, 1, . . . , 1)

7

(i.e., the sequence consisting of n 1’s) has no in-
going arc. Since we have shown that the second
phase in Algorithm Tree-Conversion can con-
verts the right-skew tree into destination tree via
RL-rotations, it guarantees that any other node of
Gn is reachable from (1, 1, . . . , 1). Thus Gn is a di-
rected rooted tree with node (1, 1, . . . , 1) as its root.
�

From the above lemma, the rotation graph with
respect to RL-rotations will be called a rotation
tree and is denoted by Tn preferably. For exam-
ple, Figure 4 shows a rotation tree T4, where the
node (1, 1, 1, 1) can be converted into (1, 1, 2, 1) via
RL(3,2) rotation. Again, the node (1, 1, 2, 1) can
be converted into (1, 1, 2, 4) via RL(4,4) rotation.
Obviously, the rotation tree is an unordered tree.
Also, an easy observation shows that if the nodes
of Tn are permuted such a way that nodes from left
to right in each level are labeled in lexicographic or-
der, then so is the printout in the preorder traversal
of Tn. Thus, it is easy to develop an algorithm for
enumerating LW-sequences of binary trees in lex-
icographic order by constructing the rotation tree
with a specific order and then traversing it. We now
give a recursive algorithm to construct Tn with a
specific order starting from the root (1, 1, . . . , 1) as
its parameter as follows:

(1, 1, 1, 1)

(1, 1, 1, 2) (1, 1, 1, 3) (1, 1, 1, 4) (1, 1, 2, 1) (1, 1, 3, 1) (1, 2, 1, 1)

(1, 1, 2, 3) (1, 1, 2, 4) (1, 1, 3, 4) (1, 2, 1, 2) (1, 2, 1, 4) (1, 2, 3, 1)

(1, 2, 3, 4)
T4

Figure 4: The rotation tree T4 whose nodes in each
level are labeled in lexicographic order.

Procedure LexGenTree(T)
for i = n downto 2 do

if (wl(T, i) = 1 and i ∈ PR(T)) then

T ′ ← T ;
repeat

w ← wl(T ′, i) + wl(T ′, i− wl(T ′, i));
Create a new tree T ′ that is the same
as T ;
Perform RL-rotation(i, w) in T ′;
Insert the node T ′ as a child of T in
the rotation tree Tn;

if (wl(T ′, n) = 1) then

LexGenTree(T ′);
endif

until (wl(T ′, i) = i)
endif

enddo

end LexGenTree

For each recursive call LexGenTree(T), it gener-
ates all children of T in lexicographic order, where
each child T ′ can be obtained from T by performing
a single RL-rotation at a node i with wl(T, i) = 1
on the right arm of T . In fact, to implement the
above procedure, a standard representation of gen-
eral trees is required. By applying the left-child-
right-sibling structure (i.e., a structure dealt di-
rectly with the pointer representation of the binary
tree) to Tn, the variable T (respectively, T ′) in the
above procedure signifies a pointer to a node con-
sisting of three fields: a pointer to its first child, a
pointer to its next sibling, and an integer sequence
for representing LW-sequence of T . Thus, if a node
which is not the root of Tn is the first created node
when procedure LexGenTree is invoked, then this
node will be the child of the previous created node;
otherwise the node will be the sibling of the previ-
ous created node. Therefore, the resulting rotation
tree is an ordered tree whose nodes in each level
appear in lexicographic order. Also, notice that
a preorder traversal on binary tree with the left-
child-right-sibling structure can produce the same
order information as that in the general tree repre-
sentation. Although several interesting algorithms
for generating binary trees sequence have been pre-
sented in the literature, however, the enumeration
founded on tree traversal is conceptually simple.
Thus, if the rotation tree Tn has been constructed,
the running time of traversal algorithm for enumer-
ating binary tree sequences is proportional to the
number of binary trees in Bn.

6 . Conclusion

In this paper, we define new types of rotations for
tree transformation. These rotations can be per-
formed only at nodes on the left-arm or the right-
arm of a tree. Consequently, we develop a sim-
ple linear time algorithm to transform weight se-
quences between any two binary trees. The analy-
sis of time complexity of rotations is especially in-
teresting when both the left-weights and the right-
weights of nodes are adopted. As it is, each rotation
of the algorithm can be performed in a constant
amortized time. As we have mentioned before, the
rotation distance from a source tree T to a destina-

8

tion tree T ′, denoted by dist(T, T ′), is the smallest
number of rotations necessary to convert T into T ′.
From the proposed algorithm, we obtain an upper
bound of n − 1 on the new type rotation distance
between any two binary trees T, T ′ ∈ Bn. An ex-
treme instance which realizes this bound is shown
in the shapes that T is a left-skew-tree and T ′ is a
right-skew-tree, vice versa. Thus the bound n − 1
is tight.

In succession, we show that a rotation tree Tn

can be constructed by restricting the use of RL-
rotations only. Then, we demonstrate that an al-
gorithm for enumerating binary trees sequences in
lexicographic order can be implemented by travers-
ing the rotation tree. Recall that the number of
binary trees in Bn is given by the Catalan num-
ber 1

n+1

(
2n
n

)
. Thus Gn is exponentially large with

respect to n. Many researches have studied the
structure properties of rotation graphs. See, for
example, Pallo [24, 25, 26], Lucas [18, 19], and
Sleator, Tarjan, and Thurston [37]. Further re-
sults related to rotation graphs can also refer to
[5, 15, 31, 32]. We close this paper with the fol-
lowing comparison about various types of rotation
graphs, where D(Gn) denote the diameter of Gn

(i.e., the maximum rotation distance over all pairs
of vertices), and µ(Gn) the average rotation dis-
tance of Gn which is defined as follows:

µ(Gn) =

∑
T,T ′∈Bn,T 6=T ′

dist(T, T ′)

2 ·
(|Bn|

2

)
=

∑
T,T ′∈Bn,T 6=T ′

dist(T, T ′)

|Bn| · (|Bn| − 1)
.

D(Gn) n = 3 n = 4 n = 5
|Bn| = 5 |Bn| = 14 |Bn| = 42

Restricted [8] 4 8 12
Rotation [28] 4 6 8

Usual Rotation 2 4 5

Variant [7] 2 4 5
Rotation * 2 3 4

µ(Gn) n = 3 n = 4 n = 5
|Bn| = 5 |Bn| = 14 |Bn| = 42

Restricted [8] 2 3.65 5.77
Rotation [28] 2 3.25 4.71

Usual Rotation 1.5 2.19 3.02

Variant [7] 1.4 1.96 2.63
Rotation * 1.4 2.03 2.79

Table 1: The diameter and the average rotation
distance for various types of rotation graph Gn with
n = 3, 4, and 5. (* indicates the result of this paper)

References

[1] G. M. Adel’son-Vel’skĭi and E. M. Landis, An
algorithm for organization of information, So-
viet Mathematics Doklady 3 (1962) 1259–1263.

[2] A. Andersson, General balanced trees, Journal
of Algorithms 30 (1999) 1–18.

[3] V. Bapiraju and V.V.B. Rao, Enumeration of
binary trees Information Processing Letters 51
(1994) 125-127.

[4] R. Bayer, Symmetric binary B-trees: data
structure and maintenance algorithms, Acta
Informatica 1 (1972) 290–306.

[5] M. K. Bennet and G. Birkhoff, Two fami-
lies of Newman lattices, Algebra Universalis 32
(1994) 115–144.

[6] A. Bonnin and J. Pallo, A shortest path met-
ric on unlabeled binary Trees, Pattern Recog-
nition Letters 13 (1992) 411–415.

[7] Yen-Ju Chen, Jou-Ming Chang, and Yue-Li
Wang, An efficient algorithm for estimating ro-
tation distance between two binary trees, to
appear in International Journal of Computer
Mathematics.

[8] S. Cleary, Restricted rotation distance between
binary trees, Information Processing Letters
84 (2002) 333–338.

[9] S. Cleary and J. Taback, Bounding restricted
rotation distance, Information Processing Let-
ters 88 (2003) 251–256.

[10] K. Culik and D. Wood, A note on some tree
similarity measures, Information Processing
Letters 15 (1982) 39–42.

[11] B. Effantin, Generation of valid labelled bi-
nary trees, Proc. International Conference on
Computational Science and Its Applications
(ICCSA’2003), LNCS, vol. 2667 (2003) 245–
253.

[12] A. Gibbons and P. Sant, Rotation sequences
and edge-colouring of binary tree pairs, Theo-
retical Computer Science 326 (2004) 409–418.

[13] L. Guibas and J. Hershberger, Morphing sim-
ple polygons, Proc. ACM 10th Annual Sym-
posium of Computational Geometry (SCG’94),
1994, 267-276.

[14] J. Hershberger and S. Suri, Morphing binary
trees, Proc. ACM-SIAM 6th Annual Sympo-
sium of Discrete Algorithms (SODA’95), 1995,
396-404.

[15] F. Hurtado and M. Noy, Graph of triangula-
tions of a convex polygon and tree of trian-
gulations, Computational Geometry 13 (1999)
179–188.

[16] G. D. Knott, A numbering system for binary
trees, Communications of ACM 20 (2), (1977),
113-115.

9

[17] D. E. Knuth, Sorting and Searching, in:
The Art of Computer Programming, Vol. 3,
Addison-Wesley, Reading, MA, 1973.

[18] J. M. Lucas, The rotation graph of binary trees
is hamiltonian, Journal of Algorithms 8 (1987)
503–535.

[19] J. M. Lucas, D. Roelants van Baronaigien, and
F. Ruskey, On rotations and the generation of
binary trees, Journal of Algorithms 15 (1993)
343–366.

[20] J. M. Lucas, A direct algorithm for restricted
rotation distance, Information Processing Let-
ters 90 (2004) 129–134.

[21] J. M. Lucas, Untangling binary trees via rota-
tions, The Computer Journal 47 (2004) 259–
269.

[22] F. Luccio and L. Pagli, On the upper bound
on the rotation distance of binary trees, Infor-
mation Processing Letters 31 (1989) 57–60.

[23] E. Mäkinen, On the rotation distance of bi-
nary trees, Information Processing Letters 26
(1987/88) 271–272.

[24] J. Pallo, Enumerating, ranking and unranking
binary trees, The Computer Journal 29 (1986)
171–175.

[25] J. Pallo, On the rotation distance in the lattice
of binary trees, Information Processing Letters
25 (1987) 369–373.

[26] J. Pallo, Some properties of the rotation lat-
tice of binary trees, The Computer Journal 31
(1988) 564–565.

[27] J. Pallo, An efficient upper bound of the rota-
tion distance of binary trees, Information Pro-
cessing Letters 73 (2000) 87–92.

[28] J. Pallo, Right-arm rotation distance between
binary trees, Information Processing Letters
87 (2003) 173–177.

[29] J. Pallo, Rotational tree structures on binary
trees, Proc. 11th International Conference on
Automata and Formal Languages (AFL’05),
Dobogoko, Hungary, May 17-20, 263–274.

[30] A. Proskurowski, On the generating of binary
trees, Journal of the ACM 27 (1980) 1–2.

[31] R. O. Rogers and R. D. Dutton, Properties of
the rotation graph of binary trees, Congressus
Numerantium 109 (1995) 51–63.

[32] R. O. Rogers and R. D. Dutton, On distance in
the rotation graph of binary trees, Congressus
Numerantium 120 (1996) 103–113.

[33] R. O. Rogers, On finding shortest paths in the
rotation graph of binary trees, Congressus Nu-
merantium 137 (1999) 77–95.

[34] D. Rotem, On a correspondence between bi-
nary trees and a certain type of permutation,
Information Processing Letters 4 (1975) 58–61.

[35] F. Ruskey and A. Proskurowski, Generating
binary trees by transpositions, Journal of Al-
gorithms 11 (1990) 68–84.

[36] D. D. Sleator and R. E. Tarjan, Self-adjusting
binary search trees, Journal of the ACM 32
(1985) 652–686.

[37] D. D. Sleator, R. E. Tarjan, and W. R.
Thurston, Rotation distance, triangulations
and hyperbolic geometry, Journal of the Amer-
ican Mathematical Society 1 (1988) 647–681.

[38] R. Sundar, On the deque conjecture for the
splay algorithm, Combinatorica 12 (1992) 95–
124.

[39] V. Vajnovszki, On the loopless generation of
binary tree sequences, Information Processing
Letters 68 (1998) 113–117.

[40] S. Zaks, Lexicographic generation of ordered
trees, Theoretical Computer Science 10 (1980)
63–82.

[41] D. Zerling, Generating binary trees using ro-
tations, J. Assoc. Comput. Mach. 32 (1985)

10

