
1

A Parallel File System for Windows
Lungpin Yeh, Juei-Ting Sun, Sheng-Kai Hung and Yarsun Hsu

Department of Electrical Engineering, National Tsing-Hua University
HsinChu, Taiwan, 30055, ROC

{lungpin, posh, phinex, yarsun}@hpcc.ee.nthu.edu.tw

Abstract�Parallel �le system is widely used in clusters to
provide high performance I/O. But most of the existing parallel
�le systems are based on UNIX-like operating systems. We
implement a parallel �le system for Windows using the Microsoft
.NET framework. In this paper, the design and implementation of
our system are described and the performance is also evaluated.
The results show that the write performance reaches a peak of
109MB/s and the read performance reaches a peak of 85MB/s.

I. INTRODUCTION
As the speed of CPU becomes faster, we might expect

that the performance of a computer system should bene�t
from the advancement of CPU. However, the improvements of
other components in a computer system (ie. memory system,
data storage system) cannot catch up with that of CPU. This
phenomenon lowers the overall performance. By Amdahl's
law[1], the performance of a computer system is dominated by
the component with the slowest speed. In a computer system,
that is the storage system. Although the capacity of a disk
has grown with time, its read/write performance is still an
issue. In this data-intensive world, it is signi�cant to provide
a large storage capacity with high performance[2]. Using a
single disk to sustain this requirement is impossible nowadays.
Disks combined either tightly or loosely to form a parallel
system provide a possible solution to this problem.
A parallel �le system provides high-speed data access by

using several disks at the same time. When we want to write
a �le to disks, a parallel �le system will split these data into a
lot of small chunks. Each of these chunks is stored on different
disks in a round-robin fashion. Similarly, when reading a �le
from disks, a parallel �le system will take out these chunks
from each disk and then combine them to get the original
�le. With suitable striping size, the workload in the system
can be distributed among these disks instead of centralized in
a single disk. A parallel �le system can not only provide a
large storage space by combining several storage resources on
different nodes but also increase the performance.
We implement a parallel �le system for Microsoft Windows

Server 2003 with striping support. User can specify the striping
size using our user interface to obtain the required distribution.
Default striping size and the number of I/O nodes will be used
if not speci�ed. We have successfully used our parallel �le
system as a storage system for VOD (Video On Daemon) ser-
vices. This VOD system can deliver its maximum bandwidth
to users with suitable network interface support. This paper is

This work was supported by National Science Council, R.O.C., under Grant
NSC 94-2213-E-007-004

organized as follows: section 2 presents some related works,
design and implementation will be discussed in section 3. Our
VOD prototype system will be shown in section 4. Finally, we
will discuss the performance of our parallel �le system and
make conclusion in section 5 and 6.

II. RELATED WORKS

A special mention should go to PVFS[3][4] which is a
popular parallel �le system publicly available and working in
the true world. PVFS provides both user level library for easy
use and a kernel module package that makes existing binaries
working without recompiling. However, it is only available for
Linux clusters.
WinPFS[5] is a parallel �le system for Windows. It is

integrated within the Windows kernel components. It uses the
existing client and server pairs in the Windows platform (ie.
NFS[6], CIFS[7], ...) and thus no special servers needed to be
installed. It also provides a transparent interface to users, just
like what does when accessing normal �les. The disadvantage
is that the user can not control the striping size of a �le across
nodes. Besides, its performance is bounded by the slowest
client/server pairs used. For example, if it uses NFS as one
of the servers, the overall performance may be dominated by
NFS. This heterogeneous client/server environment helps but
it also hurts unless all client and server pairs have the same
performance.
Microsoft adds the support of dynamic disks starting from

Windows 2000. Dynamic disks are the disk formats in Win-
dows necessary for creating multi-partition volumes, such as
spanned volumes, mirrored volumes, striped volumes, and
RAID-5 volume. The striped volumes contain a series of
partitions with one partition per disk. However, up to 32 disks
are supported, which is not scalable.[8]

III. DESIGN AND IMPLEMENTATION
The main task of the parallel �le system is to stripe data or

split �les into several small pieces. Files are equally distributed
among different I/O nodes and can be accessed directly from
applications. Applications can access the same �le or different
�les in parallel rather than in serial. Evidently, the more I/O
nodes we have the more widely the �les are distributed and
the faster we can access the �les.

A. Architecture
Generally speaking, our parallel �le system consists of three

main components:



2

Applications

libwpvfs

Iod Library Metadata Server Library

Metadata ServerIod

NTFS

Fig. 1. The overall architecture.

� Metadata server
� I/O daemons (Iod)
� Library
Metadata server and I/O daemons set up the basic parallel

�le system architecture. The library provides convenient APIs
for users to develop their own applications on top of the
parallel �le system. They do not need to concern about
how the metadata server and Iods co-operate. The library
communicates with the metadata server and Iods, and does
the tedious work for users. The overall architecture is shown
in Figure 1.

B. Metadata Server
Metadata means the information about a �le except for the

real data that it contains. In our parallel �le system, metadata
contains six parts shown in Figure 2:
� File name: It is unique and is used to distinguish a �le
from others. It is impossible to have �les with the same
name.

� File size: It describes the total length of a �le.
� File index: It is a 64-bit number and also unique. This
is the �le index of the unique �le name stored on the
metadata server itself. Its uniqueness is maintained by the
underlying �le system. It is just like the inode number of
the UNIX operating systems. This unique value is used as
the �lename of the striped data stored on the I/O nodes.

� Striping size: The size that a �le is partitioned.
� Node count: The number of I/O nodes that the �le is
spread across.

� Starting I/O node: The I/O node that the �le is �rst stored
on.

Metadata server runs on a single node. It manages the
metadata of a �le and maintains the directory hierarchy of
our parallel �le system. It does not contact with I/O daemons
or users directly, but only communicates with the library,
libwpvfs. When users use the library to access a �le, the library
will connect with the metadata server and acquire the metadata
of that �le in the �rst stage. The process is shown in Figure
3. The library can not access a �le from I/O nodes until it

Node count

Starting I/O node

4

0

64 KB

2293117120

File size

File name

512 KB

keroro.mp3

File index

Striping size

Fig. 2. The metadata stored on the metadata server.

Fig. 3. Acquiring metadata from the metadata server.

obtains the metadata from the metadata server, or it does not
know where the �le locates. This centralized metadata server
causes a single point of failure if some errors happen within
it. In this case, our parallel �le system can not service again
unless the metadata server comes back online. However, this
could be solved by mirroring. If faults occur, we just need to
replace the broken one with the mirrored one.

C. I/O Daemons
The I/O daemon is a process running on I/O nodes respon-

sible for accessing the real data of a �le. It can run on a single
node or several nodes, and you can run several I/O daemons on
an I/O node if you want. Like the metadata server, it does not
contact with the metadata server and users directly, but only
communicates with the library, libwpvfs. When users want to



3

Fig. 4. Reading data from Iods.

access a �le, the library obtains the metadata of that �le from
the metadata server �rst. Then, the library will connect to
proper I/O daemons according to the metadata, and the Iod will
access the correct �le and send stripes back to the client. This
process is shown in Figure 4. Unlike the metadata server, if one
of the Iods fails, the parallel �le system can still work. In this
situation, the library can make use of the other healthy Iods,
but the data within the failed Iod is not available anymore.
The way how data is stored on Iods is determined by some

parameters of the metadata, those are, �le index, striping size,
node count, and starting I/O node. While the library receives
the metadata, it will decide which I/O nodes should be used,
and connect to them based on the starting I/O node and the
node count parameters. After choosing the Iods, the library
splits the �le into small blocks with the dimension of striping
size, and then writes each block to the corresponding I/O node.
On the Iod side, the �le index is modulated by 101 to get the
directory where this �le should be stored in and it is also used
as the �lename of the �le. Certainly, these 101 directories
must be created when the �rst time Iod runs. Eventually, the
�le stored on the Iod is named with the �le index number
rather than its original name.
An example is given in Figure 5, a �le of size 512 KB is

stored on the parallel �le system. The metadata of this �le has
been shown in Figure 2. As the metadata exhibits, this �le is
striped over four Iods with 64 KB striping size and the �le is
stored on Iods starting from number 0.

D. Library
We provide a class library that contains six basic �le system

methods, including open, create, read, write, seek, and close,
with open and create overloaded. The methods of our class
library are mostly similar to those of the File class in C#.
The difference between these two classes is that our class

Fig. 5. A �le is striped over 4 Iods.

is used to access �les stored in our parallel �le system and
the File class in C# can only be used to access �les in local
disks. When accessing a �le, you can specify the striping size,
starting Iod, and Iod counts as stated in Figure 2. If users
use our library to write programs, they can build a variety of
application programs having high performance I/O executed
above the parallel �le system.
The library separates the users from the Iods and the

metadata server. For this reason, users do not have to worry
about how to communicate with the metadata server, which
Iods should be connected to, how to read or write data to
Iods, and so on. All these tedious jobs will be handled by the
library. Users only have to understand how to use the methods
provided by the library and how to ef�ciently distribute their
own data. Anyone can easily develop programs on our parallel
�le system by using the library.

IV. PROTOTYPE

In this section, we build a distributed multimedia server
on top of our parallel �le system. Microsoft DirectShow
is used to build a simple media player. DirectShow is an
architecture that contains many helpful classes and methods
for media streaming on the Microsoft Windows platform,
including Windows 9X, Windows Me, Windows 2000 and
Windows XP. It supports lots of media formats such as AVI,
MIDI, MP3, MPG, WMV, and so forth. Using DirectShow
with libwpvfs, we build a media player, which could play
multimedia �les distributed across different I/O nodes.
Howerver, DirectShow can only play media �les stored on

disks or from a URL. It makes no sense if we copy the media
�le to the local disk and then play it. To paly multimedia �les
just in time, we have to read the media �le from I/O nodes and



4

Media Player

Web Server

libwpvfs

Iod Library Metadata Server Library

Metadata ServerIod

NTFS

Fig. 6. A media player built on top of our �le system.

play it at the same time. To solve this problem, we establish
a web server as a agent to gather striped �les from I/O nodes.
This web server is inserted between the media player and our
library, libwpvfs , and it is the web server that uses the library
to talk to the metadata server and I/O nodes (see Figure 6).
The data received by the web server from I/O nodes is

passed to the media player. The media player plays a media �le
coming from the http server through a URL rather than from
the local disk. Both the media player and the web server run
on the local host. The web server is bound with our media
player and transparent to the end user. A user is not aware
of the existence of the web server and could use our media
player as a normal one. The process is shown in Figure 7.
In this �gure, the web server receives striped data from four
I/O nodes and sends the combined stream to the media player
immediately.
Any existing media player programs which support playing

media �les from an URL, such as Microsoft Media Player,
can take advantage of our parallel �le system by accessing the
video �le on our web server. In this way, we may provide a
high performance VOD service above our parallel �le system.

V. PERFORMANCE EVALUATION
In order to measure the performance of our parallel �le

system for Windows, we have made some preliminary tests.
In this section, the disk performance is measured along with
read and write performance of our parallel �le system.
The hardware used is IBM eServer xSeries 335 with �ve

nodes connected through Gigabit Ethernet, each housing:
� One Intel Xeon CPU 2:8 G
� 512 MB memory
� 33 G SCSI disk
� Windows 2003 Server
To test I/O performance of the disk and the .NET frame-

work, we write a simple benchmark using C# to measure the
performance. The tests are performed on a single node. We
ran the tests ten times and averaged the results.
The testing method is very straightforward. A �xed-size

buffer is �lled with random data and written to the disk

Fig. 7. The process of playing a media �le.

Fig. 8. The write performance of the local disk.

continuously until the number of bytes written to the disk reach
the �le size. In Figure 8, we observe that write performance
of local SCSI disks converges to about 50 MB/s when the �le
size is larger than 768 MB, but the performance varies when
the �le size is smaller than 512 MB.
To make sure that the �les written are not cached in memory,

the system is rebooted before measuring the read performance.
The �le is read from the disk into a �xed-size buffer and the
buffer is used over and over again. The data read is ignored
and overwritten by later reads. As you can see from Figure 9,
read performance converges to about 43 MB/s.
We measure the performance of our parallel �le system on



5

Fig. 9. The read performance of the local disk.

�ve nodes. One of them is running our test benchmark written
with our library. The rest four nodes are running I/O daemons,
one for each. One of the four nodes is running the metadata
server too.
A �xed-size memory buffer is �lled with random data

and written to the parallel �le system continuously until the
number of bytes written reach the �le size. The test program
then waits for the acknowledgement sent by the I/O daemons
to make sure all the data sent by the client are received by all
I/O daemons.
In Figure 10, we measure write performance with different

�le sizes with 64 KB striping size. The memory buffer used
is the number of Iod multiplied by the striping size. Write
performance reaches a peak of 109MB/s which almost utilizes
the available network bandwidth. Writing to two, three or
four I/O nodes almost has the same performance since the
bottleneck is the network bandwidth rather than the disk
system. Write performance converges to about 50 MB/s when
only one I/O node participates. This is almost the local disk
write performance as shown in the previous test.
The size of the memory buffer for read is also the number

of Iod multiplied by the striping size. The data read into the
memory buffer is ignored and overwritten by later data. As
you can see in Figure 11, read performance is not so good
compared with write performance. But when we increase the
number of I/O nodes, the performance increases too. For four
I/O nodes, read performance reaches a peak of 85 MB/s. With
more than two I/O nodes participate, read performance is better
than that of a local disk.

VI. CONCLUSIONS AND FUTURE WORK

Our parallel �le system for Windows helps the integration
of existing storages and provides parallel I/O operations for
PC clusters running Windows operating system. A user mode
library using the .NET framework is provided to users. It is
still in the early stages of development, but the performance
is better than only using a local disk.

Fig. 10. The Write performance with increasing number of I/O nodes.

Fig. 11. The read performance with increasing number of I/O nodes.

Currently, the existing binaries need to be recompiled and
linked with our library to bene�t from our system. We are
planning to implement the �le system in the kernel mode
using Microsoft IFS(Installable File System)[9] or using the
CIFS(Common Internet File System). This provides a virtual
disk for any existing binaries to take the advantage of our
parallel �le system. In addition, we will also provide fault
tolerance facility, thus the system still works even if some of
the I/O nodes failed.

REFERENCES
[1] Gene M. Amdahl, Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities, pp. 79�81, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000.

[2] NR Adiga, M Blumrich, and et al T Liebsch, �An overview of the
BlueGene/L supercomputer�, in Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, Baltimore, Maryland, 2002, pp. 1 � 22.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, �PVFS: A
parallel �le system for linux clusters�, in 4th Annual Linux Showcase
and Conference, Atlanta, GA, October 2000, pp. 317�327.



6

[4] W. B. Ligon III and R. B. Ross, �An Overview of the Parallel Virtual
File System�, in 1999 Extreme Linux Workshop, June 1999.

[5] José María Pérez, Jesús Carretero, and José Daniel García, �A Parallel
File System for Networks of Windows Worstations�, in ACM Interna-
tional Conference on Supercomputing, 2004.

[6] S. Kleiman D., Walsh R. Sandberg, D. Goldberg, and B. Lyon, �Design
and implementation of the sun network �lesystem�, in Proc. Summer
USENIX Technical Conf., 1985, pp. 119�130.

[7] Christopher R. Hertel, Implementing CIFS: The Common Internet File
System, Prentice-Hall, 2003.

[8] Mark E. Russinovich and David A. Solomon, Microsoft Windows
Internals, Fourth Edition: Microsoft Windows Server 2003, Windows XP,
and Windows 2000, Microsoft Press, 2004.

[9] Rajeev Nagar, Windows NT File System Internals : A Developer's Guide,
O'Relly, 1st edition, September 1997.


