

Design of the Server Cluster for the Scalable Networked
Virtual Environment

Jiung-yao Huang*, Yi-chang Du+
Department of Computer Science and
Information Engineering.
Tamkang University, Tamsui 251.
jhuang@mail.tku.edu.tw*
chax@tkvr.tku.edu.tw+

Chien-Min Wang
Institute of Information Science.
Academia Sinica, Nankang 115.
cmwang@iis.sinica.edu.tw

Abstract

This paper presents an architecture to
design a server cluster for the scalable
networked virtual environment. One of the key
techniques to design such a scalable networked
virtual environment is to partition the virtual
world across multiple servers. However, the
problem of the avatar migration from one server
into another is the key issue of this approach.
This paper proposes a mechanism to solve this
problem. Furthermore, the mathematical model
of data distribution management to control the
message flow between the server and clients is
also presented. With this mathematical model,
the efficiency of the message flow control
mechanism can be easily verified. Significantly,
this model can also be used to estimate the
performance of the designed server cluster.
Finally, the message flow control algorithm for
the proposed mechanism is presented at the end.

Keywords: Networked Virtual Environment,

Spatial Culling, Area-Of-Interest,
Server Cluster

1. Introduction

The research of the Networked Virtual

Environment(NVE) is to study how to fuse the
virtual reality technique with the networking
environment to support real-time interaction
among spatially distributed users in a computer
generated synthetic environment. A networked
virtual environment that supports hundreds of
simultaneous participants can offer wider
application domains and become more attractive
to the users. However, as the number of the users
inside the networked virtual environment
increases, the amount of the message flow
among these users can overwhelm the network
bandwidth as well as the computational power
on the client site. That is, as the number of
participants increases, a host has to spend extra

CPU time to filter out the messages that are
irrelevant to him. To solve this problem, the
message flow inside the network must be
carefully controlled so that dispensable messages
can be filtered out before it is sent out onto the
network. Singhal and Zyda[15] described this
problem as the issue of the resource management
for scalability and performance. They further
divided the resource management issue into four
areas, which are optimizing the communication
protocol, controlling the visibility of data,
exploiting human perceptual limitations, and
changing the net-VE network software
architecture.

The goal of this paper is to study the
scalability issue of the networked virtual
environment. Based upon the message
communication mechanism, the networked
virtual environment can be classified into three
basic architectures, which are client/server,
peer-to-peer unicast, and peer-to-peer
multicast.[4] For the client/server architecture,
the client sends his own status information to the
server and receives the status information of
other users from the server. However, the legacy
client/server architecture uses a single server as a
communication hub[11] that does not scale up
for the number of the simultaneous participants.
Different server cluster techniques are then
actively explored to resolve the scalability
problem. These techniques include partitioning
clients across multiple servers, partitioning the
net-VE across multiple serves, and server
hierarchy.[15] This paper proposes a
client/server architecture that combines the
second and third techniques. Furthermore, the
proposed system follows the specification and
infrastructure of High Level
Architecture(HLA),[9] which is the IEEE
standard of the network virtual environment.

2. Previous Works

Various networked virtual environments
were built in the past to explore the essential

techniques of scalability. For example, RING[6]
proposed a client-server architecture to support
real-time visual interaction among distributed
users in a shared 3D virtual environment.
DIVE[8] system has fully duplicated
homogeneous and distributed databases to
increase the number of participants. Both the
BRICKNET[14] and MASSIVE[7] systems
employ shared, distributed and client-server
databases to achieve the same goal. In addition,
BRICKNET took one step further to allow
objects' dynamic behaviors to be shared among
distributed players, and MASSIVE uses a spatial
model for database partition among clients.
NPSNET[12] uses the DIS(Distributive
Interactive Simulation) standard[2] along with
the proposed Area-of-Interest technique to
communicate the entity status information
among distributed players. Significantly, the
MASSIVE and the Virtual Society(VS) by Sony
Computer Science Laboratory Inc.[10] are two
known networked virtual reality systems to be
designed on the Web architecture.
SharedWeb[11] is another type of web-based
networked virtual reality system that is tightly
integrated with the existent web server.

With the maturity of the Internet technology,
US military are extensively using the network to
interconnect existing simulators to perform the
military drill in the recent years. In 1995,
Department of Defense(DoD),US, proposed a
new standard called High Level
Architecture(HLA) to further promote the
interoperability and reusability of different types
of simulators.[5] HLA has become the
international standard, IEEE 1516, in the year of
2000. According to the HLA terminology, the
simulating system is called the federate and the
simulation environment that is composed of
multiple federates is called a federation. The
HLA is defined by three concepts: [9]

Object Model Templates(OMT) - provides

a template for documenting HLA-relevant
information about classes of simulation or
federation objects and their attributes and
interactions.

Interface Specification - provides a
specification for the DoD HLA functional
interfaces between federates and the
underline distributed operating system. The
Interface Specification defines all of the
necessary services to federate in a way that
is analogous to how a distributed operating
system provides services to its application.

Compliance rules - delineates the set of
rules that are applied to HLA federations
and federates. These rules describe the
principles of constructing an HLA

environment.

The Interface Specification defines the
programming interfaces of six types of services,
which are Federation Management, Declaration
Management, Object Management, Ownership
Management, Time Management, and Data
Distribution Management as the interoperation
interface among simulations. The software that
realizes these six service groups is called Run
Time Infrastructure(RTI). Since the original
design goal of HLA is to interoperates more than
100,000 simultaneous players, the Data
Distribution Management is the essential service
that aims to achieve this scalability.[17]

3. Data Distribution Management

One of the essential concepts to achieve
the scalability of the NVE is to partition clients
among multiple servers and each server manages
moderate number of participants only. As
specified by Singhal and Zyda[15], this partition
can be based upon the geographical location of
the participants, or the coordination of the
avatars within the virtual world. Furthermore,
users within a server can be further classified so
that the messages flow among them are filtered
based upon their respective interests. Moreover,
the deployment of multiple servers will also
significantly affect the scalability of the
simultaneous participants. Hence, the goal of
this project is to study the multiple server
hierarchy that partitions the clients into distinct
groups according to their respective avatars’
coordinates. Each server is only responsible for
managing the data flow of a single region.

The method of filtering the messages
among users can be performed on either
logically separation or physically division their
corresponded avatars’ coordinates. The logically
separation is to compute the message interest
scope of every avatar on-the-fly and exchange
the messages among users only when whose
interest scopes are intersected. For example,
MASSIVE used the Aura[7] to compute the
awareness of an avatar. Different quantity of
messages will be transmitted among clients
depending upon the awareness of each avatar.
The physical division is to partition a virtual
world into cells beforehand.
Area-Of-Interest(AOI)[13] of an avatar is then
dynamically computed based upon the cell that it
resides in. AOI represents the scope in space that
a client is interesting to receive messages.
Therefore, how to determine the
Area-Of-Interest of a client to filter the messages
and, hence, reduce the network bandwidth and
computational load is the key to build a scalable

networked virtual environment.

Locale[3] by the Spline system proposed a
different approach to filter the messages and,
hence, control the data flow. Each locale has its
own coordinate system and the entire virtual
world is constituted by numbers of Locales.
Only the clients within the same Locale will then
receive each other’s messages. PARADISE[16]
proposed a “projection aggregation” approach
that consists of organization aggregation and
grid aggregation. This approach provides a
high-level method to establish AOI based on the
general spatial area and entity class.

Interleaved Squaring method[1] is another
approach of the spatial culling method for the
data flow management. The Interleave squaring
method partitions the virtual world into
interleaved squares. This approach aims to adopt
the advantage of uniformly updating in AOI
change provided by the hexagonal approach[13],
while without its complexity in computing the
resident cell. Hence, in this project, the
Interleaved Squaring method is adopted to
compute the Area-Of-Interest of an avatar.

4. The Scalable Server Cluster

4.1 The Scalable Architecture

In order to support multiple distinct scenes
and multiple simultaneous participants at the
same time, a hierarchy of server cluster is
designed as shown in Figure 1. The proposed
server cluster contains tree types of servers,
which are the gateway server, the master server
and the client server. The gateway server is
responsible for authorizing the user who wants
to enter a virtual world. Furthermore, the
gateway server also contains the information of
the master server which manages that specific
virtual world. The master server is the main
server that manages a virtual world. It will
record all the information of the virtual world,
including the size of the virtual world, the
number of the regions that were partitioned and
the information of the slave server that manages
a region. The major function of the master server
is to coordinate the process of transferring an
avatar from one slave server into another.
Finally, the slave server is the one that actually
controls the data distribution among the clients
that are resides in the region that it manages.

The relationship between the master server
and slave server can be illustrated by Figure 2.
As shown in Figure 2, each slave server is
responsible for the clients with their
corresponding avatars located within a particular
region of the virtual world. The data exchange

among the slave servers can be performed with
the peer-to-peer method, while the master server
is responsible for coordinating the establishment
of the communication channel among the slave
servers.

Federation 2Federation 1

EthernetEthernet

SlaveSlave Slave

Master

SlaveSlave

Master

Slave

... ...

Gateway

...

Gateway(Duplicated)

Ethernet

Figure 1. The hierarchy of multiple server

architecture

Client

Client

Slave

Slave Slave

Master

Slave

Client

Client

Client
Client

Client

Figure 2. Partitioning a virtual world across
multiple slave servers

In this paper, the character, or avatar,

manipulated by each client site is modeled as the
Local Object as illustrated in Figure 3. The
status information of this avatar will then be
duplicated in the server site. We model this
image on the server site as the Object Proxy of
the Local Object on the client site. The contents
of the Object Proxy will be further forwarded to
other clients so that other clients can embody its
image. We call this embodiment as the Clone
Object of a Local Object on a separate site. That
is, each client site contains a Local Object that is
controlled by the user and Clone Objects of
other remote users. On the other hand, the slave
server will create an Object Proxy for each client
within its district. The Object Proxy is updated
by the information sent by the Local Object on

the client site. It will then in turn forward the
update data to all Clone objects that are located
within its AOI.

Internet

Slave server

Object
proxy

i

Object
proxy

k ...

Client i

Clone
Object

j

... Clone
Object

m

Object
proxy

m

Client j

Clone
Object

i

Clone
Object

k
...

...

Local
Object

j

Local
Object

i

Object
proxy

j

Figure 3. The Local Object, Object Proxy, and

Clone Object

4.2 The Mathematical Model

As indicated by Singhal and Zyda[15],
there are four issues that will affect the
scalability and performance of the network
virtual environment. Among them, controlling
visibility of data and changing the net-VE
network software architecture are two issues
related to the server site. In addition, the
Area-of-Interest is the technique that is often
used to solve the issue of “controlling visibility
of data”. We can model the Area-Of-Interest
technique as follows.

Let U be the virtual world that is managed
by a server and U is partitioned into n cells. Let
Si represents a fixed-sized cell of U with index i
and ji SS , i,j. That is, all of the cells

that comprise the virtual world are mutually
disjointed. The virtual world U then can be
expressed as the union of all these cells, i.e.

n

iSU . Hence, We can model the AOI by the

following definition.

[Definition]

Let the operator define the operation to
compute the adjacency relationship among these
cells, Si, i. That is, Let 1 ji SS if cell Sj is

adjacent to cell Si, otherwise 0 ji SS . The

operator has the following properties:
1. 1 ii SS i (Reflective)

2. If 1 ji SS , then 1 ij SS (Symmetric)

3. If 1 ji SS and 1 kj SS , it does not

imply 1 ki SS (Non-Transitive)

Let AOIi be the set of cells that constitute the

AOI centered on cell Si. Then, we can express as
AOIi = { Sj | Sj such that 1 ji SS }.

That is, AOIi is the union of Si and all the

cells that are adjacent to cell Si.

With this definition, we can formalize the
AOI technique as follows. When the Slave
server receives the status update from client a, it
will forward this message to all clients whose
Object Proxies are within the AOI for client a.
When the avatar of client a moves from a cell,
says i, into another, says j, its AOI is then
changed from AOIi to AOIj. The Slave server
must inform clients whose object proxies are
within cells of (AOIi∪AOIj) – AOIj for the
event of client a’s departure. The Slave server
also needs to inform clients whose object proxies
are within cells of (AOIi∪AOIj) – AOIi for the
event of client a’s arrival.

Significantly, we can use this model to
estimate the efficiency of the AOI technique.
Assume that there are totally m avatars within a
virtual world and they are evenly distributed.
Without the AOI technique, each status update
from a client will cause the Slave server to send
out m-1 message to all of the other clients. Let
|AOIi| denotes the number of cells contained in
the AOIi. Hence, for the AOI technique, each
status update from the Local Object to the
Object Proxy will cause the Slave server, on the

average, to send out)AOI(*)1(nm i

messages to other clients that are within its AOIi.
Hence, on the average, compared to the
conventional broadcasting method that requires
the Slave server to send out m-1 messages for
every status update, the AOI approach can

reduce approximately (1-
n

iAOI) percentage of

the message flow inside the network.

4.3 The Shadow Object

Even though the above approach can
significantly reduce the number of the messages
flows, however, care must be taken when this
technique is applied. Since the entire virtual
world is partitioned into different regions and
managed by respective Slave servers, the
migration of an avatar from one server into
another is an important issue for the multiple
server approach of the networked virtual
environment. The simplest solution is to
discharge the avatar from the original slave
server first and then login to another slave server.
However, this approach has a serious problem of
abrupting visual effect on the client site. That is,

the user will suddenly perceive an empty virtual
world followed by a gradually emersion of other
avatars.

In order to smoothly transfer an avatar
from one server into another, we must overlap
the border of two adjacent regions that are
managed by two different Slave servers. We call
these two servers as the logically chained servers,
or chained servers for short. When an avatar is in
a border district of a server, a copy of its
information must also be forwarded to its
chained server so that the chained server can be
aware of the existence of that avatar and forward
other clients information to it. We model this
copy of avatar information as the Shadow Object
of the original avatar. That is, when an avatar
arrives the border district of a server, its Shadow
Object will be created on its chained server. For
example, Figure 4 illustrates two partial regions
that are managed by two chained servers. The
dark shaded cells, i.e. cells k+3, j+3, and i+3,
represent the border districts between two
chained servers. The white man in Figure 4
represents the Shadow Object of the black man
in the chained server.

k+1 k+2 k+3

j+1 j+2 j+3

i+1 i+2 i+3

x
d

y'

k+3 k+4 k+5

j+3 j+4 j+5

i+3 i+4 i+5

x'

c

y

w'

w

z

z'

(a)

(b)
Figure 4. The Shadow Object for the avatar
migration

Similar to the Object Proxy, the chained
server will also calculate the AOI of the Shadow

Object and forward the information of the
Shadow Object to all of the clients within its
AOI. However, in order to prevent a client from
receiving message from both Object Proxy and
Shadow Object at the same time, the information
of the Shadow Object will only forward to
clients who are not in the border district. When
an avatar eventually moves into its chained
server, since the information of that avatar
already exists in the form of the Shadow Object,
the chained server only needs to switch its status
from Shadow Object to Object Proxy. By this
way, we can smoothly transfer an avatar from
one server into another without any perceptual
glitch. Hence, the algorithm for the slave server
to manage the message flow is shown as
follows:

Procedure Status_Update
BEGIN
 IF client a is moved from cell, says i, to

another cell, says j,
 THEN (AOIi is changed to AOIj)
 BEGIN
 Notify the clients whose Object

Proxies or Shadow Objects are
 within cells of (AOIi∪AOIj) -
AOIj for the departure of client
a;

 Notify the clients whose Object
Proxies or Shadow Objects are
 within cells of (AOIi∪AOIj)
-AOIi for the arrival of client
a;

 END
 // Check if client a is in the border. If it does,

then perform server to
 // server data channel connection channel

for client a.
 IF client a is an Object Proxy in Slave

server
 THEN
 BEGIN
 Update Object Proxy of client a;
 Forward this status change message

to all clients whose Object
Proxies or Shadow Objects are
within cells of client a’s AOI;

 END
 ELSE (client a is a Shadow Object in Slave

server)
 Forward this status change

message to all clients whose
Object Proxies are within cells of
client a’s AOI exclude border
cells;

END

5. Conclusion and Future Work

This paper presents a method to construct
a scalable networked virtual environment. In
addition, the issue of partitioning a virtual
environment across multiple servers is also
studied. As indicated by Singhal and Zyda[15],
four essential issues to build a scalable
networked virtual environment are optimizing
the communication protocol, controlling the
visibility of data, taking advantage of perceptual
limitations, and enhancing the system
architecture. This paper proposes a hierarchical
server structure to manage a large-scale virtual
environment by multiple servers. However,
when we manage a large-scale virtual
environment, care must be taken when we
transfer an avatar from one server to another. In
order to prevent the abrupt visual effect, a region
managed by a server must be overlapped on the
borderland with its adjacency region managed
by different servers. With this approach, when
an avatar is within the borderland, its Shadow
object can ensure that other clients on the
contiguous server will receive its status update
messages. In this way, a smooth status transfer is
achieved when this avatar migrates from one
server into another. Hence, a scalable networked
virtual environment can be easily designed based
upon the proposed server cluster structure and
avatar migration technique.

Finally, the proposed mechanism is
currently under implementation. Further study of
the server cluster will be continued to fully
explore the issues of providing scalable
large-scale networked virtual environment.

References

[1] 黃俊堯, 張嘉麟, 鄭育鎔, "網際網路上三
度空間多人互動系統之空間分割法技術
研究", 第二屆海峽兩岸航空航天技術暨
流固耦合學術研討會, 大陸北京, 87 年 7
月, pp.43-50.

[2] ANSI/IEEE Std. 1278-1993, “Standard for
Distributed Interactive Simulation (DIS) –
Application Protocols”, March 1993.

[3] J. W. Barrus, R. C. Waters, and D. B.
Anderson, “Locales and Beacons:
Supporting Large Multiuser Virtual
Environments”, IEEE Computer Grapics
and Applications, November 1996, Vol. 16,
No. 6, pp.50-57.

[4] S. Benford, C. Greenhalgh, T. Rodden and

J. Pycock, “Collaborative virtual
environments “, CACM, Volume 44, Issue
7 (2001), pp.79-85.

[5] J. S. Dahmann, F. Kuhl, and R. Weatherly,
“Standards for Simulation: As Simple As
Possible But Not Simpler – The High Level
Architecture for Simulation”, Simulation,
Vol. 71, No. 6, December 1998,
pp.378-387.

[6] T. A. Funkhouser, "RING: a client-server
system for multi-user virtual environments
", Proceedings of the 1995 symposium on
Interactive 3D graphics , April 9 - 12, 1995,
Monterey, CA USA, pp. 85-92.

[7] C. Greenhalgh and S. Benford, "Massive, A
Collaborative Virtual Environment for
Teleconference", ACM Trans. on
Computer Human Interfaces(TOCHI), Vol.
2, No. 3, ISSN 1073-0516, September 1995,
pp.239-261.

[8] Hagsand, "Interactive Multi-user VEs in
the DIVE System", IEEE Multimedia, Vol.
3, No. 1, Spring 1996, pp. 30-39.

[9] ”HLA Technical Specifications”, Available
at http://hla.dmso.mil/

[10] Y. Honda, K. Matsuda, J. Rejimoto, and R.
Lea, "Virtual society: extending the WWW
to support a multi-user interactive shared
3D environment. Procs. of VRML'95, San
Diego, CA. Aug 1995. Also available at
http://www.csl.sony.co.jp/person/rodger.ht
ml

[11] J. Y. Huang, C. T. Fang-Tson, and J. L.
Chang, "A Multiple User 3D Web
Browsing System", IEEE Internet
Computing, Vol. 2, No. 5, Sept/Oct 1998,
pp.70-80.

[12] M.R. Macedonia et al., "NPSNET: A
Multi-Player 3D Virtual Environment Over
The Internet", ACM SIGGRAPH Special
Issue on 1992 Symposium on Interactive
3D Graphics, (Cambridge, MA), 1995, pp.
93-94.

[13] M.R. Macedonia, M.J. Zyda, D.R. Prat,
D.P. Brutzman, and P.T. Barham,
“Exploring Reality with Multicast Groups:
A Network Architecture for Large-scale
Virtual Environments”, Proc. 1995 IEEE
Virtual Reality Annual International
Synposium(VRAIS95), March 1995.

[14] G. Singh, et al., "BRICKNET : Sharing

Object Behaviours on the Net",
Proceedings of VRAIS'95, IEEE Computer
Society Press, March 1995, pp19-25.

[15] S. Singhal and M. Zyda, “Resource
Management for Scalability and
Performance”, Networked Virtual
Environment – Design and Implementation,
Addison-Wesley Pub Co., ISBN:
0201325578, (1999), pp.181-248.

[16] S. K. Singhal, D. R. Cheriton, “Using
Projection Aggregations to Support
Scalability in Distributed Simulation”,
Proceedings of 1996 International
Conference on Distributed Computing
Systems, IEEE 1996.

[17] D. J. VanHook and J. O. Calvin, “Data
Distribution Management in RTI 1.3”,
Simulation Interoperability Workshop,
Spring 1998, paper no. 206. Also available
at
http://dss.ll.mit.edu/dss.web/98S-SIW-206.
html

