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Abstract
In this paper, the annealing robust radial basis

function networks (ARRBFNs) is proposed to

improve the problems of robust RBFNs for function

approximation with outliers. Firstly, the support

vector regression (SVR) approach is used to obtain

the initial structure of ARRBFNs. Because of the

SVR approach is equivalent to solving a linear

constrained quadratic programming problem under

the fixed structure of SVR, the number of hidden

nodes and adjustable parameters (e.g. initial structure)

are easy obtained in the ARRBFNs. Secondly, we use

the results of SVR as initialization of ARRBFNs.

Then, the annealing robust backpropagation (ARBP)

learning algorithm used as the learning algorithm of

ARRBFNs and applied to adjust the parameters of

ARRBFNs. The ARBP learning algorithm has been

proposed to overcome the problems of initialization

and cut-off points in the robust learning algorithm.

Based on the initialization of ARRBFNs by SVR

approach, the ARRBFNs have a fast convergence

speed and robust against outliers. Simulation results

are provided to show the validity and applicability of

the proposed ARRBFNs.

Key words: Outliers, Annealing robust

backpropagation learning algorithm, Radial basis

function networks, Support vector regression.

1. Introduction
Radial basis function networks (RBFNs) are

often used for modeling system due to its simplicity

(i.e. only one layer of weights are required) and

faster convergence [1]. In those approaches, the task

is to obtain networks that can act as closely to the

system to be modeled as possible. Since RBFNs

approximated functions without requiring

mathematical description of how the outputs

functionally depend on the inputs, they are often

referred to as model-free estimators [2]. The basic

modeling philosophy of model-free estimators is that

they build systems from input-output patterns

directly, or in more abstract, they learn from

examples without any knowledge of the model type.

This kind of learning schemes used for neural

networks can also be called data learning. Such

learning schemes are to find functions that can match

all training data as close as possible, no matter

whether these data are trustable or not. In fact,



RBFNs with sufficiently many nodes in the hidden

layer are referred to as universal approximators [3].

However, if the training data are corrupted by noise

or outliers [4], those data learning schemes may not

always come up with acceptable performance.

When the outliers are exists, the traditional

RBFNs approaches are easily affected. Hence, the

robust RBFNs approaches are proposed to overcome

traditional RBFNs approaches while facing with

outliers. In [5], the parameters of RBFNs (i.e. the

parameters the of Gaussian kernel function and the

synaptic weights) can be regarded as the initial

structure of robust RBFNs that determined by

singular values decomposition (SVD) method.

However, the initial structure of robust RBFNs using

SVD method still not obtains satisfying performance.

Hence, robust learning algorithms that similar with

the robust backpropagation (BP) learning algorithms

[7] are applied to adjusting the parameters of RBFNs

for the improving learning performance.

Nevertheless, in the use of robust learning algorithms,

there also exist the problems of initialization and the

selection of cut-off points [8]. Moreover, the number

nodes of RBFNs are pre-determined. In [6], the

number of nodes and the parameters of robust

RBFNs are obtained by adaptive growing methods

and randomization. The adaptive growing method is

only growing to a certain number beyond which a

desired number cannot be reached. In this approach,

it is difficult to determine when the adaptive growing

methods based least square (LS) criterion can be

switch to the adaptive growing methods based robust

criterion.

In this paper, in order to overcome the

problems of robust RBFNs approaches with outliers,

a novel approach, called the Annealing Robust

Radial Basis Function Networks (ARRBFNs), is

proposed. In this approach, we using the support

vector regression (SVR) approach [9] to obtain the

initial structure of ARRBFNs (i.e. the properly

number of nodes, the parameters of Gaussian

function and the synaptic weights). The SVR

approach with ε -insensitive function can be

provides an estimated function within the ε  zone

that is not slightly affected by outliers. That justly

provides better initialization to robust learning

algorithm. Then, we use the annealing robust

backpropagation (ARBP) learning algorithms to

adjusting the parameters of Gaussian function and

the synaptic weights [8]. Because of the ARBP

learning algorithm has been proposed to overcome

the problems of initialization and cut-off points

selection in the robust backpropagation learning

algorithms [8].

This paper is organized as follows. After this

introduction section, the problems of robust RBFNs

approaches are discussed in Section 2. Section 3, the

ARRBFNs is proposed and discussed. In the section,

SVR approach and ARBP learning algorithm are

briefly descripted. The computer simulations are

illustrated in Section 4. Finally, Section 5 concludes

this paper.

2. The Problems of Robust RBFNs
The structure of RBFNs consists with an input

layer, a hidden layer of radial basis functions and a

linear output layer. The overall structure, assuming

an input dimensionality p , implements a nonlinear

mapping RRF p →:  expanded on a finite basis of

nonlinear functions. When the radial basis functions

are chosen as Gaussian functions, it can be expressed

in the form

∑∑
== 









 −−==

L

i i

i
i

L

i
ii

mxwGwxf
1

2

2

1
2

exp)(
σ

,    (1)

where pRx ∈  is the input vector, iw  are the

synaptic weights, im  are the centers of Gaussian

functions, iσ  are the width of Gaussian functions



and L are the number of Gaussian functions. The

corresponding network structure is shown in figure 1.

In general, the structure of RBFNs is often

constructed by two catalogs. Firstly, the parameters

of Gaussian function (i.e. the centers and width of

Gaussian) and the synaptic weights are selected by

the clustering algorithms [10] and random,

respectively. The cross-validation or generalized

cross-validation [10] or pre-determined are often used

to obtaining the number nodes of RBFNs. Secondly,

the structure of RBFNs are iteratively obtained by

adaptive growing methods [6] or pruning methods.

This process can be regarded as the initial structure of

RBFNs. Then, the parameters of Gaussian function

and synaptic weights are adjusted to improve

approximated performance by the traditional learning

algorithms.

However, most of traditional RBFNs

approaches are based on the least square (LS)

criterion that easily affected by outliers [5,6]. Hence,

the robust RBFNs approaches are proposed to

overcome the problems of traditional RBFNs

approaches with outliers. Those robust RBFNs

approaches are mainly focus on the using robust

learning algorithms to adjust the parameters of

Gaussian function and the synaptic weights. The

robust learning algorithms, called the robust BP

learning algorithm, adopt the concept of the M-

estimators into backpropagation learning algorithms

[12]. The basic idea of such algorithms is to use the

loss function in the M-estimators to degrade the

effects of those outliers. The cost function of a robust

learning algorithm is defined as
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where ( )⋅σ  is the so-called loss function, which is a

symmetric function with a unique minimum at zero,

β  is the cut-off points serving as an index for

discriminating against outliers, ie  is the estimated

error for the i-th training pattern and N  is the

number of training data.

Nevertheless, the robust RBFNs approaches

with robust learning algorithm could indeed improve

the learning performance to some extent when

training data contain outliers [5,6]. Thus, the robust

RBFNs approaches are also exists some of problems.

Firstly, the initial structure of robust RBFNs are very

important that justly provides better initialization for

robust learning algorithm. In fact, this initialization

problem also occurs for nonlinear regression

approaches in the statistics theory. In [5], the

parameters of RBFNs are determined by singular

values decomposition (SVD) method. However, this

approach still not obtains the better initial structure of

robust RBFNs, as outliers existed. Moreover, the

number of nodes must be pre-determined. In [6], the

number of nodes and the parameters of robust

RBFNs are obtained by adaptive growing methods

and randomization. The adaptive growing method is

only growing to a certain number beyond which a

desired number cannot be reached. In the growing

process, the initial structure of robust RBFNs is

obtained by the adaptive growing methods based LS

criterion for a period of training. Then, the adaptive

growing method based the robust criterion (i.e. the

criterion of robust back-propagation learning

algorithm) for rest period of training. The growing

process is similarity to robust back-propagation

learning algorithm. In this approach, the problem is

difficult to determine when the adaptive growing

methods based LS criterion can be switch to the

adaptive growing methods based robust criterion.

Secondly, the outlier’s effects also appear in

traditional learning algorithm based LS criterion.

Hence, various robust learning algorithms [5-7,13]

have been proposed to overcome the outlier’s effects



in traditional learning algorithms. Chen and Jain [7]

firstly adopt the Hampel’s M-estimator into the cost

function to degrade the effects of outliers. Liano [13]

took another new robust cost function by assuming

errors belonging to the Cauchy distribution. In the

use of robust learning approaches, there also exist

some problems [8]. The important one is about the

initialization. In those robust learning algorithms, to

select a suitable initialization is extremely important.

In [7], the authors suggested that their robust learning

algorithm be applied after a period of training by the

traditional back-propagation learning algorithm.

However, this approach may have difficulty in

determining when to switch from backpropagation

learning algorithm to robust learning algorithm.

Another problem arising in those robust approaches

is regarding the selection of a parameter, the cut-off

points of the M-estimator in the cost function. The

cut-off points are used as a threshold for the rejection

of outliers. Like in [7], the cut-off points are

dynamically adjusted based on the value of the fixed

percentage of the errors. Such an approach requires

that the percentage of errors being considered as

outliers must be defined first. Therefore, we propose

a novel robust RBFNs approach to overcome the

above problems.

3. The annealing robust RBFNs
(ARRBFNs)

In this paper, we propose the annealing robust

RBFNs (ARRBFNs) to improve robust RBFNs for

modeling with outliers. In this approach, the initial

structure of ARRBFNs is obtained by the SVR

approaches. Then, the annealing robust back-

propagation (ARBP) learning algorithm is applied to

adjusting the parameters of Gaussian function and

the synaptic weights.

3.1 The initial structure of ARRBFNs by
SVR approach

The SVR approach is to approximate the

given observations in an m-dimensional space by a

linear function in another feature space F. The

function in SVR is of the form

bxxf +Φ= )(,),(
rrrr

θθ ,                      (3)

where ⋅⋅,  is an inner product defined on F, ( )⋅Φ  is a

nonlinear mapping function from mR  to F  (i.e.

FRm →Φ : ), F∈θ
r

 is a parameter vector to be

identified in the function, and b is a threshold.

Suppose that those observations are generated from

an unknown probabilistic distribution ),( yxG r
. Then

the solution for the problem is to find f that

minimizes the following risk function [9]:
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where )),(( θ
rrxfyL −  is the loss function measuring

the difference between the desired y and the

estimated output f( θ
rr

,x ) for a given input xr . The loss

functions are often chosen as the ε -insensitive

function. The ε -insensitive function is defined as
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for some previously chosen nonnegative number ε .

However, since ),( yxG r
 is unknown, then ][ fR

cannot be directly evaluated from (4). Usually, the

following empirical risk function is used instead:
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where P is the number of training data. Although

having the advantage of being relatively easy to

compute and being uniformly consistent hypothesis

classes with bounded complexity, the attempt to

minimize 
empR  may directly lead to the phenomenon

of overfitting and thus, poor generalization occurs in

the case of a high model capacity in f. To reduce the



overfitting effects, a regulation term is added into

][ fRemp
, and (6) is modified as
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where C>0 is a regular constant. The regulation term

in (7) controls the tradeoff between the model

complexity and approximation accuracy in order to

ensure good generalization performance.

It was shown that the solution of SVR

approach can be expressed in terms of support

vectors, ∑
=

Φ=
P

i
i x

1

)(
rr

βθ  and therefore, the function f

can be written as:
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In the above equation, the inner product )(),( xxi ΦΦ

in the feature space is usually considered to be a

kernel function ),( xxK i
rr . The kernel function

determines the smoothness properties of solutions

and should reflect a prior knowledge on the data. In

this paper, the Gaussian function is used as kernel

function. The coefficients iβ  in (8) can be solved by

quadratic programming methods with suitable

transformation of the above problem into constraint

optimization problems and properly rearranging the

equation into a matrix form. Note that only some of

iβ ’s are not zeros and the corresponding vectors

ixr ’s are called the support vectors (SVs). Hence, (8)

can be rewritten as
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where SV is the number of SVs, ixr  are support

vectors and iiw β=  for some of 0≠iβ . If the kernel

function is chosen as Gaussian function, then (9) is

equivalent to (1). That is, the SV, iw  and

{ }iim σθ ,∈
r

 can be represented as the number of

Gaussian functions L, the synaptic weights and the

parameters of Gaussian function, respectively.

3.2 The Learning Algorithm of
ARRBFNs
In the learning algorithm of ARRBFNs, the

annealing robust back-propagation (ARBP) learning

algorithm is used [8]. An important feature of ARBP

learning algorithms that adopt the annealing concept

into the cost function of robust back-propagation

learning algorithm is proposed. Based on the same

idea, a cost function for ARBP learning algorithm is

defined here:
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where t is the epoch number, )(te j  is the error

between the j-th desired output and the j-th output of

the ARRBFNs at epoch t , )(tβ  is a deterministic

annealing schedule acting like the cut-off points and

( )⋅ρ  is a logistic loss function and defined as
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Based on the gradient-descent kind of learning

algorithms, the synaptic weights iw , the centers im

and width iσ  of Gaussian function are updated as
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where η  is a learning constant,

( ) jjj eee  );( ; ∂∂= βρβϕ  is usually called the

influence function. When outliers exist, they have

great impact on the approximated results. Such an

impact can be understood through the analysis of the

influence function. The using loss function (12) and

its influence function in this papers are shown in

figure 2. In the ARBP learning algorithm, the

properties of annealing schedule )(tβ  have (A)

initialβ , )(tβ  for first epoch, has a large values; (B)



+→ 0)(tβ  for ∞→t ; (C) tkt /)( =β  for any t

epoch, where k is constants [8].

4. Simulation Results
In this section, simple example is tested to

verify of the proposed ARRBFNs approach. The

simulations were conducted in the Matlab

environment. The support vector machine toolbox

provided by the Steve Gunn and obtained through

network service is used here. The root mean square

error (RMSE) of the testing data is used to measure

the performance of the learned networks

(generalization capability). The RMSE is defined as
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where iy  is the desire value at ix  and iŷ  is the

ARRBFNs output given ix  as its input. The

learning constant η  is chosen as 0.01 in the

simulation. Now, the sinc function is considered as

[9]:

x
xy )sin(=   with [ ]10 ,10−∈x .          (16)

51 training data set are generated from (16) and three

artificial outliers are added. After training, another

201 testing data set are used for evaluating the

performance of ARRBFNs.

In the ARRBFNs, the initial structure of

ARRBFNs is firstly obtained by the SVR approach.

In the SVR approach, those required parameters are

set as C=3, Gaussian kernel function with 3=σ
and 15.0 ,1.0=ε . Two initial structures of

ARRBFNs with the hidden nodes (i.e. the number of

SVs) are obtained as 12 and 11 for 1.0=ε  and

0.15, respectively. These initial results SVR for

ARRBFNs are shown in figure 3. From the figure 3,

it is clear that the hidden nodes and initial structure

(i.e. initial testing RMSE) of ARRBFNs are

controlled by ε  in the using SVR approach with

ε -insensitive loss function. Based on the initial

structure of ARRBFNs, the testing RMSE of

ARRBFNs is 0.0683 and 0.1012 for 1.0=ε  and

0.15, respectively. Then, the parameters of

ARRBFNs are adjusted by the ARBP learning

algorithm, the number of epochs are needed as 156

and 323 under the testing RMSE < 0.01 for

1.0=ε  and 0.15, respectively. The final result of

ARRBFNs under the testing RMSE < 0.01 is shown

in the Figure 4. Besides, two errors convergence

curves are shown in figure 5. From this example, the

initial structure of ARRBFNs is obtained by the SVR

approach that also provides a better initialization of

ARBP learning algorithm. Hence, the proposed

ARRBFNs have fast convergence speed.

5. Conclusions
In this paper, we propose ARRBFNs approach to

improve the RBFNs for modeling with outliers. In

the proposed approach, we use the SVR approach as

the initial structure of ARRBFNs. Then, we apply

ARBP learning algorithm to improve the

performance of ARRBFNs. Based on the initial

structure by SVR approach, the ARRBFNs have a

fast convergence speed. Simulation results are

provided to show the validity and applicability of the

proposed ARRBFNs.
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    Figure 1: The structure of RBFNs is shown.

Figure 2: The logistic loss function and its influence

function are shown.

Figure 3: The training data points and two initial

results of proposed ARRBFNs using SVR

approach are represented as ‘+”  and “-“,

respectively.
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Figure 4: The final results of ARRBFNs under testing

RMSE < 0.01 is shown.

Figure 5: Error convergence curves of ARRBFNs are

shown.
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