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Abstract 

 
In this paper we present how to reconfigure 

dynamically a complete binary tree in faulty 
hypercubes. First, we use a dynamic algorithm to 
reconfigure a complete binary tree of height h 
(h≥0) in an (h+1)-dimensional faulty hypercube. 
If there is a faulty node in the hypercube, both 
the dilation and congestion are 2 after 
reconfiguration. If there are two faulty nodes in 
the hypercube, both the dilation and congestion 
are 3 after reconfiguration. If there are more than 
two faulty nodes in the hypercube, we impose a 
constraint on the type of the faulty nodes, both 
the dilation and congestion are 3 after 
reconfiguration. Then we reconfigure a complete 
binary tree of height h in an (h+2)-dimensional 
hypercube with at most 2h+1-1 nodes, and the 
dilation and congestion are, respectively, 2 and 1 
after reconfiguration. The number of the affected 
nodes are minimized after reconfiguration.  
 
Keyworks: Reconfiguration, Complete binary 
tree, Hypercube, Embedding. 
 

1. Introduction 
 
The hypercube is one of the most effective as 

well as popular network architectures of parallel 
machines. The hypercube offers a rich 
interconnection topology, a recursive structure, 
and a low diameter. The structure of the 
hypercube can simulate many computational 
structures with only small constant factor 
slowdown, such as arrays, binary trees and mesh 

of trees [1]. 
 
Over the years, tree topology has been 

designed to describe many computations, for 
example, searching, sorting, and merging 
problems [2, 3]. Particularly interesting among 
trees is the complete binary tree, which is a 
natural computational structure for parallel 
algorithms, such as “divide-and-conquer” type 
[4]. 

 
Many researches have discussed the 

embedding of binary trees into hypercubes [1, 
5-10]. In [1, 5], it has been proven that a 
double-rooted complete binary tree of height h 
(h≥0), denoted by DTh which is a complete 
binary tree with the root replaced by a path of 
length two, is a subgraph of an (h+1)- 
dimensional hypercube, denoted by Hh+1. [6, 7] 
has shown a complete binary tree of height h, Th, 
which has 2h+1-1 nodes, can be embedded into 
Hh+2 so that the adjacency of Th is preserved. 
There exists no one-to-one node embedding of 
Th into Hh+1 and the adjacency of Th is preserved 
[6]. Wagner [8] described the embedding of a 
binary tree of height h into Hh; the binary tree 
was complete for the first h-2 levels. Wu et al. [9] 
presented the embedding of binomial trees in 
hypercubes with link faults. [10-13] has 
addressed how to reconfigure binary trees in 
faulty hypercubes. 

 
The purpose of this paper is to present how to 

reconfigure dynamically a complete binary tree 
in a hypercube with faulty nodes. First, we 
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discuss how to reconfigure Th in an (h+1)- 
dimensional hypercube with faulty nodes, then 
discuss how to reconfigure Th in an (h+2)- 
dimensional hypercube with at most 2h+1-1 faulty 
nodes. It is considered that the number of the 
affected nodes are minimized after faults 
recovery. 

 
The remaining sections are organized as 

follows. Section 2 gives the notations and 
definitions of this paper. In Section 3, we present 
how to reconfigure Th in Hh+1 with one or more 
faulty nodes. A free node of the hypercube is 
assigned to recover one faulty node, and the leaf 
nodes of Th are embedded into other faulty nodes. 
In Section 4, we give an algorithm to reconfigure 
Th in Hh+2 with at most 2h+1-1 faulty nodes, the 
dilation and congestion of reconfigurable 
embedding being respectively 2 and 1, and only 
the faulty nodes suffer the influence after faults 
recovery. Finally, the conclusion is given in 
Section 5.  
 

2. Preliminaries 
 

The root of the complete binary tree of height 
h, Th, is in level 0, two nodes in level 1, four 
nodes in level 2, 2i nodes in level i, etc., and the 
total number of Th is 2h+1-1, where h≥0. The 
n-dimensional hypercube, Hn, has 2n nodes. 
These nodes of Hn are labeled {0, 1, 2, …, 2n-1} 
with binary numbers. Two nodes in the 
hypercube are linked with an edge if and only if 
their binary numbers differ by a single bit. The 
Hamming distance is the number of different bits 
between two nodes. To conveniently describe the 
embedding, we use two colors, black and white, 
to correspond to the binary number. If the node 
has even number of 1’s, it is colored black. 
Otherwise it is colored white. Since the 
hypercube has a perfect matching, Hn has 2n-1 
black nodes and 2n-1 white nodes.  

 
The cost of one-to-one node embedding of a 

guest graph into a host graph is measured in 
terms of dilation and congestion. The dilation of 

an edge of the guest graph is the length of 
embedded path of the host graph. The dilation of 
an embedding is the maximum dilation over all 
edges of the guest graph. The congestion of an 
edge of the host graph is the number of edges of 
the guest graph that are embedded using the 
same edge of the host graph. The congestion of 
an embedding is the maximum congestion over 
all edges of the host graph. Hence, we have to 
consider the tradeoff between the dilation and 
congestion of an embedding. 

 
The faulty model of the hypercube is defined 

as follows [14, 15]. 
(1) The computational part of a faulty node is 

not utilized, while its links are fault-free. 
(2) A free node is not assigned initially; it can 

be used to recover faults but can not be 
reused to recover any other faults later. 

(3) The task of the faulty node is allowed to 
migrate to the free node. 

(4) Assume the faulty diagnosis mechanisms are 
fault-free. 

 
Hence, all the free nodes can be used to 

recover from faults in the hypercube. 
 

3. Reconfiguring Th in a faulty Hh+1 
 
In this section, we discuss how to reconfigure 

Th in a faulty Hh+1. Th can be embedded into Hh+1 
with dilation 2 and there remains a free node in 
Hh+1 [6]. When an arbitrary faulty node occurs in 
Hh+1, we can reconfigure Th in Hh+1 since the 
hypercube is symmetric, and the reconfiguration 
results in all nonfaulty nodes of Th to be affected. 
We have to consider how to reduce the overhead 
of data communication after faults recovery; that 
is, the number of the affected nodes has to be as 
few as possible after reconfiguration. Therefore, 
we present a dynamic algorithm to reconfigure 
the complete binary tree in a faulty hypercube. 

 
Theorem 1. Th can be reconfigured dynamic- 

ally to embed into Hh+1 with dilation 2 and 
congestion 2 when an arbitrary faulty node 
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occurs in Hh+1. 
 
Proof. First, we construct Th from DTh. The 

dilation is 2 and the congestion is 1 for such 
construction of Th in Hh+1 (see Fig. 1) [1]. When 
an arbitrary node becomes faulty in Hh+1, there 
are two cases to be considered as follows. 

 

h

 
Fig. 1. Construction of Th from DTh. 

 
Case 1. If the faulty node is one of both roots 

of DTh, we let the nonfaulty root become the 
root of Th, and the dilation and congestion are 
not altered. 

 
Case 2. When the faulty node occurs in the 

internal nodes or the leaf nodes of Th. Without 
loss of generality, assume the faulty node is in 
the left subtree of root rl of DTh. The path from 
the faulty node to root rl has to be modified; that 
is, let rr become the root of Th and the nodes of 
the path are re-embedded into their parent nodes 
(see Fig. 2). Hence, each node of the path links 
its two sons using one edge whose dilation is 2 
and the other edge whose dilation is 1, while the 
parent node of the faulty node uses two edges 
whose dilation are 2 to link its two sons. The 
congestion of edges of the path are equal to 2 in 
Hh+1. 

����

rl rr

(new root Th )

fault

 

Fig. 2. The path from the faulty node 
to rl is described by solid lines.  
 

Therefore, if a faulty node occurs in level i 
(i>0) of Th, the number of edges with dilation 2 
increases i, and the congestion of edges of the 
path increases 1 in Hh+1. Th can be reconfigured 
dynamically in Hh+1 with dilation 2, congestion 
2, and there are i+1 affected nodes after 
reconfiguring when an arbitrary faulty node 
occurs in Hh+1.                                                    
 

Now we consider Hh+1 with at leat two faulty 
nodes. For reconfiguring Th in Hh+1, we need the 
following lemma. 

 
Lemma 1. DTh-1 (h≥1) can be embedded into 

Hh as each leaf node of DTh-1 is linked to a 
certain internal node of DTh-1 via an edge in Hh. 

 
Proof. We color the nodes of DTh-1 with black 

or white in Hh. Suppose the leaf nodes of left 
subtree of the roots are black and the leaf nodes 
of right subtree of the roots are white. We prove 
the lemma by induction on h. 

 
Hypothesis: DTh-2 can be embedded into Hh-1 

as each leaf node DTh-2 is linked to a certain 
internal node of DTh-2 via an edge in Hh-1. 

 
Basis step: When h=1, 2, it is trivial. DT2 can 

be embedded into H3 as shown in Fig. 3. The 
figure shows the links between leaf nodes and 
internal nodes in H3; for example, leaf nodes n3, 
n4, n7 and n8 link to internal nodes n2, n5, n1 
and n6, respectively. 

 
1 5
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Fig. 3. Linking leaf nodes to certain 
internal nodes of DT2. The solid 
lines represent the links in H3.  

 
Induction step: We partition Hh into two 

Hh-1’s by the most significant bit. Since DTh-2 is 
embedded into Hh-1, we can merge two DTh-2’s to 
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DTh-1 as shown in Fig. 4 [1]. The links between 
leaf nodes and certain internal nodes in DTh-1 are 
the same as the hypothesis above describes. 
Therefore, the lemma is proved.                        

 

000-
010-

011- 100-

110-
111-

h-2

 

Fig. 4. Construction of DTh-1 from 
two DTh-2’s. The added edges are 
shown in solid lines. Nodes 010- and 
110- are both roots of DTh-1.  

 
Theorem 2. Th can be reconfigured dynamic- 

ally to embed into Hh+1 with dilation 3 and 
congestion 3, and a leaf node of Th is embedded 
into one faulty node of Hh+1 when two arbitrary 
faulty nodes occur in Hh+1. 

 
Proof. Likewise, We construct Th from DTh in 

Hh+1 (see Fig. 1). When two arbitrary faulty 
nodes u and v occur in Hh+1, there are two cases 
to be considered as follows. 

 
Case 1. If the two faulty nodes u and v are not 

adjacent in Hh+1, and u is in level i and v is in 
level j, where i≤j (see Fig. 5). Faulty node u is 
reconfigured as Theorem 1 describes, and the 
other faulty node v has to be reconfigured to 
embedded into a leaf node of Th to reduce the 
influence of the structure of Th. Since internal 
node v of DTh has an edge to link a certain leaf 
node, w, according to Lemma 1, faulty node v 
can be re-embedded into leaf node w. Hence, the 
dilation of edge which links the parent node of v 
and w is 2, and the dilation of edges which link 
w and two sons of v are 2. The congestion of 
edge (v, w) of Hh+1 is 3. 

�����
u

v �����

leaf node w    
Fig. 5. Two faulty nodes u and v are 
not adjacent in Hh+1.  

 
Case 2. If the two faulty nodes u and v are 

adjacent in Hh+1, u and v are in level 0, or u is in 
level i and v is in level j, where j-i=1 (see Fig. 6). 
When nodes u and v are in level 0 (see Fig. 6(a)), 
we let leaf node w, which has an edge to link 
faulty node u, become the root of Th. The 
dilation of two edges linking w and its two sons 
are respectively 3 and 2. The congestion of edge 
(w, u) of Hh+1 is 2. 

 
When faulty node u is in level i and v is in 

level j, where j-i=1 (see Fig. 6(b)). Faulty node u 

is reconfigured to be the same as in Theorem 1. 

Assume leaf node w, which has an edge to link 

faulty node v, is used to recover faulty node v. 

The dilation of edge which links the parent node 

u and w is 3 after re-embedding, and the dilation 

and congestion of remaining edges are the same 

as in case 1. 

leaf node w

�����
�����

�����
�����u v

 

(a) 
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(b) 

Fig. 6. Two faulty nodes u and v are 
adjacent in Hh+1. 

 
Therefore, Th can be reconfigured dynamic- 

ally to embed into Hh+1 with two arbitrary faulty 
nodes, and a leaf node of Th is embedded into 
one faulty node. Both the dilation and 
congestion are 3, and there are at most h+2 
affected nodes after reconfiguring.                     

 
When there are more than two faulty node 

appearing in Hh+1, we impose a constraint on the 
number and the type of faulty nodes as follows. 

 
Constraint: When an internal node of the 

double-rooted complete binary tree in a 
hypercube occurs to be faulty, the nodes which 
are adjacent with the faulty node have to be 
nonfaulty. The leaf nodes, which have edges to 
link the faulty node and its adjacent nonfaulty 
nodes, have to be at least two nonfaulty nodes. 

 
Now we consider how to reconfigure Th with 

this constraint. 
 
Theorem 3. With the above constraint, Th can 

be reconfigured dynamically to embed into Hh+1 
with dilation 3 and congestion 3, and leaf nodes 
of Th are embedded into the faulty nodes of Hh+1. 

 
Proof. First, we construct Th from DTh in Hh+1 

(see Fig. 1). Each internal node has an edge to 
link a certain leaf node by Lemma 1; such 
linking edges are described by dashed lines as 
shown in Fig. 7. Without loss of generality, we 
consider probable cases as follows. Assume 

node n2 is faulty and node a is nonfaulty (see 
Fig. 7), node n2 is re-embedded into node a; 
hence, the dilation of edges (n1, a), (a, n3) and 
(a, n4) are respectively 2, and the congestion of 
edge (n2, a) of Hh+1 is 3. 

 
1

leaf nodes

����
2

3 4

5 6 7 8

9 10 11
12

13 14
a g b c d f e  

Fig. 7. The dashed lines describe the 
linking between the internal nodes 
and the leaf nodes.  

 
Moreover, assume node a is also faulty, while 

at least one of the two leaf nodes g and e, which 
link respectively to nodes n3 and n4, is nonfaulty. 
Without loss of generality, let node e be 
nonfaulty node, then node n2 be re-embedded 
into node n4 and node n4 be re-embedded into 
node e. Hence, the dilation of edges (n1, n4), (n4, 
n3), (e, n7) and (e, n8) are 2, the dilation of edge 
(n4, e) is 1, and the congestion of edge (n4, e) of 
Hh+1 is 3. 

 
Furthermore, assume node n7 or n8 is faulty. 

Now we consider node n7 only. At least one of 
the three leaf nodes b, c and d, which link 
respectively to internal nodes n9, n7 and n10, is 
nonfaulty. Let node d be nonfaulty, node n7 be 
re-embedded into node n10 and node n10 be 
re-embedded into node d. Hence, the dilation of 
edges (e, n10), (n10, n9), (n10, d), (d, n13) and 
(d, n14) are respectively 3, 2, 1, 2 and 2, and the 
congestion of edge (n10, d) of Hh+1 is 3. 
Similarly, if nodes n8 or n13 or n14, etc., are 
faulty, these faulty nodes can be reconfigured 
with dilation at most 3 and congestion at most 3.  

 
Therefore, Th with the constraint can be 

reconfigured dynamically to embed into Hh+1 
with dilation 3 and congestion 3 if there are 
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more than two faulty nodes appearing in Hh+1, 
and there are at most three affected nodes for 
reconfiguring each faulty node.                         

 
4. Reconfiguring Th in Hh+2 with 

Faults 
 
Th has been shown to be able to be embedded 

into Hh+2 so that the adjacency of Th is preserved 
[6, 7]. There remains 2h+1+1 free nodes for 
embedding Th into Hh+2, hence, Hh+2 provides 
more fault tolerance. While Th has to be 
reconfigured whenever a faulty node occurs in 
Th, there are 2h+1-1 nodes which may be affected 
for each reconfiguring in Hh+2. The performance 
of the system will then suffer much influence for 
recovering the faults. 

 
In this section, we present a reconfigurable 

algorithm to embed Th into Hh+2 with faults. The 
algorithm allows at most 2h+1-1 faulty nodes in 
Th and only the faulty nodes are affected for the 
reconfiguration, and the dilation and congestion 
of reconfigurable embedding are respectively 2 
and 1. 

 
First, we give a definition and a lemma before 

reconfiguring Th in Hh+2. 
 
Definition 1. Let LTh (h≥0) denote a graph 

which has two complete binary trees of the same 
height h and there is an augmented edge to link 
two nodes on the same position between two 
complete binary trees (see Fig.8 for LT2). 

 

 
Fig. 8. LT2 (The augmented edges are 
described by dashed lines). 

 
Lemma 2. LTh (h≥0) can be embedded into 

Hh+2 with dilation 2 and congestion 1. 
 

Proof. We prove the theorem by induction on 
h. 

 
Hypothesis: Embedding LTh-1 into Hh+1 with 

dilation 2 and congestion 1 is true. 
 
Basis step: When h=0, 1 and 2, it is trivial. 

The embedding of LT2 into H4 is shown in Fig. 9. 
It is one-to-one node embedding, the dilation of 
edges (n1, n6) and (a, f) of LT2 are respectively 2, 
and the congestion is 1. 

 

1

2

3 4

5

6

7 8

a

b

c d

f

g h

e

   

(a) 

 

2 4

3 7

1 5

8 6
d b

g c

e a

f
h

 

(b) 

Fig. 9. (a) LT2 in two DT2’s. (b) The 
embedding of LT2 into H4 (The 
augmented edges are described by 
dashed lines).  

 
Induction step: First, we decompose Hh+2 into 

two Hh+1’s. Then we can construct respectively 
two LTh-1’s in both Hh+1’s. Let both node a and b 
denote the roots of LTh-1 in one Hh+1, and both 
node c and d denote the roots of LTh-1 in the 
other Hh+1 as shown in Fig. 10(a). The nodes 
labeled with binary number are different at the 
most significant bit between two Hh+1’s. Since 
any hypercube is symmetric, we let nodes a, n1, 
n5, b, n3 and n7 link to nodes n6, n2, c, n8, n4 
and d, respectively. There are eight Th-2’s in two 
Hh+1’s, which are denote t1, t2, t3, t4, t5, t6, t7 
and t8 from left to right as shown in Fig. 10(a), 
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respectively. 
 

a 1

5

b 3

7

2

6

c 4

8

d
(0000-)

(0010-)

(0011-)

(0100-) (0110-) (1010-) (1011-) (1110-) (1111-)

(0111-) (1000-) (1100-)

t1 t2 t3 t4 t5 t6 t7 t8

h-2

 

                                            Hh+1                                                         Hh+1 

(a) 
 

a

1

b

32

c

4

d

(0010-)

t1 t5 t2 t6 t3 t7 t4

(0110-)

t8  

(b) 
Fig. 10. Construction of LTh from LTh-1’s in both Hh+1’s. The binary numbers of 
the leftmost four bits of the nodes are written aside the nodes.  

 
In such linking, we can construct LTh. The 

links among nodes on the same positions are the 
same as the hypothesis describes except for two 
new roots: n1, n3, while there is an unused edge 
to link n1 and n3 (see Fig. 10(b)). The dilation 
and congestion are the same as in the hypothesis. 
Therefore, this theorem is true for any dimension 
of hypercube according to the induction.           

 
Theorem 4. Th can be reconfigured dynamic- 

ally to embed into Hh+2 with dilation 2 and 
congestion 1, and only the faulty nodes suffer 
the influence of reconfiguration when then there 
are at most 2h+1-1 faulty nodes in Th. 

 
Proof. We can embed LTh into Hh+2 with 

congestion 1, the dilation of two edges are 2 and 
those of the others are 1 according to Lemma 2. 
Each node of one Th, denoted by Tl, of LTh has 

an edge to link a node (on the same position) of 
the other Th, denoted by Tr, of LTh. 

 
Assume Th is embedded initially into Tl with 

dilation 2 and congestion 1. When node n1 (or 
n3) is faulty in Tl (see Fig. 11), we let node n1 
(or n3) be re-embedded into node n8. Moreover, 
if nodes n1 and n3 are faulty in Tl, we let both 
faulty nodes be re-embedded into nodes a and c 
of Tr, respectively. Similarly, if there are other 
arbitrary faulty nodes appearing in Tl, we 
re-embed the faulty nodes into the free nodes (on 
the same position) of Tr and link to two sons of 
the free nodes, then return to two sons of faulty 
node of Tl. The dilation of edges which link the 
free nodes of Tr to its parent and sons is at most 
2, and the congestion of edges of Hh+2 is 1. 
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1
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f g

leaf nodes
 

Tl                           Tr 
Fig. 11. Th is reconfigured in LTh. 

 
Therefore, Th can be reconfigured dynamic- 

ally to embed into Hh+2 with dilation 2, 
congestion 1, and the number of the affected 
nodes are minimized after reconfiguration when 
there are at most 2h+1-1 faulty nodes in Th.        

 
5. Conclusion 

 
This paper has presented simple but effective 

algorithms to reconfigure dynamically complete 
binary trees in hypercubes. If there is an 
arbitrary faulty node in Hh+1, both the dilation 
and congestion are 2 after reconfiguring Th. If 
there are two arbitrary faulty nodes in Hh+1, both 
the dilation and congestion are 3 after 
reconfiguration. There are at most h+2 affected 
nodes after reconfiguring Th. Moreover, if there 
are more than two faulty nodes in Hh+1, we 
discuss how to reconfigure dynamically Th with 
the constraint in Hh+1, both the dilation and 
congestion are 3 after recovery, and there are at 
most three affected nodes for reconfiguring each 
faulty nodes. 

 
In addition, we present an algorithm to 

reconfigure dynamically Th with at most 2h+1-1 
faulty nodes in Hh+2, the dilation and congestion 
being respectively 2 and 1, and the number of 
the affected nodes are minimized after 
reconfiguration. 
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