
Dynamic Reconfiguration of Complete Binary Trees in
Faulty Hypercubes

在缺失的超立方體中動態重建完全二元樹

Chui-Cheng Chen
Southern Taiwan University of Technology

Department of Information Management
ccchen@mail.stut.edu.tw

Abstract

In this paper we present how to reconfigure

dynamically a complete binary tree in faulty
hypercubes. First, we use a dynamic algorithm to
reconfigure a complete binary tree of height h
(h≥0) in an (h+1)-dimensional faulty hypercube.
If there is a faulty node in the hypercube, both
the dilation and congestion are 2 after
reconfiguration. If there are two faulty nodes in
the hypercube, both the dilation and congestion
are 3 after reconfiguration. If there are more than
two faulty nodes in the hypercube, we impose a
constraint on the type of the faulty nodes, both
the dilation and congestion are 3 after
reconfiguration. Then we reconfigure a complete
binary tree of height h in an (h+2)-dimensional
hypercube with at most 2h+1-1 nodes, and the
dilation and congestion are, respectively, 2 and 1
after reconfiguration. The number of the affected
nodes are minimized after reconfiguration.

Keyworks: Reconfiguration, Complete binary
tree, Hypercube, Embedding.

1. Introduction

The hypercube is one of the most effective as

well as popular network architectures of parallel
machines. The hypercube offers a rich
interconnection topology, a recursive structure,
and a low diameter. The structure of the
hypercube can simulate many computational
structures with only small constant factor
slowdown, such as arrays, binary trees and mesh

of trees [1].

Over the years, tree topology has been

designed to describe many computations, for
example, searching, sorting, and merging
problems [2, 3]. Particularly interesting among
trees is the complete binary tree, which is a
natural computational structure for parallel
algorithms, such as “divide-and-conquer” type
[4].

Many researches have discussed the

embedding of binary trees into hypercubes [1,
5-10]. In [1, 5], it has been proven that a
double-rooted complete binary tree of height h
(h≥0), denoted by DTh which is a complete
binary tree with the root replaced by a path of
length two, is a subgraph of an (h+1)-
dimensional hypercube, denoted by Hh+1. [6, 7]
has shown a complete binary tree of height h, Th,
which has 2h+1-1 nodes, can be embedded into
Hh+2 so that the adjacency of Th is preserved.
There exists no one-to-one node embedding of
Th into Hh+1 and the adjacency of Th is preserved
[6]. Wagner [8] described the embedding of a
binary tree of height h into Hh; the binary tree
was complete for the first h-2 levels. Wu et al. [9]
presented the embedding of binomial trees in
hypercubes with link faults. [10-13] has
addressed how to reconfigure binary trees in
faulty hypercubes.

The purpose of this paper is to present how to

reconfigure dynamically a complete binary tree
in a hypercube with faulty nodes. First, we

 1

discuss how to reconfigure Th in an (h+1)-
dimensional hypercube with faulty nodes, then
discuss how to reconfigure Th in an (h+2)-
dimensional hypercube with at most 2h+1-1 faulty
nodes. It is considered that the number of the
affected nodes are minimized after faults
recovery.

The remaining sections are organized as

follows. Section 2 gives the notations and
definitions of this paper. In Section 3, we present
how to reconfigure Th in Hh+1 with one or more
faulty nodes. A free node of the hypercube is
assigned to recover one faulty node, and the leaf
nodes of Th are embedded into other faulty nodes.
In Section 4, we give an algorithm to reconfigure
Th in Hh+2 with at most 2h+1-1 faulty nodes, the
dilation and congestion of reconfigurable
embedding being respectively 2 and 1, and only
the faulty nodes suffer the influence after faults
recovery. Finally, the conclusion is given in
Section 5.

2. Preliminaries

The root of the complete binary tree of height
h, Th, is in level 0, two nodes in level 1, four
nodes in level 2, 2i nodes in level i, etc., and the
total number of Th is 2h+1-1, where h≥0. The
n-dimensional hypercube, Hn, has 2n nodes.
These nodes of Hn are labeled {0, 1, 2, …, 2n-1}
with binary numbers. Two nodes in the
hypercube are linked with an edge if and only if
their binary numbers differ by a single bit. The
Hamming distance is the number of different bits
between two nodes. To conveniently describe the
embedding, we use two colors, black and white,
to correspond to the binary number. If the node
has even number of 1’s, it is colored black.
Otherwise it is colored white. Since the
hypercube has a perfect matching, Hn has 2n-1
black nodes and 2n-1 white nodes.

The cost of one-to-one node embedding of a

guest graph into a host graph is measured in
terms of dilation and congestion. The dilation of

an edge of the guest graph is the length of
embedded path of the host graph. The dilation of
an embedding is the maximum dilation over all
edges of the guest graph. The congestion of an
edge of the host graph is the number of edges of
the guest graph that are embedded using the
same edge of the host graph. The congestion of
an embedding is the maximum congestion over
all edges of the host graph. Hence, we have to
consider the tradeoff between the dilation and
congestion of an embedding.

The faulty model of the hypercube is defined

as follows [14, 15].
(1) The computational part of a faulty node is

not utilized, while its links are fault-free.
(2) A free node is not assigned initially; it can

be used to recover faults but can not be
reused to recover any other faults later.

(3) The task of the faulty node is allowed to
migrate to the free node.

(4) Assume the faulty diagnosis mechanisms are
fault-free.

Hence, all the free nodes can be used to

recover from faults in the hypercube.

3. Reconfiguring Th in a faulty Hh+1

In this section, we discuss how to reconfigure

Th in a faulty Hh+1. Th can be embedded into Hh+1
with dilation 2 and there remains a free node in
Hh+1 [6]. When an arbitrary faulty node occurs in
Hh+1, we can reconfigure Th in Hh+1 since the
hypercube is symmetric, and the reconfiguration
results in all nonfaulty nodes of Th to be affected.
We have to consider how to reduce the overhead
of data communication after faults recovery; that
is, the number of the affected nodes has to be as
few as possible after reconfiguration. Therefore,
we present a dynamic algorithm to reconfigure
the complete binary tree in a faulty hypercube.

Theorem 1. Th can be reconfigured dynamic-

ally to embed into Hh+1 with dilation 2 and
congestion 2 when an arbitrary faulty node

 2

occurs in Hh+1.

Proof. First, we construct Th from DTh. The

dilation is 2 and the congestion is 1 for such
construction of Th in Hh+1 (see Fig. 1) [1]. When
an arbitrary node becomes faulty in Hh+1, there
are two cases to be considered as follows.

h

Fig. 1. Construction of Th from DTh.

Case 1. If the faulty node is one of both roots

of DTh, we let the nonfaulty root become the
root of Th, and the dilation and congestion are
not altered.

Case 2. When the faulty node occurs in the

internal nodes or the leaf nodes of Th. Without
loss of generality, assume the faulty node is in
the left subtree of root rl of DTh. The path from
the faulty node to root rl has to be modified; that
is, let rr become the root of Th and the nodes of
the path are re-embedded into their parent nodes
(see Fig. 2). Hence, each node of the path links
its two sons using one edge whose dilation is 2
and the other edge whose dilation is 1, while the
parent node of the faulty node uses two edges
whose dilation are 2 to link its two sons. The
congestion of edges of the path are equal to 2 in
Hh+1.

����

rl rr

(new root Th)

fault

Fig. 2. The path from the faulty node
to rl is described by solid lines.

Therefore, if a faulty node occurs in level i
(i>0) of Th, the number of edges with dilation 2
increases i, and the congestion of edges of the
path increases 1 in Hh+1. Th can be reconfigured
dynamically in Hh+1 with dilation 2, congestion
2, and there are i+1 affected nodes after
reconfiguring when an arbitrary faulty node
occurs in Hh+1.

Now we consider Hh+1 with at leat two faulty
nodes. For reconfiguring Th in Hh+1, we need the
following lemma.

Lemma 1. DTh-1 (h≥1) can be embedded into

Hh as each leaf node of DTh-1 is linked to a
certain internal node of DTh-1 via an edge in Hh.

Proof. We color the nodes of DTh-1 with black

or white in Hh. Suppose the leaf nodes of left
subtree of the roots are black and the leaf nodes
of right subtree of the roots are white. We prove
the lemma by induction on h.

Hypothesis: DTh-2 can be embedded into Hh-1

as each leaf node DTh-2 is linked to a certain
internal node of DTh-2 via an edge in Hh-1.

Basis step: When h=1, 2, it is trivial. DT2 can

be embedded into H3 as shown in Fig. 3. The
figure shows the links between leaf nodes and
internal nodes in H3; for example, leaf nodes n3,
n4, n7 and n8 link to internal nodes n2, n5, n1
and n6, respectively.

1 5

2

3 4 7

6

8

2
4

3 8

1 5

7 6

Fig. 3. Linking leaf nodes to certain
internal nodes of DT2. The solid
lines represent the links in H3.

Induction step: We partition Hh into two

Hh-1’s by the most significant bit. Since DTh-2 is
embedded into Hh-1, we can merge two DTh-2’s to

 3

DTh-1 as shown in Fig. 4 [1]. The links between
leaf nodes and certain internal nodes in DTh-1 are
the same as the hypothesis above describes.
Therefore, the lemma is proved.

000-
010-

011- 100-

110-
111-

h-2

Fig. 4. Construction of DTh-1 from
two DTh-2’s. The added edges are
shown in solid lines. Nodes 010- and
110- are both roots of DTh-1.

Theorem 2. Th can be reconfigured dynamic-

ally to embed into Hh+1 with dilation 3 and
congestion 3, and a leaf node of Th is embedded
into one faulty node of Hh+1 when two arbitrary
faulty nodes occur in Hh+1.

Proof. Likewise, We construct Th from DTh in

Hh+1 (see Fig. 1). When two arbitrary faulty
nodes u and v occur in Hh+1, there are two cases
to be considered as follows.

Case 1. If the two faulty nodes u and v are not

adjacent in Hh+1, and u is in level i and v is in
level j, where i≤j (see Fig. 5). Faulty node u is
reconfigured as Theorem 1 describes, and the
other faulty node v has to be reconfigured to
embedded into a leaf node of Th to reduce the
influence of the structure of Th. Since internal
node v of DTh has an edge to link a certain leaf
node, w, according to Lemma 1, faulty node v
can be re-embedded into leaf node w. Hence, the
dilation of edge which links the parent node of v
and w is 2, and the dilation of edges which link
w and two sons of v are 2. The congestion of
edge (v, w) of Hh+1 is 3.

�����
u

v �����

leaf node w
Fig. 5. Two faulty nodes u and v are
not adjacent in Hh+1.

Case 2. If the two faulty nodes u and v are

adjacent in Hh+1, u and v are in level 0, or u is in
level i and v is in level j, where j-i=1 (see Fig. 6).
When nodes u and v are in level 0 (see Fig. 6(a)),
we let leaf node w, which has an edge to link
faulty node u, become the root of Th. The
dilation of two edges linking w and its two sons
are respectively 3 and 2. The congestion of edge
(w, u) of Hh+1 is 2.

When faulty node u is in level i and v is in

level j, where j-i=1 (see Fig. 6(b)). Faulty node u

is reconfigured to be the same as in Theorem 1.

Assume leaf node w, which has an edge to link

faulty node v, is used to recover faulty node v.

The dilation of edge which links the parent node

u and w is 3 after re-embedding, and the dilation

and congestion of remaining edges are the same

as in case 1.

leaf node w

�����
�����

�����
�����u v

(a)

 4

������v

leaf node w

u �����

(b)

Fig. 6. Two faulty nodes u and v are
adjacent in Hh+1.

Therefore, Th can be reconfigured dynamic-

ally to embed into Hh+1 with two arbitrary faulty
nodes, and a leaf node of Th is embedded into
one faulty node. Both the dilation and
congestion are 3, and there are at most h+2
affected nodes after reconfiguring.

When there are more than two faulty node

appearing in Hh+1, we impose a constraint on the
number and the type of faulty nodes as follows.

Constraint: When an internal node of the

double-rooted complete binary tree in a
hypercube occurs to be faulty, the nodes which
are adjacent with the faulty node have to be
nonfaulty. The leaf nodes, which have edges to
link the faulty node and its adjacent nonfaulty
nodes, have to be at least two nonfaulty nodes.

Now we consider how to reconfigure Th with

this constraint.

Theorem 3. With the above constraint, Th can

be reconfigured dynamically to embed into Hh+1
with dilation 3 and congestion 3, and leaf nodes
of Th are embedded into the faulty nodes of Hh+1.

Proof. First, we construct Th from DTh in Hh+1

(see Fig. 1). Each internal node has an edge to
link a certain leaf node by Lemma 1; such
linking edges are described by dashed lines as
shown in Fig. 7. Without loss of generality, we
consider probable cases as follows. Assume

node n2 is faulty and node a is nonfaulty (see
Fig. 7), node n2 is re-embedded into node a;
hence, the dilation of edges (n1, a), (a, n3) and
(a, n4) are respectively 2, and the congestion of
edge (n2, a) of Hh+1 is 3.

1

leaf nodes

����
2

3 4

5 6 7 8

9 10 11
12

13 14
a g b c d f e

Fig. 7. The dashed lines describe the
linking between the internal nodes
and the leaf nodes.

Moreover, assume node a is also faulty, while

at least one of the two leaf nodes g and e, which
link respectively to nodes n3 and n4, is nonfaulty.
Without loss of generality, let node e be
nonfaulty node, then node n2 be re-embedded
into node n4 and node n4 be re-embedded into
node e. Hence, the dilation of edges (n1, n4), (n4,
n3), (e, n7) and (e, n8) are 2, the dilation of edge
(n4, e) is 1, and the congestion of edge (n4, e) of
Hh+1 is 3.

Furthermore, assume node n7 or n8 is faulty.

Now we consider node n7 only. At least one of
the three leaf nodes b, c and d, which link
respectively to internal nodes n9, n7 and n10, is
nonfaulty. Let node d be nonfaulty, node n7 be
re-embedded into node n10 and node n10 be
re-embedded into node d. Hence, the dilation of
edges (e, n10), (n10, n9), (n10, d), (d, n13) and
(d, n14) are respectively 3, 2, 1, 2 and 2, and the
congestion of edge (n10, d) of Hh+1 is 3.
Similarly, if nodes n8 or n13 or n14, etc., are
faulty, these faulty nodes can be reconfigured
with dilation at most 3 and congestion at most 3.

Therefore, Th with the constraint can be

reconfigured dynamically to embed into Hh+1
with dilation 3 and congestion 3 if there are

 5

more than two faulty nodes appearing in Hh+1,
and there are at most three affected nodes for
reconfiguring each faulty node.

4. Reconfiguring Th in Hh+2 with

Faults

Th has been shown to be able to be embedded

into Hh+2 so that the adjacency of Th is preserved
[6, 7]. There remains 2h+1+1 free nodes for
embedding Th into Hh+2, hence, Hh+2 provides
more fault tolerance. While Th has to be
reconfigured whenever a faulty node occurs in
Th, there are 2h+1-1 nodes which may be affected
for each reconfiguring in Hh+2. The performance
of the system will then suffer much influence for
recovering the faults.

In this section, we present a reconfigurable

algorithm to embed Th into Hh+2 with faults. The
algorithm allows at most 2h+1-1 faulty nodes in
Th and only the faulty nodes are affected for the
reconfiguration, and the dilation and congestion
of reconfigurable embedding are respectively 2
and 1.

First, we give a definition and a lemma before

reconfiguring Th in Hh+2.

Definition 1. Let LTh (h≥0) denote a graph

which has two complete binary trees of the same
height h and there is an augmented edge to link
two nodes on the same position between two
complete binary trees (see Fig.8 for LT2).

Fig. 8. LT2 (The augmented edges are
described by dashed lines).

Lemma 2. LTh (h≥0) can be embedded into

Hh+2 with dilation 2 and congestion 1.

Proof. We prove the theorem by induction on
h.

Hypothesis: Embedding LTh-1 into Hh+1 with

dilation 2 and congestion 1 is true.

Basis step: When h=0, 1 and 2, it is trivial.

The embedding of LT2 into H4 is shown in Fig. 9.
It is one-to-one node embedding, the dilation of
edges (n1, n6) and (a, f) of LT2 are respectively 2,
and the congestion is 1.

1

2

3 4

5

6

7 8

a

b

c d

f

g h

e

(a)

2 4

3 7

1 5

8 6
d b

g c

e a

f
h

(b)

Fig. 9. (a) LT2 in two DT2’s. (b) The
embedding of LT2 into H4 (The
augmented edges are described by
dashed lines).

Induction step: First, we decompose Hh+2 into

two Hh+1’s. Then we can construct respectively
two LTh-1’s in both Hh+1’s. Let both node a and b
denote the roots of LTh-1 in one Hh+1, and both
node c and d denote the roots of LTh-1 in the
other Hh+1 as shown in Fig. 10(a). The nodes
labeled with binary number are different at the
most significant bit between two Hh+1’s. Since
any hypercube is symmetric, we let nodes a, n1,
n5, b, n3 and n7 link to nodes n6, n2, c, n8, n4
and d, respectively. There are eight Th-2’s in two
Hh+1’s, which are denote t1, t2, t3, t4, t5, t6, t7
and t8 from left to right as shown in Fig. 10(a),

 6

respectively.

a 1

5

b 3

7

2

6

c 4

8

d
(0000-)

(0010-)

(0011-)

(0100-) (0110-) (1010-) (1011-) (1110-) (1111-)

(0111-) (1000-) (1100-)

t1 t2 t3 t4 t5 t6 t7 t8

h-2

 Hh+1 Hh+1

(a)

a

1

b

32

c

4

d

(0010-)

t1 t5 t2 t6 t3 t7 t4

(0110-)

t8

(b)
Fig. 10. Construction of LTh from LTh-1’s in both Hh+1’s. The binary numbers of
the leftmost four bits of the nodes are written aside the nodes.

In such linking, we can construct LTh. The

links among nodes on the same positions are the
same as the hypothesis describes except for two
new roots: n1, n3, while there is an unused edge
to link n1 and n3 (see Fig. 10(b)). The dilation
and congestion are the same as in the hypothesis.
Therefore, this theorem is true for any dimension
of hypercube according to the induction.

Theorem 4. Th can be reconfigured dynamic-

ally to embed into Hh+2 with dilation 2 and
congestion 1, and only the faulty nodes suffer
the influence of reconfiguration when then there
are at most 2h+1-1 faulty nodes in Th.

Proof. We can embed LTh into Hh+2 with

congestion 1, the dilation of two edges are 2 and
those of the others are 1 according to Lemma 2.
Each node of one Th, denoted by Tl, of LTh has

an edge to link a node (on the same position) of
the other Th, denoted by Tr, of LTh.

Assume Th is embedded initially into Tl with

dilation 2 and congestion 1. When node n1 (or
n3) is faulty in Tl (see Fig. 11), we let node n1
(or n3) be re-embedded into node n8. Moreover,
if nodes n1 and n3 are faulty in Tl, we let both
faulty nodes be re-embedded into nodes a and c
of Tr, respectively. Similarly, if there are other
arbitrary faulty nodes appearing in Tl, we
re-embed the faulty nodes into the free nodes (on
the same position) of Tr and link to two sons of
the free nodes, then return to two sons of faulty
node of Tl. The dilation of edges which link the
free nodes of Tr to its parent and sons is at most
2, and the congestion of edges of Hh+2 is 1.

 7

1

2

4 5

8

3

6 7

a

b

d e

c

f g

leaf nodes

Tl Tr
Fig. 11. Th is reconfigured in LTh.

Therefore, Th can be reconfigured dynamic-

ally to embed into Hh+2 with dilation 2,
congestion 1, and the number of the affected
nodes are minimized after reconfiguration when
there are at most 2h+1-1 faulty nodes in Th.

5. Conclusion

This paper has presented simple but effective

algorithms to reconfigure dynamically complete
binary trees in hypercubes. If there is an
arbitrary faulty node in Hh+1, both the dilation
and congestion are 2 after reconfiguring Th. If
there are two arbitrary faulty nodes in Hh+1, both
the dilation and congestion are 3 after
reconfiguration. There are at most h+2 affected
nodes after reconfiguring Th. Moreover, if there
are more than two faulty nodes in Hh+1, we
discuss how to reconfigure dynamically Th with
the constraint in Hh+1, both the dilation and
congestion are 3 after recovery, and there are at
most three affected nodes for reconfiguring each
faulty nodes.

In addition, we present an algorithm to

reconfigure dynamically Th with at most 2h+1-1
faulty nodes in Hh+2, the dilation and congestion
being respectively 2 and 1, and the number of
the affected nodes are minimized after
reconfiguration.

References

[1] T. Leighton, “Introduction to Parallel

Algorithms and Architectures: Arrays, Trees,
Hypercubes”, Morgan Kaufmann, Reading,
MA, 1992.

[2] J. Bentley and H.T. Kung, “A tree machine
for searching problems”, Proc. Int’l Conf.
Parallel Processing, pp. 257-266, 1979.

[3] Q. F. Stout, Sorting, “Merging, selection, and
filtering on tree and pyramid machine”, Proc.
Int’l Conf. Parallel Processing, pp. 214-221,
1983.

[4] E. Horowitz and A. Zorat, “Divide-and-
conquer for parallel processing”, IEEE Trans.
Computers, vol. 32, pp. 582-585, 1983.

[5] L. Nebesky, “On cubes and dichotomic tree”,
Časopis Pest. Mat., vol. 99, pp. 164-167,
1974.

[6] A. Y. Wu, “Embedding of tree networks into
hypercubes”, J. Parallel and Distributed
Computing, vol. 2, pp. 238-249, 1985.

[7] E. L. Leiss and H. N. Reddy, “Embedding
complete binary trees into hypercubes”,
Information Processing Letters, vol. 38, pp.
197-199, 1991.

[8] A. S. Wagner, “Embedding the complete tree
in the hypercube”, J. Parallel and Distributed
Computing, vol. 20, pp. 241-247, 1994.

[9] J. Wu, E. B. Fernandez and Y. Luo,
“Embedding of binomial trees in hypercubes
with link faults”, J. Parallel and Distributed
Computing, vol. 54, pp. 59-74, 1998.

[10] M. Y. Chan and S. J. Lee, “Fault-tolerant
embedding of complete binary trees in
hypercubes”, IEEE Trans. on Parallel and
Distributed Systems, vol. 4, no. 3, pp.
277-288, 1993.

[11] B. M. Y. Chan, F. Y. L. Chin and C. K. Poon,
“Optimal simulation of full binary trees on
faulty hypercubes”, IEEE Trans. on Parallel
and Distributed Systems, vol. 6, no. 3, pp.
269-, 1995.

[12] P. J. Yang and C. S. Raghavendra,
“Embedding and reconfiguration of binary
trees in faulty hypercubes”, IEEE Trans. on
Parallel and Distributed Systems, vol. 7, no.
3, pp. 237-245, 1996.

[13] A. Wang, R. Cypher and E. Mayr,
“Embedding complete binary trees in faulty
hypercubes”, Proc. of the third IEEE
symposium on Parallel and Distributed

 8

Processing, pp. 112-119, 1991.
[14] J. Hastad, T. Leighton and M. Newman,

“Reconfiguring a hypercube in the presence
of faults”, Proc. 19th Annu. ACM Symp.
Theory Comput., pp. 274-284, 1987.

[15] N. Krishnakumar, V. Hegde and S. S.
Iyengar, “Fault tolerant based embeddings
of quadtrees into hypercubes, Proc. Int’l
Conf. Parallel Processing, pp. 244-249,
1991.

 9

	Abstract

