
View-Dependent Level-of-Detail Modeling with Material
Preserving

Jing-Yen Huang
jihuang@csie.nctu.edu.tw

Jung-Hong Chuang
jhchuang@csie.nctu.edu.tw

Jun-Ming Su
jmsu@csie.nctu.edu.tw

Department of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, Taiwan, Republic of China

Abstract

Level of detail (LOD) modeling or mesh reduction has
been found useful in interactive walkthrough applica-
tions. In particular, view-dependent LOD modeling has
its strength in selective refinement and effective view and
back-face culling. In this paper, we propose a view-
dependent LOD modeling in which the selective refine-
ments is performed according to a dependency graph. The
dependency graph is constructed based on a progressive
meshing scheme that is clustering-based and takes both ge-
ometry and topology simplification into account. In the
dependency graph, nodes represent the simplification step
while the edge representing the relation between nodes.
The relation associated with each edge is classified as ei-
ther inheritance or dependence relation in order to facilitate
the use of spatial and temporal coherence. In the run-time
or selective refinement phase, a scheme is proposed to re-
duce the amount of selective and gauged nodes. Our exper-
iments reveal that the proposed scheme provides a steady
and efficient computational efficiency in the process of se-
lective refinement.

Keywords: Virtual Reality, View-Dependent Level of De-
tail, Dependency Graph, Progressive Mesh, Material Pre-
serving

1 Introduction

In virtual reality applications, maintaining a fast and con-
stant frame rate is crucial for achieving a smooth and re-
alistic visual perception. One way to achieve a fast frame
rate is to reduce the polygon flow that is sent to the graph-
ics pipeline for shading. Traditional methods, which in-
volve clipping, hierarchical traversal, and culling, are no
longer sufficient for complex virtual environments. There-
fore, many techniques of reducing polygon have been in-
troduced, such as level of detail (LOD), progressive mesh
(PM) etc. Then, we introduce these relative techniques as
following:

Levels of detail (LOD) is a common heuristic technique
for polygon flow reduction [11, 16, 2, 10, 17]. A de-
tailed representation is used for rendering when the ob-
ject is close to the viewer, and substituted by its coarser
approximations as the object recedes. LOD modeling
can be performed as a preprocessing, or at run-time, ren-
dering view-dependent LOD meshes, leading to view-
independent LOD meshes.

Sets of view-independent LOD meshes are appropri-
ate for many applications, but problems arise when ren-
dering complex models. While changing the model be-

tween levels of LOD, non-continuous view-independent
LOD would result in bothersome popping effect. There-
fore, progressive mesh have been emphasized aiming to
provide a continuous LOD, progressive refinement, and
progressive transmission. Current progressive meshing al-
gorithms, however, tend to collapse only edges or triangles,
and hence possess a very long sequence of meshes. An-
other issue that is important but has been addressed less is
the preserving of material property, especially the discon-
tinuity of material attributes such as color.

However, many faces of the model may lie outside the
view frustum and processing these will cause extra cost.
Similarly, it is often unnecessary to render back-face that
also produces cost. Hence, view-dependence LOD pro-
vides a solvable method. It only renders meshes which lie
inside view frustum to accelerate rendering time. Unfor-
tunately, the dependency problem maybe raise when each
vertex-split or edge-collapsing during real-time simplifi-
cation. Xia [19] first introduces the dependency problem
that will cause incorrect result during vertex-split or edge-
collapsing. This problem can be solved by that these de-
pendencies are easily identified and stored in the progres-
sive mesh structure during its creation. Although solving
the dependency problem might sometimes get lesser sim-
plification than disregarding it, it has the advantage of pre-
serving the correct appearance of model.

In this paper, we propose a view-dependent LOD mod-
eling according to a dependency graph to perform a fast
selective refinement. The dependency graph is constructed
based on a progressive meshing scheme using vertex clus-
tering algorithm with geometry simplification and material
preservation [20]. The principal contributions of this paper
are:

1. To extern view-independent progressive mesh scheme
[20] into view-dependent.

2. Proposing a dependency graph, which solves the de-
pendence problem, reduces nodes operated to accelerate
selective refinement efficiency.

3. Fast dynamic walkthrough by simple criteria of se-
lective refinement and real time operation for local refining
and coarsening.

The paper is organized as follows. Section 2 outlines re-
lated work. Our approach is described in Section 3 and 4.
Implementation issues and experimental results are shown
in Section 5. Finally, conclusions and future works are
drawn in Section 6.

2 Related Work

Typical hierarchical representation based on view-
dependent LOD modeling is the vertex-tree structure that
is formed simplification sequence of edge collapsing [19,
9, 13, 3].

2.1 Edge Collapsing VS. Vertex Collaps-
ing

Hoppe [8] describes a progressive meshing method based
on edge-collapsing operation. Edges are first ordered ac-
cording to the cost that is the result of an energy minimiza-
tion function. The cost in general measures the amount of
error introduced into the model as the result of collaps-
ing the edge. Edges are then repeatedly collapsed. At
each collapsing, the edge of the lowest cost is collapsed
and the costs of adjacent edges are updated. Each edge
collapsing yields a mesh with two triangles less then the
mesh of previous level. The result is abase meshtogether
with a sequence of edge-collapsing records, each of which
can be used to recover finer representations of the mesh.
Edge-collapsing methods that incorporate with different
cost evaluations have been described in [5, 14, 15, 1, 11].

Edge-collapsing algorithms make good preservation of
model features; but one edge-collapsing removes two tri-
angles at most. If a mesh is composed of m triangles and
is simplified into a coarse mesh ofm0 triangles, the result-
ing progressive mesh will haven=(m - m0)/2 vertex splits
at least because each vertex split introduces two triangles
at most. So edge-collapsing algorithms are very slow and
cost a large memory. Evans [3] uses test of virtual edge
to increase reduction-ratio for edge-collapsing algorithms,
but increases the time complexity.

Xia [19] operates edge-collapsing like the [8], but choos-
ing the representative vertex is different. During dynamic
walkthrough, they maintain anactive node linked listrep-
resenting the recent model shape on vertex tree. Changing
the level of LOD is equal to modify the active node linked
list toward top (local coarsening) or bottom (local refining).

2.2 Vertex Clustering

The method uniformly divides the space occupied by a tri-
angle mesh into cells, selects a representative vertex with
the highest visual importance for each cell, and merges all
vertices to these representative vertices [16]. The method
may eliminate lots of vertices in single step, but the preser-
vation of model features is not good because it does not
keep more vertices at these characteristic portions.

Luebke [13] uses vertex clustering to create vertex tree.
Similarly, during dynamic walkthrough he uses active node
linked list on the vertex tree. Furthermore, he proposes the
ideas of distinguishing the active node linked list by space
and parallel processing of selective refinement and render-
ing pipeline. Unfortunately, he disregards the dependency
problem and so can’t prevent good appearance of model
because of using vertex clustering.

2.3 Dependency Problem

Although we form the hierarchical architecture (as ver-
tex tree) using edge-collapsing or vertex-clustering accord-
ing to simplification process, arbitrarily moving the active
node linked list toward up or down will result in incorrect

appearance of model because of existing dependency prob-
lem. Dependency results from that geometric information
of lines and faces may be incorrectly combined such as un-
der some views judging that some vertexes are visual and
other adjacent vertexes are not. One kind of dependency
problem is denoted as foldover in [19]. He records the
information of surrounding vertexes of collapsed edge at
each simplification process. During dynamic walkthrough,
checking these information determines whether the edge
can be collapsed or spilt or not. Hoppe [9] records sur-
rounding triangle numbers of collapsed edge to solve de-
pendency problem.

[7, 6, 18] solve dependency problem by following the
simplification order. Each vertex and triangle is endowed
with vertex level and triangle level. Following the sim-
plification process increases the levels of influenced ver-
texes and triangles. Then they create a Directed Acyclic
Graph (DAG) according to these levels. By the DAG, they
can produce correct appearance of model during dynamic
walkthrough. Another similar method to maintain depen-
dency is [3]. He only records the maximal or minimal
value of surrounding vertex numbers to judge whether sim-
plification is legal or not. The more relative details can be
found in their papers.

2.4 Selective Refinement Criteria

For the criteria of selective refinement, most common ap-
proaches include view frustum test, back face culling,
screen space projection error, silhouette boundaries test, lo-
cal illumination, and triangle budget. Please refer to these
papers of [13, 19, 9] for details.

2.5 Review of Material-Preserving Pro-
gressive Mesh [20]

Most traditional methods for generating progressive mesh
based on geometric simplifications, such as edge or tri-
angle collapsing and vertex decimation, and some local
topology modification as well. The algorithm of Yang [20]
aims to produce an effective progressive mesh by (a) al-
lowing more than three vertices to be collapsed or clus-
tered at each level, (b) employing geometric simplification
as well as topology simplification that involves local and
global topology modification, and (c) using effective crite-
ria to preserve geometric shape, especially sharp feature,
and color discontinuity.

His Algorithm begins with a preprocessing, in which
each vertex is classified into five categories (see 2.5.1) and
evaluated to yield a weight and a priority value, then the
bounding box of the given mesh is uniformly subdivided
into cells of size . The algorithm then enters a simplifica-
tion loop, in which each cycle yields a simplified mesh. In
each cycle of mesh simplification loop, doing the follow-
ing:

1. Select a vertex with the highest priority value to be
the representative for the next clustering operation.

2. Create a floating cell of sizeτ that is centered on the
representative to confirm the spatial range of vertex clus-
tering.

3. Start at the representative and generate the spanning
tree for all vertices that are inside the floating cell and can
be clustered to the representative.

4. Cluster all vertices in the spanning tree to the rep-
resentative. Delete the triangles that contain two or three

clustered vertices, and replace the clustered vertex by the
representative for triangles that contain one clustered ver-
tex.

5. Record the clustered vertices, vanishing triangles, and
the vertex replacements.

6. Update the weights and priority values for the repre-
sentative and its neighboring vertices.

The cycle is repeated until a user specified reduction rate
is reached. The loop yields a sequence of meshesMn,
Mn−1, . . . , M0, for some n, in whichMn is the origi-
nal mesh andMn is the most simplified mesh called base
mesh. The resulting progressive mesh consists of the base
meshMn and the sequence of recorded information nec-
essary for the refinement.

2.5.1 Vertex Categorization

His method treats that all vertices of the given mesh are
classified into five categories based on the material of tri-
angles incident to the vertex. Such a vertex categorization
is different from that found in mesh decimation [17]. A
vertex is a simple vertex if all triangles incident to it form
a loop and are of the same material. A simple vertex is
an edge vertex if visiting the loop of incident triangles en-
counters two material changes. A vertex is a boundary ver-
tex if it is geometrically on the boundary of the mesh. A
simple vertex is a corner vertex if visiting the loop of inci-
dent triangles encounters more than two material changes.
A vertex is a non-manifold vertex if it possesses more than
one loop of incident triangles. See Figure 1 for illustration.

Figure 1: Vertex Categories.

3 Our Approach

Recently, most developed methods [8, 9, 12] often use
edge collapsing to simplify geometric models. However,
edge collapsing has the drawbacks of both slow refinement
speed and a huge amount of data structure. Method of Yang
[20] can solve those drawbacks, but it still has some prob-
lems. Because his approach that uses vertex clustering to
simplify model clusters many vertexes once, it causes seri-
ous dependency problem. For correction of model check-
ing all adjacent geometric elements also reduces efficiency
of dynamic walkthrough. In addition, his approach is a
view-independent LOD. Therefore, to accelerate rendering
speed, we modify his approach into view-dependent LOD
and to solve dependency problem, we propose a strategy
to maintain simplified order distinguishing mutually rela-
tion of simplification operation intoreplacementandde-
pendency.

We still utilize vertex-clustering method to simplify ge-
ometry model. Thus, during creating view-dependent ref-
erence structure each simplified representative vertex de-
notes one simplification operation, but it may be reitera-
tion. Hence, it is not suitable for node or composite ele-
ment of view-dependent reference structure unless renum-
bering. In view of above reasons, we give up traditional

vertex tree and adopt step of simplification operation as
node of hierarchical structure and dependency relation as
edge to createdependency graph.

Then, during dynamic walkthrough, for different view
different local LOD degree is equal to inserting or remov-
ing nodes from node set on the dependency graph. There-
fore, we propose a real-time selective refinement scheme
to reduce reiterative error criteria test and fast operate dy-
namic walkthrough on the dependency graph. A flow chart
of our approach is shown in figure 2.

Figure 2: Outline of System Architecture.

3.1 Modifying Simplification Approach
for [20]

Original design of [20] is a technique of view-independent
LOD, so we must modify his data structure to suit our ap-
proach for view-dependent LOD application. We modify
two parts as following:

Maintaining Local Property for Each Simplifica-
tion Step: For adjacent level of progressive model data
produced by vertex collapsing, algorithm of [20] further
does the merging and compression. This operation can let
number of levels of progressive model data conform rea-
sonably anticipative amount and delete repeated replace-
ment, but lose the local property of simplification step.
Therefore, we cancel the function of merging and com-
pressing levels.

Promoting Quality of Simplification Procedure:
Because his vertex-clustering algorithm can cluster many
vertices once, especially between the two large amounts of
simplification operations, it is hard to produce good simpli-
fication operation of vertex-clustering so that causing long
and narrow triangles as figure 3a. Therefore, we forcibly
executeGlobal Error Boundingand Error Accumulation
of his algorithm to ensure that each error of vertex is not
over threshold and avoid repeatedly simplifying geometric
character for dense vertices.

Through above modification, clustering range of simpli-
fication operation in figure 3b is about one fourth of figure
3a.

(a) (b)

Figure 3: Bad Result vs. Good Result

3.2 Dependency Problem Analysis

In this section, we discuss mutually influenced relation be-
tween simplification steps so called dependency problem.

Replacement and Dependency Relation: Each
simplified coverage of vertex-clustering is defined: range
is radiated formed by edges and simplified representative
vertex is as center. Coverage of two arbitrary simplification
step i, j for vertex-clustering can be classified into three
conditions. 1: simplification step i, j are not intersecting
each other, 2: partial overlap, and 3: i is fully covered by
j. Shown in figure 4. According to the order of refinement
step in which starting from the coarsest model, if number
of step i is greater than number of step j, i is refined after j.
In other words, j is coarsened after i. Therefore, coverage
of j, namely range of vertex-cluster, is larger then i.

Figure 4: Coverage of Two Simplified Step i, j.

Hence, for any simplification step i, other simplification
step is either fully no-intersection or any relation in table
1. Concise and to the point, relations ofReplacingandRe-
placedare spatially full overlap. Relations ofRefined De-
pendencyandSimplified Dependencyare spatially partial
overlap. Therefore, Replacing and Refined Dependency
are the simplification step before simplification step i. On
the contrary, Replaced and Simplified Dependency are the
simplification step after simplification step i.

Conditions for Executing Refinement and Simpli-
fication: To execute correctly refinement for step i must
satisfy simultaneously following three conditions:

1. If projective error is over threshold, it must be refined.
2. Stepp of Replacing Relation has been refined.
3. All stepO1,. . . ,On of Refined Dependency have been

refined.
In other words, for the correction, besides determining

that step i must be refined, we need taking these steps be-
fore step i already have been refined certainly into account.
On the opposite direction, we can correctly execute the

Table 1:Dependency Relation in between Simplified Step

Name Simple Symbol Prior Order Spatial Property

Replacing p p < i Space ofi is fully covered byp

Replaced R1, R2, R3,. . ., Rn Rj > i Space ofi contains range of
Rj , 1 ≤ j ≤ n

Refined Dependency O1, O2, O3,. . ., On Oj < i Boundary vertexes of simplified
range Oj involve representa-
tive vertex ofi and they are the
partial overlap on space.1 ≤
j ≤ n

Simplified Dependency C1, C2, C3,. . ., Cn Cj > i Wheni is simplified, represen-
tative vertex ofi is the boundary
vertex of simplified range and
they are the partial overlap on
space,1 ≤ j ≤ n

simplification operation. That is to say, correctly simpli-
fication operation must be executed after all related step
R1,. . . ,Rn andC1,. . . ,Cn.

3.3 Dependency Graph Architecture

We propose a dependency graph whose nodes as the pro-
cesses of simplification step and edge as the relations of
simplification step. See the figure 5. Center of this graph is
the base model that is the coarsest and nodes that represent
the basic simplification step are distributed from the inside
to the outside. The node of dependency graph includes
geometric-refinement-operation record and error parame-
ter produced by geometric-refinement-operation. In figure
5, we only denote the Replacing (white arrow) and Refined
Dependency (black arrow). Inversing the arrow can denote
the Replaced and Simplified Dependency.

Figure 5: Dependency Graph Architecture

Sieving Dependence Relation: In fact, existing a lot
of unnecessary check for dependency relation, let us see
the right half-part in figure 5.e < f < h (start from
base model). If h depends on e and f; furthermore, f also
depends on e, checking e is unnecessary when h is refined.
By the refined rule, because f is refined, e must be refined
before f. Therefore, we need not to check e for refining
h. we can delete the edge (dependency relation) between
h and e to save checking time and storing space. Table 2
shows the statistic information. By the result in table 2, we
can know that general 3D model almost eliminate about
half dependency relations.

Creating Dependency Graph: Creating dependency
graph has two steps. First step: loading the progressive

Table 2:Sieving Result of Dependence Relation

Before Elimination After Elimination

Model (Level=Simplification Step) Amount Amount Eliminating Ratio (%)

Bunny(12551) 65187 33986 47.86

Ant(7219) 30993 17774 42.65

model, creating node information according to each refine-
ment step (table 4), and getting mutual dependency relation
between refinement steps. Second step: Sieving the depen-
dency relation and arranging the spaces used.

We maintain aVertexFantable (table 3) to record that
vertex is belong to which influence range of refinement
step for each vertex of model during preprocessing. Pro-
cessing order is from base model (coarsest) whose assigned
number is 0 to the most refinement.

Table 3: Recording Replacement Relation Structure for Vertex and Adjacent
Mesh

Typedef struct

{ int LargestRefine; /* Setting to number of refined step which finally
splits or influences this vertex */

LIST *FaceList; /* Surrounding triangle number */

}VertexFan;

In table 4, we first find the representative vertexVrep

and then getLargestRefineof Vrep from VertexFantable.
LargestRefineof Vrep is uniqueReplacing (p)relation of
step i and dependency relation asRefined DependencyO1,
O2, . . . , On is gained by first searching boundary vertex
Vn1, Vn2. . . of refinement step i fromFaceListof Vrep and
then gettingLargestRefineof Vn1, Vn2. . . .

Table 4:Algorithm for Creating Node Information of Refined Step

1 Initialize and loading PROGRESSIVEMESH

2 FromBaseModelto create initialVertexFanTable;

3 For each level{
4 Find representative vertexVrep;

5 UniqueReplacing= Vrep.LargestRefine;

6 FromVrep.LargestRefineto find boundary vertexVn1,

Vn2,. . . of influence range;

7 For eachVnj

8 { Refined DependencyOj = Vnj .LargestRefine; }
9 Computing geometric error parameter

10 /* Link to REPALCEMENT structure in [20] */

Link REPLACEMENT structure;

11 Execute this refined step and update theVertexFanTable;

12 }

4 Dynamic Operation Scheme and
Error Measurement

In this section, we show how to real time produce model
according to view from dependency graph during dynamic
walkthrough. Referring to right half of Figure 2 that shows
the flowchart of dynamic operation scheme.

4.1 Selective Refinement Operation

Node of dependency graph doesn’t only has dependency
information relative to other nodes, but has a status flag
to denote that current status of refinement step is refined
or coarse on this node. All nodes of coarsest model are
at coarse status, contrariwise. Therefore, when the view
is changed, the status of node also is changed (figure 6).
Besides, change of node status is according to two checks:
Geometric Error Criteria andDependency Check(Ta-
ble 5).

Figure 6: Change of Status for View Changed on Depen-
dency Graph

Table 5:Change Criterion for Node Status

Geometric Error Check

Under threshold Over threshold

Dependence No Qualified Wait? Forced Refined
Check

Qualified Simplified Refined

In table 5, if dependency check is qualified, node sta-
tus is simplified or refined according to Geometric Error
Check. If check result is over threshold and no qualified,
node status must be forcibly refined including Replacing
relation nodep and Refined Dependency nodesO1,. . .On

for the correct appearance of model. If check result is un-
der threshold and no qualified, we don’t operate this node
because other node probably forcibly refines it and check
it at next time.

4.1.1 Finite State Graph of Node Status

After above specification, changing the node status needs
two times for checking. To do it must waste much time,
so we add two transitional statuses:RefinementReady
andSimplification Readyto reduce checking time (figure
7). RefinementReady denotes that coarse node passing
dependency check can be refined whenever needed, and
so is SimplificationReady on the same way. In figure 7,
node at the tail of yellow arrow actively checks geometric
error and dependency. If checking is passing, node trans-
forms original status into another status that at the head of
arrow. However, status transform for blue arrow is pas-
sive. That is, status is modified only when other relative
node status is changed. When node i was refined, the mod-
ify algorithm for modifying other relative node status is
showed in table 6 and Figure 8 shows how did we oper-
ate relative nodes of node i. If status of node i is RR,
Replaced RelationR1, R2,. . . ,Rn and Simplified Depen-
dencyC1, C2,. . . ,Cn must be in C ,and Replacing Relation

p and Refined DependencyO1, O2,. . . ,On must be in SR.
when node i was transferred from RR to SR,p and O1,
O2,. . . ,On directly transfer to FS, butR1, R2,. . . ,Rn and
C1, C2,. . . ,Cn need to do dependency test first and then
transfer status of nodes passing the test from C to RR. Be-
causep andO1, O2,. . . ,On needn’t do dependency test and
only R1, R2,. . . ,Rn andC1, C2,. . . ,Cn need to do, we can
greatly reduce time of dependency test. The Modify algo-
rithm of simplifying node i is the same as Modify algo-
rithm of refining node i, but on the opposite direction.

Figure 7: Finite State Graph for Changing Node Status

Figure 8: Refining node i from RR to SR

Table 6:Modify Algorithm of Refining Node i

DependencyTesting of RefinementReady(Nodei)

{ For eachp andOj of i /* p: Replaced Relation */

/* Oj : Refined Dependence Relation */

If p andOj = Fineness /* True: Passing Dependency Test */

theni.qualify = True;

Elsei.qualify = False;}

/* Refinement Ready to Simplification Ready */

Modified Relative Node State(Nodej)

{ If Operation-Step= Replacingor Refined-Dependence-Step

If j.status= SimplificationReady

Thenj.status= Fineness;

Else

If Operation-Step= Replacedor Simplified-Dependence-Step

If j.qualify = True

Thenj.status= RefinementReady; }

4.2 Dynamic Operation Scheme

After we add two transitional states, we can easily and
fast operate dynamic walkthrough according to view.
Referring the figure 9, we maintain two linked lists:
Refine-Candidatesand Coarsen-Candidates. Refine-
Candidates list is composed of nodes in RefinementReady
state and Coarsen-Candidates list is composed of nodes
in SimplificationReady state. Refine-Candidates and
Coarsen-Candidates form a boundary on the dependency
graph. Nodes outside of the boundary are all inCoarse
State; Nodes inside of the boundary are all inFine State.
Therefore, we only modify this two lists, the model can be
correctly changed.

Figure 9: Dynamic Operation Scheme

Overall dynamic walkthrough-operation algorithms are
showed in table 8,9, 10, and 11. First, we define some sym-
bols in table 7 to denote geometry-test result of node. In or-
der to avoid repeatedly testing geometry error for the same
node during walkthrough operation, we use the Geometry-
result array as a cache to store geometric error testing re-
sult. Main procedure of dynamic walkthrough operation
shown in table 8 sequentially operates three steps: 1.clean
Geometry-Result array, 2.modify the Refine-Candidates
list, and 3.modify the Coarsen-Candidates list. It modifies
mode shape according view changed.

Then, let we explain how to modify Refine-Candidates
list (RC List) during walkthrough. See the figure 10 and
refer the table 9, we first test geometry error for each node
in RC list (row 1) and then if test-result of node i in figure
10.a denotes that it need be refined, that is, transforming
status of node i from RR to SR, we delete it from RC list,
then add into CC list, and split it (row 2-5). Because node
i was refined, we need to modify relative nodep andOj of
node i for its dependency. So, statuses of nodep andOj

are transformed into F (row 6-7). After above operation,
we test geometry error for each relative nodeRj , Cj , and
Ck of i. By the geometry error testRj andCj need be
refined butCk needn’t, soRj andCj are transformed to
RR and pushed into RC list (row 11). Result of above steps
is shown in figure 10.b.

See the figure 10.c, becauseRj and Cj have been
pushed into RC list, for the correct model shape we
need to forcibly refine nodePcj and Ocj of node

Cj no matter its dependency (row 12). Function of
ForceEliminateDependency is shown in table 10. We
let geometry error of itsp asPcj or Oj asOcj equal the
GEOTESTFORECE (row 3), and then ifp or Oj is in
Coarse State, we recursively operate it to solve dependency
problem (row 5). If it is in RR, we split it and push into
CC list (row 7-12). If it is already in SR list or Fine State,
which exactly is our want, we don’t care it (row 13-14). On
the contrary, in table 9, if test-result is GEOTESTFOFF,
namely in coarse state, we only test geometry error for
nodeCj of i. If node Cj need be refined, it also is added
into Refine-Candidates (row 15-21). The final result of
modifying node i in Refine-Candidates list is drown in fig-
ure 10.d.

In table 11, operating Coarsen-Candidates list is roughly
similar to Operate Refine-Candidates Algorithm, but oper-
ating the former needn’t forcibly coarsen. When geome-
try error is under the threshold, we coarsen the node i and
push itsp andOj passing dependency test into Coarsen-
Candidates list. Therefore, by these algorithms, we can
easily and real time maintain correct model during dy-
namic walkthrough.

Figure 10: Dynamic Operation Scheme

4.3 Selective Refinement Criteria and
Decision

In this paper, we adopt three measurements: 1.outside the
view frustum? 2.at back face? 3. projection error is greater
than tolerance? to determine whether the model has to
be refined. Many techniques about these have been pro-
posed. Especially, Hoppe’s method [9] can show a good
efficiency, so we adopt his method to implement selective
refinement criteria. At here, we only explain the detail of
projection error measurement during our implementation.
As for other detail can be found in [9].

Table 7:Symbol Definition

LIST Refine-Candidates;
LIST Coarsen-Candidates;
ARRAY
Geometry-result[numberof node]; /* store geometric error testing

result of node under current
view.*/

define GEOTESTTODO 0 /* no test yet */
define GEOTESTFOFF 8 /* testing result: must at coarse

state*/
define GEOTESTBASE 16 /* testing result: must at fine

state*/
define GEOTESTFORCE 32 /* must be refined because of de-

pendency of child nodes*/

Table 8:walkthrough Operation:Main() Algorithm

/* Initialization:

Coarsen-Candidates list = NULL;

Refinement-Candidates list = Replacing Relationp of nodes

is base model; */

Previous step:View Changed

For i = 0 to size of Geometry-Result[] do

/* reset node testing result*/

Geometry-Result[i] = GEOTESTTODO;

For i = 0 to size of Refine-Candidates list do

/* modify Refine-Candidates list*/

Call OperateRefineCandidates(i);

/* modify Coarsen-Candidates list*/

For i = 0 to size of Coarsen-Candidates list do

Call OperateCoarsenCandidates(i);

Next step: Rendering

See figure 11 and figure 12, Error is the distance between
Vrep and Vc and Emax is the maximal plane error. We
utilize projection error equation in [9] to obtainEmax as
equation 1.

Figure 11: Error Distance ofEplane andEnormal on Space
Using Vertex-Clustering

E2
max = 4.0 ∗ tan2 α

2 ∗ τ2 ∗ ||Vrep − Veye||2 (1)

Table 9:OperateRefineCandidates(Node i) Algorithm

Call GeometryError Test(i);

If testing-result = GEOTESTBASE or GEOTESTFORCE

/*must at fine state*/

{ i.status= SimplificationReady;

Deletei from Refine-Candidates and

addi into Coarsen-Candidates;

Call ExecuteRefineOperation(i)to change model geometry;

Call DependencyTestingof RefinementReady(i);

Call DependencyTestingof SimplificationReady(i);

For each child ofi do

{ Call GeometryError Test(child);

If (testing-result = GEOTESTBASE or GEOTESTFORCE)

{ add child into Refine-Candidates;

Call Force CancelDependenceProblem(child); }
Else

{ Call DependencyTestingof RefinementReady(child);

If child.qualify= True then

add child into Refine-Candidates;}
}Else

If(testing-result = GEOTESTFOFF /*must at coarse state*/

{ for each Simplified DependencyCj of i do

{ Call GeometryError Test(Cj);

If(testing-result = GEOTESTBASE or GEOTESTFORCE)

{ addCj into Refine-Candidates;

Call Force CancelDependenceProblem(Cj);}
}

}

Table 10:ForceCancelDependenceProblem(Node i) Algorithm

For eachp andOj of i

{ k = p or Oj ;

/*forced refinement*/

Geometry-Result[k] = GEOTESTFORECE;

Switch(k.status)

{ Case CoarseState:

Call Force CancelDependenceProblem(k);

break;

Case RefinementReady:

k.status= SimplificationReady;

ExecutingGeometricSplit Operation(k);

Add k into Coarsen-Candidates;

Call DependencyTestingof RefinementReady(k);

Call DependencyTestingof SimplificationReady(k);

break;

Case SimplificationReady:

Case RefinementReady: break; /* don’t care */

}
}

Thus, comparingEmax with Eplane andEnormal is the
selective refinement criteria. Only if any ofEplane and
Enormal is greater thanEmax, the node has to be refined.
In other words, we refine the node if the equation 2 is true.

E2
max ∗ ||Vrep − Veye||2 < E2

plane ∗ ||Vrep − Veye||2 cos2 γ
or

E2
max ∗ ||Vrep − Veye||2 < E2

normal ∗ ||Vrep − Veye||2 sin2 γ
(2)

In order to accelerate calculated efficiency, we use equa-

Table 11:OperateCoarsenCandidates(Node i) Algorithm

Call GeometryError Test(i);

If testing-result = GEOTESTFOFF

{ i.status= RefinementReady;

Delete i from Coarsen-Candidates

add i into Refine-Candidates;

ExecuteCoarseOperation(i)

to change the model geometry;

Call DependencyTestingof SimplificationReady(i);

For eachRj andCj of i do

{ k = Rj or Cj ;

Call DependencyTestingof CoarsenReady(k);

If k.qualify= True

then add k into Coarsen-Candidates;}
}else if testing-result != GEOTESTFOFF

{ /* don’t care */}

Figure 12: CalculateEmax

tion 3 to reduce computing time.

||Vrep − Veye|| cos γ = (Vrep − Veye) · (~Nerror)
||Vrep − Veye||2 sin2 γ = ||Vrep − Veye||2−

||Vrep − Veye||2 cos2 γ
(3)

By the equation 1, 2, and 3, we can fully avoid to eval-
uate division,cos−1, and tan−1 etc. Therefore, walk-
through efficiency can be greatly increased.

5 Experimental Results

We have implemented our approach using C language and
OpenGL library. We tested the models on SGI Octane MXI
R10000 workstation with 256MB RAM and Pentium III
PC with 550MHz CPU and 512MB RAM. SGI Octane has
hardware to accelerate rendering, but Pentium III PC is not.

Experimental Symbol Definition:

R : Diameter of Sphere ringing the object model.

Run Time : Selective Refinement Time + Rendering
Time ScreenError

Tolerance τ :
√

32/ImageSize(512x512)
We adopt a typical vertex tree using edge collapsing to

compare with our method. For model simplification of
comparative approach, which is like in [19], we utilize a
more important vertex between two vertices as represen-
tative vertex to merge, so it doesn’t produce new vertex
after edge collapsing. Creating binary vertex tree starting

from the coarsest model uses a way of Top-Down as in [9]
and operating dependency problem as in [18] adopts state
number of vertex and triangle to solve it.

Model information is shown in table 12. We use differ-
ent experimental parameter to test our method: Approach1
(B) with large clustering range and Approach2 (C) with
small clustering range, so approach1 produces more small
simplified steps as nodes. Direction of dynamic walk-
through is from 1R to 11R that is the distance between
viewpoint and model and the speed of movement rate is
0.001R. Thus, Total is 10000 frames. See the testing result
in table 13 for detail.

Table 12: Model Data
Original Model Vertices Triangles R
Bunny 34834 69453 125.1

Table 13:Testing Result

Item Comparison (A) Approach1 (B) Approach2 (C)

Nodes:

Simplified Steps 34831(depth:26) 12678 17040

Triangles:

1R 16173 21589 15041

Average 2841 6749 4905

Operating Nodes:

(Selective Refinement)

1R 26703 10388 8253

1.001R 4473 256 230

11R 288 95 67

Average 1303 290 247

(Average Time: ms) Octane Pentium Octane Pentium Octane Pentium

Selective Refinement 66.85 29.49 27.64 13.53 26.38 12.54

Rendering Time 164.59 654.57 222.60 774.15 149.24 603.87

Total Time 231.44 684.06 250.24 787.68 175.76 616.41

Figure 13: Selective Refinement Time Per-Frame (Octane)

In table 13, we can find that our method operates the
nodes far less than comparison during selective refinement
and the average time also is. However, amount of triangles
of B and C is always more than A. See the figure 16, we
investigate the problem to find that ours still maintains a
fine shape at 11R, but A already can’t. Because Octane
has hardware to accelerate rendering, its rendering time
is faster than Pentium. Following, diagrams of curve are
shown in figure 13, 14, and 15. The figure 18 shows the
model shape at different distance (R).

Figure 14: Rendering Time Per-Frame (Octane)

Figure 15: Total Time Per-Frame (Octane)

For amount of stored data, our approach only needs
about 3Mbytes, but comparative approach needs about
5Mbytes. Although architecture of binary vertex tree is
simpler than ours, it produces huge amount of node. So this
confirms that our dependency graph can reduce amount of
memory.

In addition, we adoptSNR (Signal Noise Rate)criteria
as equation 4 to compare the quality of rendering image
with the original model image.

SNR =

∑M−1
x=0

∑N−1
y=0 f̂(x, y)2∑M−1

x=0

∑N−1
y=0

[
f̂(x, y) − f(x, y)

] (4)

Form the figure 17, we can know that comparative ap-
proach has more small triangles than ours, but its quality
is rather less than ours. Ours always keeps better quality
from start to final.

Finally, in figure 19, we using coloring Easter model to
show our material preserving capability.

Discussion From the above experimental result, effi-
ciency of selective refinement for dependency graph is bet-
ter than binary vertex tree. We can attribute the fine re-
sult to that operating nodes are greatly reduced. However,
we also find that amount of triangles and operating nodes
suddenly rises at some time. We can explain that this phe-
nomenon is due to that splitting a node with a large number
of dependency results in that many nodes must be spilt.

We think that large clustering range needs to split more
neighboring triangles and vertices to maintain correct ap-
pearance. So, in order to refine a vertex, it has to forcedly
split other unnecessary refined vertices. Therefore, result-
ing in producing many triangles. This is why B’s amount

(A) (B) (C)

Figure 16: Rendering Image at 11R

Figure 17: SNR Criteria Every 500 Frame

of triangle is more than C and A.
Moreover, edge collapsing can produces less triangles

than ours. Because it uses binary tree to dynamic choose
vertex and reform triangle by state number, it can efficient
reduce amount of triangles and exceed our dependency
graph between medium and far distance R. However, re-
forming triangle is more serious for destroying shape of
model. Therefore, its capability for preserving appearance
can’t compare with our dependency graph.

6 Conclusions and Future Works

In this paper, we propose a view-dependent LOD mod-
eling base on a view-independent LOD scheme that uses
vertex-clustering algorithm with geometry simplification
and material preservation [20]. We find the dependency out
from simplified step and neighboring geometric-feature to
create dependency graph preventing dependency problem.
We also develop a dynamic walkthrough scheme to support
fast view-dependent selective refinement operation.

After the implementation and experiment, proposed
scheme can greatly reduce the checking nodes to accelerate
selective refinement operation. However, because a large
refining range produces more many triangles, it slightly
lowers the efficiency of rendering time. Therefore, global
efficiency probably is a little less than edge collapsing be-
tween medium and far distance, but our approach can pro-
vide stable efficiency from near to medium distance. In

addition, no matter the distance how far from viewpoint to
model, proposed method still preserves the good appear-
ance of model. On the contrary, edge collapsing can’t do
this.

There are a number of areas for future work, including:

Reducing amount of triangles: By the experimen-
tal result, our dependency graph produces triangles
greater than edge-collapsing approach. Thus, we have to
investigate how to modify our dependency graph to reduce
amount of triangles.

Accelerating rendering efficiency: Because our ap-
proach doesn’t achieve good efficiency during rendering
phase, we will utilize Triangle Strip [4] technique to
accelerate rendering speed.

References

[1] M.E. Algorri and F. Schmitt. ”mesh simplifica-
tion. Computer Graphics Forum, 15(3):77–86, Au-
gust 1996.

[2] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution anal-
ysis of arbitrary meshs.In Proceedings of ACM Sig-
graph’95, pages 173–182, August 1995.

[3] J. El-Sana and A. Varshney. Generalized view-
dependent simplification.Computer Graphics Fo-
rum, 18(3):83–94, 1999.

[4] F. Evans, S. Skiena, and A. Varshney. Optimizing tri-
angle strips for fast rendering.In IEEE Visualization
’96, pages 319–326, October 1996.

[5] M. Garland and P.S. Heckbert. Surface simplification
using quadric error metrics.In Proceedings of ACM
Siggraph’97, pages 209–216, August 1997.

[6] A. Gu’eziec, G. Taubin, and B. Horn. A framework
for streaming geometry in vrml. IEEE Computer
Graphics and Applications, 19(2):68–78, April 1999.

[7] A. Gu’eziec, G. Taubin, F. Lazarus, and W. Horn.
Simplicial maps for progressive transmission of

polygonal surfaces.In Proceeding ACM VRML98,
pages 25–31, 1998.

[8] H. Hoppe. Progressive meshes.In Proceedings of
ACM Siggraph’96, pages 99–108, 1996.

[9] H. Hoppe. View-dependent refinement of progressive
meshes.In Proceedings of ACM Siggraph’97, pages
189–198, August 1997.

[10] H. Hoppe. Smooth view-dependent level-of-detail
control and its application to terrain rendering.In
IEEE Visualization’98, pages 35–42, October 1998.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization.In Proceedings of
ACM Siggraph’93, pages 19–26, August 1993.

[12] L. Kobbelt, S. Campagna, and H.-P. Seidel. A general
framework for mesh decimation.In Proceedings of
Graphics Interface, pages 43–50, 1998.

[13] D. Luebke and C. Erikson. View-dependent simpli-
fication of arbitrary polygonal environments.In Pro-
ceedings of ACM Siggraph’97, pages 199–208, 1997.

[14] J. Popovicacute and H. Hoppe. Progressive simpli-
cial complexes.In Proceedings of ACM Siggraph’97,
pages 217–224, August 1997.

[15] R. Ronfard and J. Rossignac. Full-range approxima-
tion of triangulated polyhedra.In Proceedings of EU-
ROGRAPHICS’96, pages 67–76, 1996.

[16] J. Rossignac and P. Borrel. Multi-resolution 3d ap-
proximations for rendering complex scenes.Mod-
eling in Computer Graphics: Methods and Applica-
tions, pages 455–465, June 1993.

[17] W. Schroeder, J. Zarge, and W. Lorensen. Decimation
of triangle meshes.Computer Graphics, 26(2):65–
70, July 1992.

[18] D. To, R. Lau, and M. Green. A method for progres-
sive and selective transmission of multi-resolution
models.ACM Virtual Reality Software and Technol-
ogy, pages 88–95, 1999.

[19] J.C. Xia, J. El-Sana, and A. Varshney. Adaptive
real-time level-of-detail-based rendering for polygo-
nal models.IEEE Transactions on Visualization and
Computer Graphics, 3(2):171–183, 1997.

[20] S.-K. Yang and J.-H. Chuang. Discontinuity material-
preserving progressive mesh using vertex-collapsing
simplification.Submitted fo publication.

Figure 18: Model Shape at Different Distance (R)

Original Model View-Dependent LOD Model

1.5R

3R

6R

11R

Figure 19: Material Preserving Effect

