
Abstract
In this paper, we propose an approach for 

job-shop scheduling based on iterative repair. 
This approach starts with a heuristically 
generated schedule which may be infeasible, 
then applies local search techniques to generate a 
good conflict-free schedule.  The proposed 
system will not only generate a feasible schedule, 
but also maintain the schedule to react to 
"disturbance", such as the insertion/deletion of a 
job, that occurs during the execution of the 
scheduled events on a shop floor.  This 
approach can be adapted to different 
performance measures for job-shop scheduling 
and even to different scheduling applications.  
The implementation examines a due-date-based 
performance measure: weighted job tardiness.  
Experimental results show the efficiency and 
effectiveness of this approach for both of the 
static schedule generation and dynamic 
rescheduling problems.

Keywords: Scheduling, dynamic rescheduling, 
iterative repair, local search.

1. Introduction
A job-shop scheduling problem [8] consists of 

a set of machines and a collection of jobs to be 
scheduled. Operation precedence constraints 
give the order in which the operations that 
comprise each job must be processed.  The job 
shop scheduling problem thus can be defined as 
the allocation of machines over time to perform 
a collection of jobs to minimize/maximize a 
performance measure while satisfying the 
operation precedence constraints, machine 
capacity constraints, processing time 
requirements, and ready time requirements.

Since the job-shop scheduling problem is 
NP-hard, i.e., the computational requirement 
grows exponentially as a function of the problem 
size, it is unlikely that a practical approach to 
this scheduling problem can yield an optimal 
solution.  Furthermore, the dynamic and 
stochastic nature of the factory environment, 
which makes the job-shop scheduling problem 
even more difficult, cannot be ignored in real 
world applications.  The performance measure 
of scheduling is often multidimensional, and 
there are many possible measures for scheduling 

performance. In this paper we focus on weighted 
job tardiness.

In a dynamic work environment, interruptions 
such as machine breakdown, new orders, and so 
on, will force changes to previously planned 
activities.  Therefore, the scheduler must be 
able to maintain the schedule and react to the 
dynamic and stochastic world.  Since the 
capability of a scheduling system is also 
measured by how well it responses to changes 
while maintaining shop stability (minimizing the 
amount of disruption to shop operations caused 
by revisions to the schedule), revising the 
current schedule using repair-based approach [10] 
may be more appropriate than direct 
rescheduling.

In this paper, we propose a scheduling system 
based on repair-based approach to solve these 
problems.  Repair-based approach starts with a 
complete but possibly infeasible schedule and 
then applies local search techniques to generate a 
good conflict-free schedule.  The proposed 
repair-based system provides the flexibility to 
adapt the technique to a variety of applications.  
For example, it has been successfully applied to 
railway scheduling problems[9].  In this paper, 
we demonstrate that the same approach can be 
applied to general job-shop scheduling problems. 
The differences between various types of 
scheduling problems are the constraints that 
must be satisfied.  By properly formulating the 
constraints and using appropriate heuristics, we 
can apply the algorithm to a general class of 
scheduling problems.

The remainder of this paper is organized as 
follows.  In Section 2, we survey the job-shop 
scheduling problems and briefly introduce 
local-search-based algorithms and previous 
approaches.  The repair-based approach is 
described in Section 3.  We will introduce how 
to make an infeasible schedule conflict-free and 
how to avoid cycling among a sequence of repair 
operations.  Section 4 introduces how to 
generate a static schedule.  Section 5 introduces 
how to resolve dynamic rescheduling problems, 
such as the insertion/deletion of orders and 
reacting to disturbance.  Section 6 compares 
our approach to some related works such as tabu 
search and Lagrange relaxation techniques.  
Finally, Section 7 summarizes our approach.
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2. Survey

2.1 Job-shop Scheduling as 
Optimization

Since the performance measure of a 
scheduling problem can be quantified as an 
objective (cost) function, the scheduling problem 
becomes to minimize/maximize the objective 
function while satisfying specified constraints.  
In other words, the problem can be modeled as a 
constrained optimization problem.  In this 
subsection, we will introduce how to model the 
job-shop scheduling problem as a constrained 
optimization problem.

For convenience, the notations to be used in 
this paper are shown as follows, where operation 
j of job i is referred to as operation (i, j).

N: Number of jobs.
M: Number of machines.
s

ij
: Start time of operation (i, j).

R
i
: Ready time of job i.

c
ij
: Completion time of operation (i, j).

C
i
: Completion time of job i.

p
ij
 : Processing time of operation (i, j).

P
i
: Total processing time of job i.

m
ij
: The Machine processing operation (i, j).

d
i,j

: Due date of operation (i, j).
D

i
: Due date of job i.

T
i
: Tardiness of job i.

u
i
: Tardiness weight for job i.

The following assumptions are made for the 
problem: (1) all the jobs are available at time 
zero, (2) operation processing is assumed to be 
nonpreemptive, (3) processing time of the jobs 
on the machines are known beforehand.  A 
static and deterministic scheduling problem can 
now be formulated as a constrained optimization 
problem:

P: min J,  (1)

The objective function J, minimum weighted 
tardiness, is defined as follows: 

∑
=

=
N

i
iiTvJ

1

(2)

where the weight vi times the job tardiness Ti
represents the job tardiness penalty.

The minimization of objective function J is 
subject to four types of constraints: operation 
precedence constraints, machine capacity 
constraints, processing time requirements and 
ready time requirements.  Each constraint is 
described below.

1) Operation precedence constraints: The 
operation precedence constraints require the 
completion time of an operation c

ij
 to be less 

than or equal to the start time of its succeeding 
operation s

i,j+1
, i.e.,

c
ij � s

i,j+1
 (i=1,2,..,N;  j=1,2,… ,M-1)  (3)

2) Machine capacity constraints: The machine 
capacity constraint requires that there is no 
overlapped processing time between two 
operations sharing the same machine.

if m
ij
 = m

i',j'
 , then s

ij
- s

i',j'� p
 i',j' or s

i',j'- sij

� p
ij  (i,i’=1...N; i�i’; j,j’=1...M)       (4)

3) Processing time requirements: The 
processing time requirement for operation (i, j) 
means that the elapsed time between the start 
time s

ij
 and the completion time c

ij
 should be p

ij
, 

i.e.,

c
ij

- s
ij
 = p

ij
  (i=1, 2, ., N;  j=1, 2, .., M)  (5)

4) Ready time requirements: The ready time 
requirement states that the start time of the first 
operation of each job is greater than or equal to 
zero, i.e.,

s
i1�0 (I=1,2,… ,N)           (6)

Corresponding to the four types of constraints 
are four types (Type I - IV) of conflicts that may 
arise during the scheduling process.  For 
instance, Type I conflict corresponds to the 
violation of operation precedence constraint.  
Each conflict is associated with either one 
operation (Type III and IV) or two operations 
(Type I - II).

2.2 Local-search-based Algor ithms
Since the job-shop scheduling problem is 

NP-hard, it is unlikely that a practical approach 
to this scheduling problem can yield an optimal 
solution.  Therefore, one could even use an 
exact method to find an optimal solution for 
small problem instances.  But for lager problem 
instances it is more appropriate to use heuristics 
or approximation algorithms, such as 
local-search-based algorithms, to find a good 
solution that is not necessarily the optimum one.

Local-search-based algorithms include local 
search[3], simulated annealing[6], or tabu 
search[4].  These search techniques are very 
efficient in solving combinatorial optimization 
problems.

1) Local Search (local improvement): Local 
search [3,7] is one of the few successful 



techniques for combinatorial optimization 
problems.  Assume that vector x represents the 
set of values assigned to the decision variables 
and a neighborhood N(x) is defined for x.  Now 
given a solution point x

k
 and an objective 

function f(x) to be minimized (or maximized), a 
solution point x

k+1
 is searched from the 

neighborhood N(x
k
) of x

k
 such that f(x

k+1
) < f(x

k
) 

( or f(x
k+1

) > f(x
k
)).  The drawback of local 

search is that it has a tendency of getting stuck at 
a local optimum (or a cycle).

2) Simulated Annealing:  Simulated 
annealing can be regarded as a variation of local 
search.  The main difference is that, in 
simulated annealing, each solution point in the 
neighborhood of the current search point is 
selected with a certain probability for the next 
search step.  Such a difference makes it 
possible to keep the algorithm from getting stuck 
at a local optimum by permitting uphill moves.    
Its drawbacks include the following: its 
performance is heavily influenced by the initial 
temperature and the decrement ratio of the 
temperature, context-sensitive search behavior, 
and it could be potentially time consuming when 
applied to complex problem instances.  

3) Tabu Search: Tabu search was introduced 
by Glover [2].  The underlying idea is to forbid 
some search directions (moves) at a present 
iteration in order to avoid cycling and escape 
from a local optimal point.  This strategy can 
make use of any local improvement technique.

2.3 Previous Approaches to Job Shop 
Scheduling

In the past, dispatching rules, job-ordering 
approach and Lagrangian relaxation methods are 
known to be practical approaches for solving 
job-shop scheduling problems.  In the 
following, they are briefly introduced.

1) Dispatching Rules: Dispatching rules are a 
distributed sequencing strategy, by which a 
priority is assigned to each job waiting for 
service on a machine: whenever a machine is 
free, the one with highest priority is selected.  
Here the following rules will be considered: their 
purposes are to provide a comparison for the 
proposed scheduler.

a) Shortest Processing Time (SPT) rule
b) Longest Processing Time (LPT) rule 
c) Earliest Due Date (EDD) rule
d) Operation Due Date (ODD) rule

e) Modified Operation Due date (MOD) rule

f) Operation Priority Index (OPI) rule

2) Job-Ordering Approach: Several 
algorithms based on iterative improvement 
approach have been developed to find a 

reasonably good schedule [4, 6].  In their 
approaches, the disjunctive graph representation 
was introduced as a useful representation of 
operation precedence in the context of 
minimizing the makespan in a job shop.  The 
search techniques can be local search, simulated 
annealing, or tabu search.  Although the 
job-ordering-based approaches had been 
successfully applied to job-shop scheduling 
problems, they can not be applied to those 
problems with non-regular performance 
measure.

3) Lagrangian Relaxation (LR): Recently, 
scheduling methodologies based on LR have 
proven to be computationally efficient and have 
provided near-optimal solutions to job-shop 
scheduling problems [1].  By use of LR
techniques, the scheduling problem is 
decomposed into operation-level subproblems 
for the selection of operation beginning times 
and machine types, with given multipliers and 
penalty coefficients.  The solution forms the 
basis of a list-scheduling algorithm that 
generates a feasible schedule. The comparison 
between LR techniques and our approach will be 
given in Section 6.

3. Repair -based Approach
Repair-based approach starts with a complete 

but possibly infeasible schedule and then 
searches through the space of possible repairs.  
The search can be guided by a repair heuristic, 
such as min-conflicts heuristic [5] that attempts 
to minimize the number of constraint violations 
after each step.  A variety of different search 
strategies can be embedded in the repair-based 
system, such as local search, simulated 
annealing, and tabu search.

3.1 Problem Formulation
Mathematically, the scheduling problem can 

be formulated as a constrained optimization 
problem (see Section 2).  We can transform the 
constrained optimization problem to an 
unconstrained optimization problem via 
Lagrange multiplier [9].

Assume that X is a solution point (or a 
schedule) and can be expressed as

X = x
ij
, 1 �i�N and 1 �j�M      (7)

where N is the number of trains and M is the 
number of stations. Each x

ij
 is associated with 

operation (i, j) and a triplet [s
ij
, c

ij
, m

ij
]

corresponding to start time, completion time, 
and machine.  The new objective (cost) 
function is defined as 

C(X) = J(X) + ëQ(X) + ãJAUX(X)    (8)



where J(X) represents the original objective 
function, which is our measure for schedule 
quality, described in Section 2.1, JAUX(X) 
represents the auxiliary objective function used 
to facilitate the scheduling process, ã is the 
coefficient of auxiliary objective function, Q(X) 
is the cost due to the conflicts in schedule X, and 
ë is the Lagrange multiplier used to relax the 
constraint violations.  We usually refer the 
objective function C(X) to the cost function of 
the problem.  For simplicity, we call C(X), J(X) 
and Q(X) the total cost, the performance cost and 
the conflict cost of the schedule, respectively. 
The coefficient ã in EQ. (8) is selected based on 
experiences, which is less than 1 because JAUX(X) 
is less important compared to J(X); the Lagrange 
multiplier ë� is chosen to satisfy ë>>1 since a 
conflict-free schedule is our ultimate goal.  Q(X)
is defined as ∑ =

)(

1

XK

k kq , where q
k
 is a positive 

integer representing the time interval of the kth 
conflict and K(X) is the number of conflicts in 
schedule X .

3.2 Proposed Algor ithm
Similar to [9], the proposed system consists of 

four basic components: Initial Scheduler, Repair 
Scheduler, Local Scheduler and Conflict 
Management.  First, an initial schedule is 
established according to the predictive schedule 
and the affect of real environment regardless of 
constraint violations.  The Repair Scheduler 
then determines the sequence of conflicts to be 
repaired according to Earliest-Conflict-First
heuristic after the Conflict Management finds all 
conflicts in the initial schedule.  Then the Local 
Scheduler resolves the conflict given by Repair 
Scheduler while minimizing the objective 
function.

1) Repair Methods: Recall that each conflict is 
associated with either one operation (Type III 
and IV) or two operations (Type I and II).  The 
system will try to shift the violated operation left 
or right on the time axis as long as the conflict is 
released, rather than exploring many possible 
alternatives. There are three repair methods that 
can repair a conflict:

a) Swap(SP): Swap the start time of the two 
violated operations.  This repair method is 
suitable for capacity constraint violations.  As 
we swap the two operations contributing a 
capacity constraint violation, the violation may 
disappear or be alleviated.

b) Left-Shift(LS): Left-shift the violated 
operation on the time axis such that the violated 
constraint is satisfied.  This repair method can 
be applied to all types of conflicts except the 
ready time conflict.

c) Right-Shift(RS): Right-shift the violated 
operation on the time axis such that the violated 

constraint is satisfied.  This repair method can 
be applied to all types of conflicts.

To resolve a conflict, one of the repair 
methods will be selected in an attempt to reduce 
the cost function as much as possible.  If the 
selected repair method is LS or RS, then one of 
the operations contributing the conflict will be 
moved.  The heuristic used to select the 
operation to be moved considers the suitability
of the operation to the repair method applied to 
the conflict.

Furthermore, to facilitate the selection of 
repair methods for a conflict, we specify the 
priority of each repair method, such that the 
repair method with higher priority will be tried 
first.  The priority is given in the following 
sequence: SP > LS > RS.  The priority of SP is 
higher than that of LS(RS) because the SP can 
change the sequence of the two conflicting 
operations, whereas the LS(RS) can not. 
Although the RS has lower priority, it plays an 
important role in our repair-based scheduling 
system.  Since the RS would not create a 
conflict which is on the left of the conflict-free 
boundary on the time axis, it can facilitate the 
expansion of the conflict-free area.  Notice that 
the proposed repair methods will not affect the 
operation processing times.  Thus, Type III 
conflict would not arise during the scheduling 
process.

2) Iterative Repair: Initially, the initial 
schedule is established according to the dynamic 
environment.  Since the initial schedule is not 
conflict-free, we iteratively search a repair that 
resolves the conflict given by the 
Earliest-Conflict-First heuristic while 
minimizing the cost function.  To select an 
appropriate repair method for a conflict, local 
search techniques can be used.  During the kth 
iteration, we iteratively search a repair that 
resolves the given conflict and minimizes the 
cost function at the same time. The iterative 
repair algorithm based on local search is shown 
in Figure 1, in which the following notations are 
used:

S
C
 : The set of conflicts corresponding to 

current local schedule
S

R
 : The set of repair methods

c
o
 : The cost of the original local schedule.

c
n
 : The cost of the new generated local 

schedule
count : the number of iterations

Since local search techniques suffer from the 
cycling problem, i.e., a cycle may exist among a 
sequence of repair operations, a cycle detection 
and prevention scheme is required.  In the 
following subsection, we will introduce how to 
detect and prevent cycles.



3.3 Cycle Detection and Prevention
The local search algorithm has a tendency of 

getting stuck at a local optimum or a cycle.  For 
example, there is a capacity constraint violation 
between two operations at some machine, and 
the earlier operation has been shifted earlier to 
repair the conflict.  But the shift results in 
another new capacity constraint violation.  To 
repair the new conflict, the operation has to be 
shifted later and hence the original conflict 
comes back.  Therefore, a cycle occurs between 
the two repair operations.

A cycle occurs when the schedule is 
unchanged after a sequence of repair operations.  
Since different values of cost function C(X) 
always correspond to different schedules, we can 
easily verify that two schedules are not identical 
if they have different C(X) values.  On the other 
hand, two schedules with the same C(X) values 
may not be identical.  From the above 
observations, we incorporate a forbidden list into 
the standard local search algorithm.  We use the 
C(X) value of each intermediate schedule as the 
element of the forbidden list.  We can 
conjecture that a repair may result in a cycle 
when the C(X) value of the schedule resulting 
from this repair hit the forbidden list (i.e., the 
value is equal to one of those stored in the 
forbidden list).  If the C(X) value of the current 
schedule is not found in the forbidden list, we 
can quickly ascertain that a cycle does not exist; 
otherwise a cycle may exist and a further 
investigation is required.  We employ another 
list called action list to memorize the 
information about each recent repair.  From the 
action list, we can realize the transition of the 
intermediate schedule and find out whether the 
intermediate schedules having the same C(X) 
values are actually identical.  Once there is a hit 
on the forbidden list during the repair process, 
we have to examine the action list that the 
repairs between the two intermediate schedules 
having the same C(X) values in order to make 
sure that whether a cycle exists or not.  When a 
repair method results in a cycle, we try next 
priority repair method unless the repair method 
is the last repair method.  

In the following we define the variables and 
the repair operations more precisely.

Definition 1:  (Variables) There are three 
variables associated with an operation, i.e. s( i, j),
c(i, j) and m(i, j), which represent the start time, 
the completion time and the machine assignment 
of the jth operation of job i, respectively, 
assuming that operation j of job i is referred to as 
operation (i, j).  The total number of variables 
is equal to 3NM, where N is the number of jobs 
and M is the number of machines.

Definition 2:  (Repair operations, 
Characteristic pattern, Numeric parameter) 

Each repair operation is represented by F(i, j, 
Rk ,�Ä ).  It is associated with four parameters: i
(the job index), j (the operation index), Rk (the 
type of repair operation) and Ä  (the amount to be 
changed), A repair operation modifies the values 
of a set of variables and the variables depend on 
the job index and the operation index (see 
Definition 1).  The combination of the first 
three parameters is called the characteristic 
pattern of the repair operation, which identifies 
which variables are to be modified by the repair 
operation, and the last parameter is called the 
numeric parameter which specifies the degree of 
the value(s) of the variable(s) to be changed.  
Actually, each element of the action list records 
the four parameters of the associated repair.

In the following, we introduce a primitive 
repair operation that composes the proposed 
three repair methods.

Definition 3:  (Primitive operation: shift 
operation) The shift operation F(i, j, SHIFT, Ä ) 
shifts the operation (i, j) on the Gantt chart.  
The variables to be modified are shown as 
follows:

s(i, j):= s(i, j) +Ä  and c(i, j):= c(i, j) +Ä    (9)

Definition 4:  (Cycle) If the schedule is 
unchanged after a sequence of repairs, then we 
say that there is a cycle among the sequence of 
repairs.

From the above definitions, we can derive the 
following properties and theorems to support our 
cycle detection method.

Property 1:  Using the primitive repair 
operations defined in Definition 3, different 
characteristic patterns refer to different 
variable(s) and all possible characteristic 
patterns cover all variables.

From Gantt chart's point of view, the schedule 
can be seen as a collection of rectangles, each of 
which represents an operation.  Each of the 
rectangles is associated with two variables, i.e., 
the start time and the completion time of the 
operation.  The difference between the two 
times corresponds to the processing time of the 
operation, which depends on the performed 
machine of the operation.  Definition 3 implies 
that each rectangle is characterized by a 
particular characteristic pattern and is controlled 
by the shift operations with the same 
characteristic patterns. The shift operation F(i, j, 
SHIFT, Ä ) controls the position of the rectangle 
associated with operation (i, j) on the Gantt chart.  
Thus, the primitive repair operation, shift 
operation control all of the variables.  In 
conclusion, different characteristic patterns refer 
to different variable(s) and all possible 
characteristic patterns cover all variables.

Property 2:  The schedule is unchanged, if 



and only if the sum of the numeric parameters of 
the repair operations with the same characteristic 
pattern is zero.

If the schedule is unchanged then the value of 
each variable must be unchanged.  In other 
words, the operation applied to each variable has 
no effect.  Since each variable is associated 
with a particular characteristic pattern, it is 
uniquely controlled by the repair operations with 
the same characteristic patterns.  Thus, if the 
value of a variable remains unchanged then the 
combination of all changes to the variable must 
be zero, i.e., the sum of the numeric parameters 
of the repair operations with the characteristic 
pattern associated with the variable is zero.

From the above properties, we can devise an 
algorithm used for cycle detection (see Figure 2).  
Let ALIST denotes the part of the action list 
which is required to be examined.  The ALIST
records the parameters (see Definition 2) of the 
sequence of repairs between the two schedules 
having the same cost value.  Since the above 
properties only hold for primitive repair 
operations, the aforementioned three repair 
methods have to be stored in the action list in 
their primitive forms.  The algorithm returns 
TRUE if a cycle is detected and returns FALSE 
otherwise. 

3.4 Semi-active Timetabling
Since regular performance measures [8] are 

non-decreasing in the job completion times, 
superfluous idle time among operations will 
deteriorate the schedule quality.  Superfluous 
idle time exists in a schedule if some operation 
can be started earlier in time without altering the 
operation sequences on any machine.  Given an 
operation sequence for each machine, there is 
only one schedule in which no superfluous idle 
time exists.  The set of all schedules in which 
no superfluous idle time exists is called the set of 
semi-active schedules.  This set dominates the 
set of all schedules, which means that it is 
sufficient to consider only semi-active schedules 
to optimize any regular measure of performance.  
Therefore, we have to remove the superfluous 
idle time in the schedule generated by the 
repair-based approach.  This work can be done 
by semi-active timetabling [8].  Timetabling is 
the process whereby we derive a schedule from a 
sequence.  In semi-active timetabling the 
processing of each operation is started as soon as 
it can be.

4. STATIC Schedule generation

4.1 Initial Schedule Generation
Since repair-based algorithm is a kind of local 

search algorithm, we must generate an 
appropriate initial schedule so that the resulting 

final schedule will be acceptable.  Through the 
combination of local search techniques and an 
appropriate starting point, the system can 
quickly find a good feasible solution.  For this 
purpose, we generate an initial schedule X
according to the following heuristics: 

1) The schedule has the minimum value of 
J(X).

2) The schedule satisfies all types of 
constraints except the capacity constraints.  
This is because other types of constraints need 
not to consider the interaction among jobs, and 
can be satisfied directly through dispatching.  

3) The processing times of operations must be 
appropriately distributed on the time axis such 
that the number of capacity constraint violations 
in the initial schedule can be reduced, and the 
burden of the repair-based system can be 
alleviated because the number of conflicts to be 
resolved is reduced.

Therefore, we can divide the scheduling 
process into two parts: the initial scheduling 
process and the iterative repairing process.  In 
the initial scheduling process, the capacity 
constraints are relaxed and the initial schedule is 
generated optimally with respect to J(X); in the 
repairing process, the system coordinates the 
operations to find a good conflict-free schedule.

In the following, we propose four methods to 
generate an initial schedule:

1) Dispatch by CON Rule (DCON): The 
operation due-dates d

ij
 generated by CON 

(constant flow allowance) rule are assigned to 
the corresponding completion times of 
operations, c

ij
.

2) Dispatch by TWK Rule (DTWK): The 
operation due-dates d

ij
 generated by TWK 

(proportional to total work) rule are assigned to 
the corresponding completion times of 
operations, c

ij
.

3) Dispatch by Constant Slack Time Rule 
(DCST): The slack time of an job i, S

i
, is 

defined as S
i
 = D

i
- R

i
- P

i
, where D

i
, R

i
 , and P

i
represent the due-date, ready time and total 
processing time of the job, respectively.  The 
due-date of a job is assigned to the completion 
time of the last operation, and a constant idle 
time (S

i
 / M) is inserted between successive 

operations and between the first operation and 
ready time.

4) Dispatch by Modified Constant Slack Time 
Rule (DMCST): This rule is similar to DCST
except that the constant idle time is (S

i
 / (M+1)).  

Besides, the constant idle time is inserted 
between the last operation and the due-date of 
the job.

Note that the completion(start) time of an 
operation is determined according to the 



processing time requirement once the 
start(completion) time of the operation is 
determined.  Method (1)-(2) are motivated by 
the operation due-date rule CON and TWK.  
Since ODD dispatching rule with due-date rule 
CON/TWK performs quite well, it hints that the 
sequence given by the dispatching rule can be 
treated as a good initial sequence.  Therefore, it 
is reasonable to expect that the initial schedule 
based on CON/TWK rule would be a good 
initial schedule.  Method (3)-(4) are developed
straightforward, which intend to distribute the 
operations uniformly on the time axis.

4.2 Test Results
In the following experiments, the coefficients 

in the cost function are assigned according to the 
comments in Section 3.1 and testing experiences.  
As such, the Lagrange multiplier ë was set to 10, 
and the coefficient of the auxiliary objective 
function, ã, was set to 0.3.  The operation 
due-dates used in auxiliary objective function 
was set according to CST(constant slack time) 
rule as depicted in Section 4.1, since we found 
that the CST rule performs better than all of the 
other rules in our system.  In this paper, all 
experiments were run on a PC with Cyrix 
6X86-P120(100MHz). The computer program 
was written in C language.  Each experiment 
ran until the resulting schedule was conflict-free.  

We randomly generate three 10-job 
10-machine problems according to the following 
problem factors: 

• Processing Time: The processing time of 
each operation is uniformly distributed 
between 1 and 10; 

• Due Dates: The due date of each job is set 
to the total processing time of the job times 
a DSF (due date set factor), where the DSF 
is uniformly distributed between 1 and 3.

Table I-III show the numerical results for the 
three problems with weighted tardiness objective.  
For simplicity, the weight of job tardiness in EQ. 
(2), vi , is set to 1.  Table I reports the results of 
these problems solved by the priority 
dispatching rules described in Section 2.4.  We 
can find that the ODD rule generates the best 
average cost, 41.3, for the three problems.  
Table II reports the results of the three problems 
solved by the repair-based approach combined 
with semi-active timetabling.  The 
forbidden/action list size is set to 15.  Among 
the different methods of initial schedule 
generation, we find that the DTWK generates 
the best average cost, 25.3, which is also better 
than that generated by ODD dispatching rule.  
The average CPU time is 0.51 seconds.  In 
Figure 3, we graph the cost as a function of 
iteration for the problem solved by the proposed 

algorithm.  The three curves in the figure 
represent the conflict cost, the performance cost 
and the total cost of the schedule (see EQ. (8)), 
respectively.  Each iteration corresponds to a 
repairing cycle.  Although the performance cost 
is increasing, the total cost is decreasing.  The 
conflict cost achieves zero, i.e., conflict-free, 
after 192 iterations.  The performance cost 
obtained is 9, and is reduced to 7 after 
semi-active timetabling.  To show the 
effectiveness of the incorporation of auxiliary 
objective function J

AUX
 to the cost function C in 

EQ. (8), we also test the problems solved by the 
same approach without considering the auxiliary 
objective function.  This is equivalent to setting 
ã� in EQ. (8) to 0.  The results are shown in 
Table III.  We can find that, for most cases, the 
performance cost is higher than the cost with the 
auxiliary objective function.

The experimental results show that:
(1) The repair-based approach compares 

advantageously with heuristic dispatching rules 
in terms of schedule quality.  Although 
different initial schedule generation methods 
may result in different schedule quality, we find 
that DTWK is the most appropriate initial 
schedule generation method for due-date-based 
performance measures.  The repair-based 
approach with DTWK performs better than all of 
the priority dispatching rules in terms of 
schedule quality.  This is due to the fact that the 
priority dispatching rules are too myopic, 
whereas the initial schedule generation method 
DTWK provides sufficient global information of 
the search space and hence guide the local search 
to yield better quality schedules.  

(2) Through the incorporation of the local 
search technique and the cycle prevention 
scheme, the repair-based approach can produce a 
conflict-free schedule.

(3) The Earliest-Conflict-First heuristic makes 
the scheduling system more efficient and 
effective.

(4) For most cases, the employment of the 
auxiliary objective function enables a lower 
performance cost J to be found.

5. DYNAMIC RESCHEDULING
In real world applications, algorithms 

searching for optimal schedules quickly break 
down due to the dynamic and stochastic nature 
of the factory environment.  Unexpected events 
such as machine breakdown, operation tardiness, 
reworking, new orders, and so on, will force 
changes to previously planned activities.  
According to the characteristics of unexpected 
events, we divide the unexpected events into two 
categories:

1)disturbance: the events which will not affect 
the number of jobs, such as machine 



breakdown, operation tardiness, reworking.
2) job insertion/deletion [10]: the events which 
affect the number of jobs, such as new orders.  
In order to react to unexpected events, we use 

some heuristics to modify the predictive 
schedule and feed the modified schedule into the
repair-based system.  Then the system will 
automatically repair the conflicts and result in a 
new predictive schedule.  In the following 
subsections, we will introduce how to react to 
these unexpected events.

5.1 Disturbance
To react to disturbance, we can modify the 

original schedule according to disturbance and 
then apply repair-based approach to resolve the 
conflicts in the schedule.  Let's look at the 
following example.

As shown in Figure 4, there is a schedule for a 
randomly generated 5-job 5-machine problem.  
Assume that Machine_2 breaks down during 
time interval (0, 20).  To react to the event, we 
shift the operations performed on Machine_2 
right such that no operation needs to be 
performed on Machine_2 during the time 
interval.  In other words, on Machine_2, we 
shift the operations belonging Job_0, Job_4, 
Job_1 right, and the start times of these 
operations are all set to 20. Then we evoke the 
repair-based system which will automatically 
resolve the conflicts resulting from the shifting.  
During the repairing process, we disable the 
left-shift repair operation such that the shifted 
operations would not be shifted back to the time 
interval (0,20).  The resulting schedule is 
shown in Figure 5.

5.2 Job Inser tion
For the insertion of new orders, the generation 

of initial schedule is somewhat different.  We 
have to place the new operations in appropriate 
position in the initial schedule, such that the 
resulting schedule is acceptable.  Intuitively, 
there are two methods that can add a new job.  
The first method is straightforward insertion, 
which inserts each operation of the new job in a 
manner that the original predictive schedule does 
not change.  In other words, the schedule is still 
conflict-free after insertion.  The second 
method is repair-based insertion, which may 
result in capacity constraint violations after 
insertion. But through the help of the 
repair-based system, it will increase the machine 
utilization and hence produce a better
conflict-free schedule.  Now, let's describe the 
two methods in more detail.

1) Straightforward insertion: Insert each 
operation of the new job in a manner that the 
original predictive schedule does not change.  
In other words, the schedule is still conflict-free 

after insertion.  
2) Repair-based insertion: The insertion of 

operations may result in capacity constraint 
violations, but it will increase the machine 
utilization and the resulting conflict-free 
schedule generated by repair-based system will 
be better.  We propose the following two 
insertion methods: 

a) Forward Insertion To Time Gap (FITG): 
According to the precedence order of the 
operations, assign the start time of operation one 
by one to the earliest idle time on the 
corresponding machine.  Notice that the 
precedence constraints of these operations are 
maintained.  In other words, the knowledge 
about the precedence constraints are 
incorporated into the FITG method such that 
some obvious constraint violations would not 
occur after the insertion process.

b) Forward Insertion From Ready Time 
(FIRT): Assign the start time of the first 
operation to the ready time of the job, and then 
assign the start time of the second operation to 
the completion time of the first operation, and 
then assign the start time of the third operation to 
the completion time of the second operation, and 
so on.  Similar to FITG, the precedence 
constraints of these operations are not violated.

Although there are many other insertion 
methods can be applied, e.g. BITG(Backward 
Insertion to Time Gap), BIDD(Backward 
Insertion From Due Date), etc., we only consider 
FITG and FIRT because they are suitable for 
most objective functions.  Now let's look at the 
following example.

In fact, the FITG method can further be 
generalized.  Assume that the idle time interval 
between two consecutive operations on the same 
machine is called the idle-time block between the 
two operations.  For FITG method, once the 
length of an idle-time block is not zero and an 
operation is schedulable (i.e. the operation is the 
first operation of an job or the predecessor of the
operation has already been scheduled) on the 
same machine, the operation will be inserted to 
the idle-time block.  To generalize the FITG 
method, we limit the idle-time blocks that can be 
inserted by a particular operation.  The 
generalize FITG method is called FITG-R 
method.  In FITG-R method, a parameter, 
called block difference (BD), is used to identify 
whether an idle-time block can be selected by a 
particular operation or not.  The idle-time block 
is accepted if the length of the idle-time block is 
larger than (the processing time of the operation 
- BD).  In fact, block difference confines the 
largest possible conflicting time for each conflict.  
We can regard the block difference as the 
amount of time to be repaired.  For each 
operation to be inserted, the idle-time blocks 



whose start time is later than the completion 
time of the predecessor of the operation will be 
tested one by one based on time increasing order 
until an idle-time block is acceptable.  
Intuitively, smaller BD may reduce the CPU 
time for conflict resolution, but on the other 
hand, may result in a schedule with poorer 
quality.  Notice that the FITG-R method is 
equivalent to straightforward insertion method if 
BD equals to zero.

Besides, to insert a hot order after a production 
schedule has been developed, we can generate an 
intermediate schedule by placing the operations 
of the hot job on the earliest possible time in the 
schedule, and then use the repair-based system 
to resolve the conflicts in the schedule.  During 
the repair process, the operations that do not 
belong to the hot job are selected first to move 
such that the hot job can be done as early as 
possible.  Of course, maybe the cost of 
satisfying the due date of the hot job cannot be 
afforded because the insertion of the hot job
could cause the delay of other jobs.  In such 
cases, the scheduler has to generate a new 
schedule by placing the operations of the hot job 
later or increasing the possibility of 
right-shifting the hot job in the Gantt chart, and 
negotiate with the customer.

We randomly generate three 10-job 
10-machine problems as our test case.  The 
processing time of each operation is uniformly 
distributed in interval [1, 10].  The due date of 
each job is set to the total processing time of the 
job times a DSF (due date set factor), where the 
DSF is uniformly distributed in interval [1, 3].  
To test the performance of inserting a new job, 
for each problem, we select a job from the ten 
jobs as the job to be inserted.

Table IV shows the results of solving the same 
problems with weighted tardiness objective.  
We can find that although the schedule 
generated by the repair-based approach with 
FITG insertion rule is not better than that is 
direct-rescheduled by repair-based approach, 
there is a significant saving in computation time 
and the schedule is also better than that is
direct-rescheduled by ODD dispatching rule.

5.3 Job Deletion
Since weighted tardiness objective belongs to 

regular performance measures, we can apply 
semi-active timetabling to remove the 
superfluous idle time resulting from the deletion 
of a job.  For non-regular performance 
measures, we use a heuristic method to modify 
the schedule and then apply the repair-based 
system to repair the conflicts in the schedule.

Since superfluous idle time among operations 
may improve the schedule quality for 
non-regular performance measures, semi-active 

timetabling cannot be applied.  Therefore, we 
propose a heuristic method to modify the 
schedule to react to the job deletion event for 
job-shop scheduling problems with the 
combined minimum weighted earliness and 
tardiness objective.  The heuristic method can 
be described as follows: 

(1)For each machine, left-shift all the 
operations succeeding to the operation 
being deleted.

(2)If the operation being left-shift is not the 
last operation of a job, then left-shift the 
operation by ä, where ä is the processing 
time of the operation being deleted, 
otherwise left-shift the operation by max{0, 
min{ä, the completion time of the operation 
- the due date which the operation belongs 
to}}.  In other words, if an operation is the 
last operation of a job, then the operation 
will at most be left-shifted to the due date
the operation belongs to. 

The underlying philosophy of the method is 
similar to that of the initial schedule generation 
method described in Section 4.1.  We take 
advantage of the deletion of a job to reduce the 
value of J(X) regardless of constraint violations.  
Then, the repair-based system will automatically 
repair the conflicts in the schedule.

The test case is the same as that of the job 
insertion.  For each problem, we randomly 
select a job from the ten jobs as the job to be 
deleted.

Table V shows the computational results of the 
three problems with minimum weighted 
tardiness objective.  We can find that the 
schedule obtained by semi-active timetabling 
performs better than those direct rescheduled by 
repair-based approach and ODD dispatching rule 
in terms of schedule quality and computation 
time.  We can find that the quality of the 
schedule obtained by repair-based approach with 
heuristic modification is similar to that direct
rescheduled by repair-based approach; however, 
there is a significant saving in computation time.

6. Compar ison
In the following, we compare our approach 

with some other related works.

6.1 Local Search with Cycle Detection 
vs. Tabu Search

Our approach is similar to tabu search (see 
Section 2.3).  Tabu search maintains a tabu list 
to memorize the moves recently taken in order to 
prevent reversals which would cycle back to the 
same local optimum.  Our approach differs 
from tabu search in that:

1) To avoid cycling, tabu search rejects the 
moves that may result in a cycle, but our 
approach only rejects the moves that will 



actually result in a cycle.  In other words, tabu 
search may reject some moves that do not result 
in a cycle, and hence it may lose the possibility 
of finding some better solutions.

2) In tabu search, the performance is sensitive 
to the length of tabu list.  If the length is too 
short, it can not avoid cycling completely; on the 
other hand, if the length is too long, it may lose 
the possibility of finding some better solutions.  
In our approach, such problem will not occur.

3) Tabu search requires some domain 
knowledge to acquire the tabu conditions for the 
moves.  Since tabu conditions are based on 
some heuristics, the performance of the 
scheduling process is critically dependent upon 
the effectiveness of the heuristics.  On the other 
hand, cycle detection approach is more 
"systematic".  It only needs to know what are 
the primitive operations of the scheduling 
system.  Experiments [9,10] show that our 
approach performs "uniformly" over different 
application domains.

4) Tabu search usually requires additional 
diversification strategies to jump from one 
search region to another one.  But in our 
problem solving architecture, Initial Scheduler 
already provide some global scheduling 
information that can guide the search to 
solutions with global view.  Therefore, only 
intensification strategies are needed during the 
iterative repairing process.  That is to say, local 
search with cycle detection is much more 
suitable in our repair-based scheduling system.

6.2 Compar ison with Lagrangian 
Relaxation Techniques

The benefits of Lagrangian relaxation are: 
• the relaxation results in easier-to-solve 

subproblems
• it has the potential to obtain a near-optimal 

schedule
• it provides a lower bound of the optimal 

solution to the problem, i.e., the optimality 
of the resulting schedule can be obtained

• it can solve a large-scale job-shop 
scheduling problem within reasonable 
computation time.

On the other hand, the weakness of the LR 
approach is:

1) Compared to repair-based approach, LR
approach is much more difficult to design and 
implement.  The issues to be considered 
include: 

• transforming the original problem into a 
dual problem via the relaxation of 
operation precedence and capacity 
constraints, 

• decomposing the scheduling problem into 
operation-level subproblems, 

• reducing solution oscillation, which causes 
subproblem solutions to oscillate from 
iteration to iteration and may prevent 
convergence of the algorithm, 

• solving the dual problem, and 
• devising an additional heuristic algorithm 

to construct a feasible schedule.
2) LR approach is sensitive to the objective 

function.  As the objective function has been 
changed, the algorithm has to be re-designed 
completely.  While repair-based approach, the 
same algorithm can be applied to different 
problems [9,10].

3) Compared to repair-based approach, LR 
needs more computation time in solving 
subproblems because all of the subproblems 
have to be solved again at each iteration of 
updating Lagrangian multipliers.  For example, 
in [8], the time complexity of solving 
operation-level subproblem is of order 

ijHK × , 

where K and 
ijH  represents the time horizon 

and the number of possible machine types for 
operation (i, j), respectively.  This is because 
solving the subproblem entails enumerating all 
possible beginning times for each possible 
machine type.  In other words, assuming there 
is no alternative machine for each operation, i.e. 

1=ijH , the time complexity of solving the 

original problem is approximately :

O(I×M×N×K), (10)

where I, M, N represent the number of 
iterations to achieve acceptable solution quality, 
the number of jobs, and the number of 
operations for each job, respectively.  On the 
other hand, the running time of our iterative 
repair algorithm can be estimated as follows: 
Initial Scheduler takes O(M×N) time since it go 
through M×N operations.  After each repair 
iteration, Conflict Management takes O(M) time 
to update the set of conflicts since it has to 
manage the conflicts on each machine, and cycle 
detection algorithm takes O(P) time to detect 
cycles if necessary, where P represents the 
length of forbidden/action list.  Therefore, the 
time complexity of our repair-based approach is 
of order M×N+I×(M+P), which is 
approximately :

O(I×(M+P)), (11)

where I represents the number of iterations to 
yield a conflict-free solution.  The number of 
iterations I is determined by the nature of the 
problem instance and is therefore 
nondeterministic.  Generally speaking, it 
depends on the number of conflicts in the initial 



schedule and the problem size.  Obviously, the 
repair-based approach requires less 
computational effort than the Lagrangian 
approach.

7. Conclusions
In this paper, we demonstrated a dynamic 

job-shop scheduling system based on the 
iterative repair approach.  We introduced how 
to transform the problem into a repair-based 
search problem.  Through the cooperation of 
initial schedule generation module, the Earliest-
Conflict-First heuristic, the local search 
technique, and the cycle prevention algorithm, 
the system will generate a good conflict-free 
schedule.  

The contribution of this paper is as follows:
(1) It proposes an approach that can be applied 

to solve large-scale dynamic rescheduling 
problems, specifically, the job insertion/deletion 
problems.  Repair-based systems only modify 
the part of the schedule which is required to be 
changed.  As the size of the scheduling problem 
becomes larger, the benefits are obvious.

(2) Compared to heuristic dispatching rules 
and Lagrangian relaxation techniques, the 
proposed repair-based system is more flexible.  
On the one hand, the same algorithm can be 
applied to job-shop scheduling problems with 
different performance measures; on the other 
hand, the proposed repair-based system can also 
be applied to a variety of applications.  It has 
been successfully applied to railway scheduling 
problems [9].

(3) This approach has been successfully 
applied to the static job-shop scheduling 
problems with weighted early/tardy objective, 
which cannot be solved by the conventional 
theorems on job ordering.  

Experimental results show that the proposed 
system can solve the dynamic job-shop 
scheduling problem in an efficient and effective 
manner.
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TABLE I
Results for Three 10-Job 10-Machine Problems 
with Minimum Weighted Tardiness Objective.

SPT LPT EDD ODD MOD OPIProblem
No. Cost
1 52 88 31 36 36 43
2 63 81 43 22 22 48
3 97 102 80 66 76 70

Ave. 70.7 90.3 51.3 41.3 44.7 53.7

TABLE II
Results for Three 10-Job 10-Machine Problems 
with Minimum Weighted Tardiness Objective.

RBA-1 RBA-2 RBA-3 RBA-4Problem
No. Cost Time Cost Time Cost Time Cost Time
1 48 0.44 7 0.27 21 0.44 9 0.27
2 26 0.44 15 0.44 34 0.72 9 0.39
3 90 0.61 54 0.82 58 0.71 76 0.82

Ave. 54.7 0.50 25.3 0.51 37.7 0.62 31.3 0.49

TABLE III
Three 10-Job 10-Machine Problems with 
Minimum Weighted Tardiness Objective.

RBA-1 RBA-2 RBA-3 RBA-4Problem
No. Cost Time Cost Time Cost Time Cost Time
1 48 0.55 3 0.39 28 0.27 18 0.39
2 20 0.38 15 0.33 28 0.33 28 0.49
3 70 0.6 59 0.93 87 0.99 75 0.71

Ave. 46 0.51 25.7 0.55 47.7 0.53 40.3 0.53



TABLE IV
Experimental Results for Job Insertion

Origin ODD-R Repair-R FITGProblem

No. Cost Cost Cost Time Cost Time

1 10 36 7 0.27 8 0.09

2 16 22 15 0.44 23 0.11

3 49 66 54 0.82 49 0.05

Ave. 25 41.3 25.3 0.51 26.7 0.08

TABLE V
Experimental Results for Job Deletion

Origin ODD-R Repair-R FITGProblem

No. Cost Cost Time Cost Time Cost Time

1 7 32 0.05 7 0.17 7 <0.01

2 16 33 0.05 31 0.28 16 <0.01

3 63 71 0.05 52 0.74 48 <0.01

Ave. 28.7 45.3 0.05 30 0.4 23.7 <0.01

Figure 1. The iterative repair algorithm 

Figure 2.  The algorithm for cycle detection.

 Figure 3. Results of scheduling problem No.1 
with weighted tardiness objective using DTWK.

Figure 4. The schedule before the breakdown of 
Machine_2.

Figure 5. The schedule generated by 
repair-based approach after the breakdown of 
Machine_2 at time interval (0, 20).

1. (Initialization) 
1.1 Generate the initial schedule.
1.2 Find all conflicts in the initial schedule and 

put these conflicts to SC .
1.3 Evaluate co .
1.4 count := 0.

2. 2.1 If SC is empty then stop, else select and 
delete the earliest conflict from SC.

2.2 Put all possible repair methods to SR.
3. 3.1 Select and delete the highest priority repair 

method from SR.
3.2 Test to repair the selected conflict.
3.3 Evaluate cn.

4. If cn < co or SR is empty, then perform the 
repair and goto step 5, else goto step 3.

5. 5.1 Update SC .
5.2 co := cn.
5.3 Increase count by one.
5.4 Goto step 2.

Algor ithm CD
begin

for  all element (i, j, Rk, Δ) in ALIST do
SUM[i][j][Rk] := SUM[i][j][Rk] + Δ ;

end;
for  all element (i, j, Rk, Δ) in ALIST do

if SUM[i][j][Rk] ≠ 0 
then return FALSE;

end;
return TRUE;

end;
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