
Abstract
In this paper, we propose an approach for

job-shop scheduling based on iterative repair.
This approach starts with a heuristically
generated schedule which may be infeasible,
then applies local search techniques to generate a
good conflict-free schedule. The proposed
system will not only generate a feasible schedule,
but also maintain the schedule to react to
"disturbance", such as the insertion/deletion of a
job, that occurs during the execution of the
scheduled events on a shop floor. This
approach can be adapted to different
performance measures for job-shop scheduling
and even to different scheduling applications.
The implementation examines a due-date-based
performance measure: weighted job tardiness.
Experimental results show the efficiency and
effectiveness of this approach for both of the
static schedule generation and dynamic
rescheduling problems.

Keywords: Scheduling, dynamic rescheduling,
iterative repair, local search.

1. Introduction
A job-shop scheduling problem [8] consists of

a set of machines and a collection of jobs to be
scheduled. Operation precedence constraints
give the order in which the operations that
comprise each job must be processed. The job
shop scheduling problem thus can be defined as
the allocation of machines over time to perform
a collection of jobs to minimize/maximize a
performance measure while satisfying the
operation precedence constraints, machine
capacity constraints, processing time
requirements, and ready time requirements.

Since the job-shop scheduling problem is
NP-hard, i.e., the computational requirement
grows exponentially as a function of the problem
size, it is unlikely that a practical approach to
this scheduling problem can yield an optimal
solution. Furthermore, the dynamic and
stochastic nature of the factory environment,
which makes the job-shop scheduling problem
even more difficult, cannot be ignored in real
world applications. The performance measure
of scheduling is often multidimensional, and
there are many possible measures for scheduling

performance. In this paper we focus on weighted
job tardiness.

In a dynamic work environment, interruptions
such as machine breakdown, new orders, and so
on, will force changes to previously planned
activities. Therefore, the scheduler must be
able to maintain the schedule and react to the
dynamic and stochastic world. Since the
capability of a scheduling system is also
measured by how well it responses to changes
while maintaining shop stability (minimizing the
amount of disruption to shop operations caused
by revisions to the schedule), revising the
current schedule using repair-based approach [10]
may be more appropriate than direct
rescheduling.

In this paper, we propose a scheduling system
based on repair-based approach to solve these
problems. Repair-based approach starts with a
complete but possibly infeasible schedule and
then applies local search techniques to generate a
good conflict-free schedule. The proposed
repair-based system provides the flexibility to
adapt the technique to a variety of applications.
For example, it has been successfully applied to
railway scheduling problems[9]. In this paper,
we demonstrate that the same approach can be
applied to general job-shop scheduling problems.
The differences between various types of
scheduling problems are the constraints that
must be satisfied. By properly formulating the
constraints and using appropriate heuristics, we
can apply the algorithm to a general class of
scheduling problems.

The remainder of this paper is organized as
follows. In Section 2, we survey the job-shop
scheduling problems and briefly introduce
local-search-based algorithms and previous
approaches. The repair-based approach is
described in Section 3. We will introduce how
to make an infeasible schedule conflict-free and
how to avoid cycling among a sequence of repair
operations. Section 4 introduces how to
generate a static schedule. Section 5 introduces
how to resolve dynamic rescheduling problems,
such as the insertion/deletion of orders and
reacting to disturbance. Section 6 compares
our approach to some related works such as tabu
search and Lagrange relaxation techniques.
Finally, Section 7 summarizes our approach.

Iterative Repair Approach to Job Shop Scheduling in a
Dynamic Environment

Te-Wei Chiang Jeng-Ping Lin
Computer Center Computer Center
Chihlee Institute of Commerce Chihlee Institute of Commerce
313, sec 1, Wen-Hua Rd, Panchiao 313, sec 1, Wen-Hua Rd, Panchiao
ctw@mail.chihlee.edu.tw jplin@mail.chihlee.edu.tw

2. Survey

2.1 Job-shop Scheduling as
Optimization

Since the performance measure of a
scheduling problem can be quantified as an
objective (cost) function, the scheduling problem
becomes to minimize/maximize the objective
function while satisfying specified constraints.
In other words, the problem can be modeled as a
constrained optimization problem. In this
subsection, we will introduce how to model the
job-shop scheduling problem as a constrained
optimization problem.

For convenience, the notations to be used in
this paper are shown as follows, where operation
j of job i is referred to as operation (i, j).

N: Number of jobs.
M: Number of machines.
s

ij
: Start time of operation (i, j).

R
i
: Ready time of job i.

c
ij
: Completion time of operation (i, j).

C
i
: Completion time of job i.

p
ij
 : Processing time of operation (i, j).

P
i
: Total processing time of job i.

m
ij
: The Machine processing operation (i, j).

d
i,j

: Due date of operation (i, j).
D

i
: Due date of job i.

T
i
: Tardiness of job i.

u
i
: Tardiness weight for job i.

The following assumptions are made for the
problem: (1) all the jobs are available at time
zero, (2) operation processing is assumed to be
nonpreemptive, (3) processing time of the jobs
on the machines are known beforehand. A
static and deterministic scheduling problem can
now be formulated as a constrained optimization
problem:

P: min J, (1)

The objective function J, minimum weighted
tardiness, is defined as follows:

∑
=

=
N

i
iiTvJ

1

(2)

where the weight vi times the job tardiness Ti
represents the job tardiness penalty.

The minimization of objective function J is
subject to four types of constraints: operation
precedence constraints, machine capacity
constraints, processing time requirements and
ready time requirements. Each constraint is
described below.

1) Operation precedence constraints: The
operation precedence constraints require the
completion time of an operation c

ij
 to be less

than or equal to the start time of its succeeding
operation s

i,j+1
, i.e.,

c
ij � s

i,j+1
 (i=1,2,..,N; j=1,2,… ,M-1) (3)

2) Machine capacity constraints: The machine
capacity constraint requires that there is no
overlapped processing time between two
operations sharing the same machine.

if m
ij
 = m

i',j'
 , then s

ij
- s

i',j'� p
 i',j' or s

i',j'- sij

� p
ij (i,i’=1...N; i�i’; j,j’=1...M) (4)

3) Processing time requirements: The
processing time requirement for operation (i, j)
means that the elapsed time between the start
time s

ij
 and the completion time c

ij
 should be p

ij
,

i.e.,

c
ij

- s
ij
 = p

ij
 (i=1, 2, ., N; j=1, 2, .., M) (5)

4) Ready time requirements: The ready time
requirement states that the start time of the first
operation of each job is greater than or equal to
zero, i.e.,

s
i1�0 (I=1,2,… ,N) (6)

Corresponding to the four types of constraints
are four types (Type I - IV) of conflicts that may
arise during the scheduling process. For
instance, Type I conflict corresponds to the
violation of operation precedence constraint.
Each conflict is associated with either one
operation (Type III and IV) or two operations
(Type I - II).

2.2 Local-search-based Algor ithms
Since the job-shop scheduling problem is

NP-hard, it is unlikely that a practical approach
to this scheduling problem can yield an optimal
solution. Therefore, one could even use an
exact method to find an optimal solution for
small problem instances. But for lager problem
instances it is more appropriate to use heuristics
or approximation algorithms, such as
local-search-based algorithms, to find a good
solution that is not necessarily the optimum one.

Local-search-based algorithms include local
search[3], simulated annealing[6], or tabu
search[4]. These search techniques are very
efficient in solving combinatorial optimization
problems.

1) Local Search (local improvement): Local
search [3,7] is one of the few successful

techniques for combinatorial optimization
problems. Assume that vector x represents the
set of values assigned to the decision variables
and a neighborhood N(x) is defined for x. Now
given a solution point x

k
 and an objective

function f(x) to be minimized (or maximized), a
solution point x

k+1
 is searched from the

neighborhood N(x
k
) of x

k
 such that f(x

k+1
) < f(x

k
)

(or f(x
k+1

) > f(x
k
)). The drawback of local

search is that it has a tendency of getting stuck at
a local optimum (or a cycle).

2) Simulated Annealing: Simulated
annealing can be regarded as a variation of local
search. The main difference is that, in
simulated annealing, each solution point in the
neighborhood of the current search point is
selected with a certain probability for the next
search step. Such a difference makes it
possible to keep the algorithm from getting stuck
at a local optimum by permitting uphill moves.
Its drawbacks include the following: its
performance is heavily influenced by the initial
temperature and the decrement ratio of the
temperature, context-sensitive search behavior,
and it could be potentially time consuming when
applied to complex problem instances.

3) Tabu Search: Tabu search was introduced
by Glover [2]. The underlying idea is to forbid
some search directions (moves) at a present
iteration in order to avoid cycling and escape
from a local optimal point. This strategy can
make use of any local improvement technique.

2.3 Previous Approaches to Job Shop
Scheduling

In the past, dispatching rules, job-ordering
approach and Lagrangian relaxation methods are
known to be practical approaches for solving
job-shop scheduling problems. In the
following, they are briefly introduced.

1) Dispatching Rules: Dispatching rules are a
distributed sequencing strategy, by which a
priority is assigned to each job waiting for
service on a machine: whenever a machine is
free, the one with highest priority is selected.
Here the following rules will be considered: their
purposes are to provide a comparison for the
proposed scheduler.

a) Shortest Processing Time (SPT) rule
b) Longest Processing Time (LPT) rule
c) Earliest Due Date (EDD) rule
d) Operation Due Date (ODD) rule

e) Modified Operation Due date (MOD) rule

f) Operation Priority Index (OPI) rule

2) Job-Ordering Approach: Several
algorithms based on iterative improvement
approach have been developed to find a

reasonably good schedule [4, 6]. In their
approaches, the disjunctive graph representation
was introduced as a useful representation of
operation precedence in the context of
minimizing the makespan in a job shop. The
search techniques can be local search, simulated
annealing, or tabu search. Although the
job-ordering-based approaches had been
successfully applied to job-shop scheduling
problems, they can not be applied to those
problems with non-regular performance
measure.

3) Lagrangian Relaxation (LR): Recently,
scheduling methodologies based on LR have
proven to be computationally efficient and have
provided near-optimal solutions to job-shop
scheduling problems [1]. By use of LR
techniques, the scheduling problem is
decomposed into operation-level subproblems
for the selection of operation beginning times
and machine types, with given multipliers and
penalty coefficients. The solution forms the
basis of a list-scheduling algorithm that
generates a feasible schedule. The comparison
between LR techniques and our approach will be
given in Section 6.

3. Repair -based Approach
Repair-based approach starts with a complete

but possibly infeasible schedule and then
searches through the space of possible repairs.
The search can be guided by a repair heuristic,
such as min-conflicts heuristic [5] that attempts
to minimize the number of constraint violations
after each step. A variety of different search
strategies can be embedded in the repair-based
system, such as local search, simulated
annealing, and tabu search.

3.1 Problem Formulation
Mathematically, the scheduling problem can

be formulated as a constrained optimization
problem (see Section 2). We can transform the
constrained optimization problem to an
unconstrained optimization problem via
Lagrange multiplier [9].

Assume that X is a solution point (or a
schedule) and can be expressed as

X = x
ij
, 1 �i�N and 1 �j�M (7)

where N is the number of trains and M is the
number of stations. Each x

ij
 is associated with

operation (i, j) and a triplet [s
ij
, c

ij
, m

ij
]

corresponding to start time, completion time,
and machine. The new objective (cost)
function is defined as

C(X) = J(X) + ëQ(X) + ãJAUX(X) (8)

where J(X) represents the original objective
function, which is our measure for schedule
quality, described in Section 2.1, JAUX(X)
represents the auxiliary objective function used
to facilitate the scheduling process, ã is the
coefficient of auxiliary objective function, Q(X)
is the cost due to the conflicts in schedule X, and
ë is the Lagrange multiplier used to relax the
constraint violations. We usually refer the
objective function C(X) to the cost function of
the problem. For simplicity, we call C(X), J(X)
and Q(X) the total cost, the performance cost and
the conflict cost of the schedule, respectively.
The coefficient ã in EQ. (8) is selected based on
experiences, which is less than 1 because JAUX(X)
is less important compared to J(X); the Lagrange
multiplier ë� is chosen to satisfy ë>>1 since a
conflict-free schedule is our ultimate goal. Q(X)
is defined as ∑ =

)(

1

XK

k kq , where q
k
 is a positive

integer representing the time interval of the kth
conflict and K(X) is the number of conflicts in
schedule X .

3.2 Proposed Algor ithm
Similar to [9], the proposed system consists of

four basic components: Initial Scheduler, Repair
Scheduler, Local Scheduler and Conflict
Management. First, an initial schedule is
established according to the predictive schedule
and the affect of real environment regardless of
constraint violations. The Repair Scheduler
then determines the sequence of conflicts to be
repaired according to Earliest-Conflict-First
heuristic after the Conflict Management finds all
conflicts in the initial schedule. Then the Local
Scheduler resolves the conflict given by Repair
Scheduler while minimizing the objective
function.

1) Repair Methods: Recall that each conflict is
associated with either one operation (Type III
and IV) or two operations (Type I and II). The
system will try to shift the violated operation left
or right on the time axis as long as the conflict is
released, rather than exploring many possible
alternatives. There are three repair methods that
can repair a conflict:

a) Swap(SP): Swap the start time of the two
violated operations. This repair method is
suitable for capacity constraint violations. As
we swap the two operations contributing a
capacity constraint violation, the violation may
disappear or be alleviated.

b) Left-Shift(LS): Left-shift the violated
operation on the time axis such that the violated
constraint is satisfied. This repair method can
be applied to all types of conflicts except the
ready time conflict.

c) Right-Shift(RS): Right-shift the violated
operation on the time axis such that the violated

constraint is satisfied. This repair method can
be applied to all types of conflicts.

To resolve a conflict, one of the repair
methods will be selected in an attempt to reduce
the cost function as much as possible. If the
selected repair method is LS or RS, then one of
the operations contributing the conflict will be
moved. The heuristic used to select the
operation to be moved considers the suitability
of the operation to the repair method applied to
the conflict.

Furthermore, to facilitate the selection of
repair methods for a conflict, we specify the
priority of each repair method, such that the
repair method with higher priority will be tried
first. The priority is given in the following
sequence: SP > LS > RS. The priority of SP is
higher than that of LS(RS) because the SP can
change the sequence of the two conflicting
operations, whereas the LS(RS) can not.
Although the RS has lower priority, it plays an
important role in our repair-based scheduling
system. Since the RS would not create a
conflict which is on the left of the conflict-free
boundary on the time axis, it can facilitate the
expansion of the conflict-free area. Notice that
the proposed repair methods will not affect the
operation processing times. Thus, Type III
conflict would not arise during the scheduling
process.

2) Iterative Repair: Initially, the initial
schedule is established according to the dynamic
environment. Since the initial schedule is not
conflict-free, we iteratively search a repair that
resolves the conflict given by the
Earliest-Conflict-First heuristic while
minimizing the cost function. To select an
appropriate repair method for a conflict, local
search techniques can be used. During the kth
iteration, we iteratively search a repair that
resolves the given conflict and minimizes the
cost function at the same time. The iterative
repair algorithm based on local search is shown
in Figure 1, in which the following notations are
used:

S
C
 : The set of conflicts corresponding to

current local schedule
S

R
 : The set of repair methods

c
o
 : The cost of the original local schedule.

c
n
 : The cost of the new generated local

schedule
count : the number of iterations

Since local search techniques suffer from the
cycling problem, i.e., a cycle may exist among a
sequence of repair operations, a cycle detection
and prevention scheme is required. In the
following subsection, we will introduce how to
detect and prevent cycles.

3.3 Cycle Detection and Prevention
The local search algorithm has a tendency of

getting stuck at a local optimum or a cycle. For
example, there is a capacity constraint violation
between two operations at some machine, and
the earlier operation has been shifted earlier to
repair the conflict. But the shift results in
another new capacity constraint violation. To
repair the new conflict, the operation has to be
shifted later and hence the original conflict
comes back. Therefore, a cycle occurs between
the two repair operations.

A cycle occurs when the schedule is
unchanged after a sequence of repair operations.
Since different values of cost function C(X)
always correspond to different schedules, we can
easily verify that two schedules are not identical
if they have different C(X) values. On the other
hand, two schedules with the same C(X) values
may not be identical. From the above
observations, we incorporate a forbidden list into
the standard local search algorithm. We use the
C(X) value of each intermediate schedule as the
element of the forbidden list. We can
conjecture that a repair may result in a cycle
when the C(X) value of the schedule resulting
from this repair hit the forbidden list (i.e., the
value is equal to one of those stored in the
forbidden list). If the C(X) value of the current
schedule is not found in the forbidden list, we
can quickly ascertain that a cycle does not exist;
otherwise a cycle may exist and a further
investigation is required. We employ another
list called action list to memorize the
information about each recent repair. From the
action list, we can realize the transition of the
intermediate schedule and find out whether the
intermediate schedules having the same C(X)
values are actually identical. Once there is a hit
on the forbidden list during the repair process,
we have to examine the action list that the
repairs between the two intermediate schedules
having the same C(X) values in order to make
sure that whether a cycle exists or not. When a
repair method results in a cycle, we try next
priority repair method unless the repair method
is the last repair method.

In the following we define the variables and
the repair operations more precisely.

Definition 1: (Variables) There are three
variables associated with an operation, i.e. s(i, j),
c(i, j) and m(i, j), which represent the start time,
the completion time and the machine assignment
of the jth operation of job i, respectively,
assuming that operation j of job i is referred to as
operation (i, j). The total number of variables
is equal to 3NM, where N is the number of jobs
and M is the number of machines.

Definition 2: (Repair operations,
Characteristic pattern, Numeric parameter)

Each repair operation is represented by F(i, j,
Rk ,�Ä). It is associated with four parameters: i
(the job index), j (the operation index), Rk (the
type of repair operation) and Ä (the amount to be
changed), A repair operation modifies the values
of a set of variables and the variables depend on
the job index and the operation index (see
Definition 1). The combination of the first
three parameters is called the characteristic
pattern of the repair operation, which identifies
which variables are to be modified by the repair
operation, and the last parameter is called the
numeric parameter which specifies the degree of
the value(s) of the variable(s) to be changed.
Actually, each element of the action list records
the four parameters of the associated repair.

In the following, we introduce a primitive
repair operation that composes the proposed
three repair methods.

Definition 3: (Primitive operation: shift
operation) The shift operation F(i, j, SHIFT, Ä)
shifts the operation (i, j) on the Gantt chart.
The variables to be modified are shown as
follows:

s(i, j):= s(i, j) +Ä and c(i, j):= c(i, j) +Ä (9)

Definition 4: (Cycle) If the schedule is
unchanged after a sequence of repairs, then we
say that there is a cycle among the sequence of
repairs.

From the above definitions, we can derive the
following properties and theorems to support our
cycle detection method.

Property 1: Using the primitive repair
operations defined in Definition 3, different
characteristic patterns refer to different
variable(s) and all possible characteristic
patterns cover all variables.

From Gantt chart's point of view, the schedule
can be seen as a collection of rectangles, each of
which represents an operation. Each of the
rectangles is associated with two variables, i.e.,
the start time and the completion time of the
operation. The difference between the two
times corresponds to the processing time of the
operation, which depends on the performed
machine of the operation. Definition 3 implies
that each rectangle is characterized by a
particular characteristic pattern and is controlled
by the shift operations with the same
characteristic patterns. The shift operation F(i, j,
SHIFT, Ä) controls the position of the rectangle
associated with operation (i, j) on the Gantt chart.
Thus, the primitive repair operation, shift
operation control all of the variables. In
conclusion, different characteristic patterns refer
to different variable(s) and all possible
characteristic patterns cover all variables.

Property 2: The schedule is unchanged, if

and only if the sum of the numeric parameters of
the repair operations with the same characteristic
pattern is zero.

If the schedule is unchanged then the value of
each variable must be unchanged. In other
words, the operation applied to each variable has
no effect. Since each variable is associated
with a particular characteristic pattern, it is
uniquely controlled by the repair operations with
the same characteristic patterns. Thus, if the
value of a variable remains unchanged then the
combination of all changes to the variable must
be zero, i.e., the sum of the numeric parameters
of the repair operations with the characteristic
pattern associated with the variable is zero.

From the above properties, we can devise an
algorithm used for cycle detection (see Figure 2).
Let ALIST denotes the part of the action list
which is required to be examined. The ALIST
records the parameters (see Definition 2) of the
sequence of repairs between the two schedules
having the same cost value. Since the above
properties only hold for primitive repair
operations, the aforementioned three repair
methods have to be stored in the action list in
their primitive forms. The algorithm returns
TRUE if a cycle is detected and returns FALSE
otherwise.

3.4 Semi-active Timetabling
Since regular performance measures [8] are

non-decreasing in the job completion times,
superfluous idle time among operations will
deteriorate the schedule quality. Superfluous
idle time exists in a schedule if some operation
can be started earlier in time without altering the
operation sequences on any machine. Given an
operation sequence for each machine, there is
only one schedule in which no superfluous idle
time exists. The set of all schedules in which
no superfluous idle time exists is called the set of
semi-active schedules. This set dominates the
set of all schedules, which means that it is
sufficient to consider only semi-active schedules
to optimize any regular measure of performance.
Therefore, we have to remove the superfluous
idle time in the schedule generated by the
repair-based approach. This work can be done
by semi-active timetabling [8]. Timetabling is
the process whereby we derive a schedule from a
sequence. In semi-active timetabling the
processing of each operation is started as soon as
it can be.

4. STATIC Schedule generation

4.1 Initial Schedule Generation
Since repair-based algorithm is a kind of local

search algorithm, we must generate an
appropriate initial schedule so that the resulting

final schedule will be acceptable. Through the
combination of local search techniques and an
appropriate starting point, the system can
quickly find a good feasible solution. For this
purpose, we generate an initial schedule X
according to the following heuristics:

1) The schedule has the minimum value of
J(X).

2) The schedule satisfies all types of
constraints except the capacity constraints.
This is because other types of constraints need
not to consider the interaction among jobs, and
can be satisfied directly through dispatching.

3) The processing times of operations must be
appropriately distributed on the time axis such
that the number of capacity constraint violations
in the initial schedule can be reduced, and the
burden of the repair-based system can be
alleviated because the number of conflicts to be
resolved is reduced.

Therefore, we can divide the scheduling
process into two parts: the initial scheduling
process and the iterative repairing process. In
the initial scheduling process, the capacity
constraints are relaxed and the initial schedule is
generated optimally with respect to J(X); in the
repairing process, the system coordinates the
operations to find a good conflict-free schedule.

In the following, we propose four methods to
generate an initial schedule:

1) Dispatch by CON Rule (DCON): The
operation due-dates d

ij
 generated by CON

(constant flow allowance) rule are assigned to
the corresponding completion times of
operations, c

ij
.

2) Dispatch by TWK Rule (DTWK): The
operation due-dates d

ij
 generated by TWK

(proportional to total work) rule are assigned to
the corresponding completion times of
operations, c

ij
.

3) Dispatch by Constant Slack Time Rule
(DCST): The slack time of an job i, S

i
, is

defined as S
i
 = D

i
- R

i
- P

i
, where D

i
, R

i
 , and P

i
represent the due-date, ready time and total
processing time of the job, respectively. The
due-date of a job is assigned to the completion
time of the last operation, and a constant idle
time (S

i
 / M) is inserted between successive

operations and between the first operation and
ready time.

4) Dispatch by Modified Constant Slack Time
Rule (DMCST): This rule is similar to DCST
except that the constant idle time is (S

i
 / (M+1)).

Besides, the constant idle time is inserted
between the last operation and the due-date of
the job.

Note that the completion(start) time of an
operation is determined according to the

processing time requirement once the
start(completion) time of the operation is
determined. Method (1)-(2) are motivated by
the operation due-date rule CON and TWK.
Since ODD dispatching rule with due-date rule
CON/TWK performs quite well, it hints that the
sequence given by the dispatching rule can be
treated as a good initial sequence. Therefore, it
is reasonable to expect that the initial schedule
based on CON/TWK rule would be a good
initial schedule. Method (3)-(4) are developed
straightforward, which intend to distribute the
operations uniformly on the time axis.

4.2 Test Results
In the following experiments, the coefficients

in the cost function are assigned according to the
comments in Section 3.1 and testing experiences.
As such, the Lagrange multiplier ë was set to 10,
and the coefficient of the auxiliary objective
function, ã, was set to 0.3. The operation
due-dates used in auxiliary objective function
was set according to CST(constant slack time)
rule as depicted in Section 4.1, since we found
that the CST rule performs better than all of the
other rules in our system. In this paper, all
experiments were run on a PC with Cyrix
6X86-P120(100MHz). The computer program
was written in C language. Each experiment
ran until the resulting schedule was conflict-free.

We randomly generate three 10-job
10-machine problems according to the following
problem factors:

• Processing Time: The processing time of
each operation is uniformly distributed
between 1 and 10;

• Due Dates: The due date of each job is set
to the total processing time of the job times
a DSF (due date set factor), where the DSF
is uniformly distributed between 1 and 3.

Table I-III show the numerical results for the
three problems with weighted tardiness objective.
For simplicity, the weight of job tardiness in EQ.
(2), vi , is set to 1. Table I reports the results of
these problems solved by the priority
dispatching rules described in Section 2.4. We
can find that the ODD rule generates the best
average cost, 41.3, for the three problems.
Table II reports the results of the three problems
solved by the repair-based approach combined
with semi-active timetabling. The
forbidden/action list size is set to 15. Among
the different methods of initial schedule
generation, we find that the DTWK generates
the best average cost, 25.3, which is also better
than that generated by ODD dispatching rule.
The average CPU time is 0.51 seconds. In
Figure 3, we graph the cost as a function of
iteration for the problem solved by the proposed

algorithm. The three curves in the figure
represent the conflict cost, the performance cost
and the total cost of the schedule (see EQ. (8)),
respectively. Each iteration corresponds to a
repairing cycle. Although the performance cost
is increasing, the total cost is decreasing. The
conflict cost achieves zero, i.e., conflict-free,
after 192 iterations. The performance cost
obtained is 9, and is reduced to 7 after
semi-active timetabling. To show the
effectiveness of the incorporation of auxiliary
objective function J

AUX
 to the cost function C in

EQ. (8), we also test the problems solved by the
same approach without considering the auxiliary
objective function. This is equivalent to setting
ã� in EQ. (8) to 0. The results are shown in
Table III. We can find that, for most cases, the
performance cost is higher than the cost with the
auxiliary objective function.

The experimental results show that:
(1) The repair-based approach compares

advantageously with heuristic dispatching rules
in terms of schedule quality. Although
different initial schedule generation methods
may result in different schedule quality, we find
that DTWK is the most appropriate initial
schedule generation method for due-date-based
performance measures. The repair-based
approach with DTWK performs better than all of
the priority dispatching rules in terms of
schedule quality. This is due to the fact that the
priority dispatching rules are too myopic,
whereas the initial schedule generation method
DTWK provides sufficient global information of
the search space and hence guide the local search
to yield better quality schedules.

(2) Through the incorporation of the local
search technique and the cycle prevention
scheme, the repair-based approach can produce a
conflict-free schedule.

(3) The Earliest-Conflict-First heuristic makes
the scheduling system more efficient and
effective.

(4) For most cases, the employment of the
auxiliary objective function enables a lower
performance cost J to be found.

5. DYNAMIC RESCHEDULING
In real world applications, algorithms

searching for optimal schedules quickly break
down due to the dynamic and stochastic nature
of the factory environment. Unexpected events
such as machine breakdown, operation tardiness,
reworking, new orders, and so on, will force
changes to previously planned activities.
According to the characteristics of unexpected
events, we divide the unexpected events into two
categories:

1)disturbance: the events which will not affect
the number of jobs, such as machine

breakdown, operation tardiness, reworking.
2) job insertion/deletion [10]: the events which
affect the number of jobs, such as new orders.
In order to react to unexpected events, we use

some heuristics to modify the predictive
schedule and feed the modified schedule into the
repair-based system. Then the system will
automatically repair the conflicts and result in a
new predictive schedule. In the following
subsections, we will introduce how to react to
these unexpected events.

5.1 Disturbance
To react to disturbance, we can modify the

original schedule according to disturbance and
then apply repair-based approach to resolve the
conflicts in the schedule. Let's look at the
following example.

As shown in Figure 4, there is a schedule for a
randomly generated 5-job 5-machine problem.
Assume that Machine_2 breaks down during
time interval (0, 20). To react to the event, we
shift the operations performed on Machine_2
right such that no operation needs to be
performed on Machine_2 during the time
interval. In other words, on Machine_2, we
shift the operations belonging Job_0, Job_4,
Job_1 right, and the start times of these
operations are all set to 20. Then we evoke the
repair-based system which will automatically
resolve the conflicts resulting from the shifting.
During the repairing process, we disable the
left-shift repair operation such that the shifted
operations would not be shifted back to the time
interval (0,20). The resulting schedule is
shown in Figure 5.

5.2 Job Inser tion
For the insertion of new orders, the generation

of initial schedule is somewhat different. We
have to place the new operations in appropriate
position in the initial schedule, such that the
resulting schedule is acceptable. Intuitively,
there are two methods that can add a new job.
The first method is straightforward insertion,
which inserts each operation of the new job in a
manner that the original predictive schedule does
not change. In other words, the schedule is still
conflict-free after insertion. The second
method is repair-based insertion, which may
result in capacity constraint violations after
insertion. But through the help of the
repair-based system, it will increase the machine
utilization and hence produce a better
conflict-free schedule. Now, let's describe the
two methods in more detail.

1) Straightforward insertion: Insert each
operation of the new job in a manner that the
original predictive schedule does not change.
In other words, the schedule is still conflict-free

after insertion.
2) Repair-based insertion: The insertion of

operations may result in capacity constraint
violations, but it will increase the machine
utilization and the resulting conflict-free
schedule generated by repair-based system will
be better. We propose the following two
insertion methods:

a) Forward Insertion To Time Gap (FITG):
According to the precedence order of the
operations, assign the start time of operation one
by one to the earliest idle time on the
corresponding machine. Notice that the
precedence constraints of these operations are
maintained. In other words, the knowledge
about the precedence constraints are
incorporated into the FITG method such that
some obvious constraint violations would not
occur after the insertion process.

b) Forward Insertion From Ready Time
(FIRT): Assign the start time of the first
operation to the ready time of the job, and then
assign the start time of the second operation to
the completion time of the first operation, and
then assign the start time of the third operation to
the completion time of the second operation, and
so on. Similar to FITG, the precedence
constraints of these operations are not violated.

Although there are many other insertion
methods can be applied, e.g. BITG(Backward
Insertion to Time Gap), BIDD(Backward
Insertion From Due Date), etc., we only consider
FITG and FIRT because they are suitable for
most objective functions. Now let's look at the
following example.

In fact, the FITG method can further be
generalized. Assume that the idle time interval
between two consecutive operations on the same
machine is called the idle-time block between the
two operations. For FITG method, once the
length of an idle-time block is not zero and an
operation is schedulable (i.e. the operation is the
first operation of an job or the predecessor of the
operation has already been scheduled) on the
same machine, the operation will be inserted to
the idle-time block. To generalize the FITG
method, we limit the idle-time blocks that can be
inserted by a particular operation. The
generalize FITG method is called FITG-R
method. In FITG-R method, a parameter,
called block difference (BD), is used to identify
whether an idle-time block can be selected by a
particular operation or not. The idle-time block
is accepted if the length of the idle-time block is
larger than (the processing time of the operation
- BD). In fact, block difference confines the
largest possible conflicting time for each conflict.
We can regard the block difference as the
amount of time to be repaired. For each
operation to be inserted, the idle-time blocks

whose start time is later than the completion
time of the predecessor of the operation will be
tested one by one based on time increasing order
until an idle-time block is acceptable.
Intuitively, smaller BD may reduce the CPU
time for conflict resolution, but on the other
hand, may result in a schedule with poorer
quality. Notice that the FITG-R method is
equivalent to straightforward insertion method if
BD equals to zero.

Besides, to insert a hot order after a production
schedule has been developed, we can generate an
intermediate schedule by placing the operations
of the hot job on the earliest possible time in the
schedule, and then use the repair-based system
to resolve the conflicts in the schedule. During
the repair process, the operations that do not
belong to the hot job are selected first to move
such that the hot job can be done as early as
possible. Of course, maybe the cost of
satisfying the due date of the hot job cannot be
afforded because the insertion of the hot job
could cause the delay of other jobs. In such
cases, the scheduler has to generate a new
schedule by placing the operations of the hot job
later or increasing the possibility of
right-shifting the hot job in the Gantt chart, and
negotiate with the customer.

We randomly generate three 10-job
10-machine problems as our test case. The
processing time of each operation is uniformly
distributed in interval [1, 10]. The due date of
each job is set to the total processing time of the
job times a DSF (due date set factor), where the
DSF is uniformly distributed in interval [1, 3].
To test the performance of inserting a new job,
for each problem, we select a job from the ten
jobs as the job to be inserted.

Table IV shows the results of solving the same
problems with weighted tardiness objective.
We can find that although the schedule
generated by the repair-based approach with
FITG insertion rule is not better than that is
direct-rescheduled by repair-based approach,
there is a significant saving in computation time
and the schedule is also better than that is
direct-rescheduled by ODD dispatching rule.

5.3 Job Deletion
Since weighted tardiness objective belongs to

regular performance measures, we can apply
semi-active timetabling to remove the
superfluous idle time resulting from the deletion
of a job. For non-regular performance
measures, we use a heuristic method to modify
the schedule and then apply the repair-based
system to repair the conflicts in the schedule.

Since superfluous idle time among operations
may improve the schedule quality for
non-regular performance measures, semi-active

timetabling cannot be applied. Therefore, we
propose a heuristic method to modify the
schedule to react to the job deletion event for
job-shop scheduling problems with the
combined minimum weighted earliness and
tardiness objective. The heuristic method can
be described as follows:

(1)For each machine, left-shift all the
operations succeeding to the operation
being deleted.

(2)If the operation being left-shift is not the
last operation of a job, then left-shift the
operation by ä, where ä is the processing
time of the operation being deleted,
otherwise left-shift the operation by max{0,
min{ä, the completion time of the operation
- the due date which the operation belongs
to}}. In other words, if an operation is the
last operation of a job, then the operation
will at most be left-shifted to the due date
the operation belongs to.

The underlying philosophy of the method is
similar to that of the initial schedule generation
method described in Section 4.1. We take
advantage of the deletion of a job to reduce the
value of J(X) regardless of constraint violations.
Then, the repair-based system will automatically
repair the conflicts in the schedule.

The test case is the same as that of the job
insertion. For each problem, we randomly
select a job from the ten jobs as the job to be
deleted.

Table V shows the computational results of the
three problems with minimum weighted
tardiness objective. We can find that the
schedule obtained by semi-active timetabling
performs better than those direct rescheduled by
repair-based approach and ODD dispatching rule
in terms of schedule quality and computation
time. We can find that the quality of the
schedule obtained by repair-based approach with
heuristic modification is similar to that direct
rescheduled by repair-based approach; however,
there is a significant saving in computation time.

6. Compar ison
In the following, we compare our approach

with some other related works.

6.1 Local Search with Cycle Detection
vs. Tabu Search

Our approach is similar to tabu search (see
Section 2.3). Tabu search maintains a tabu list
to memorize the moves recently taken in order to
prevent reversals which would cycle back to the
same local optimum. Our approach differs
from tabu search in that:

1) To avoid cycling, tabu search rejects the
moves that may result in a cycle, but our
approach only rejects the moves that will

actually result in a cycle. In other words, tabu
search may reject some moves that do not result
in a cycle, and hence it may lose the possibility
of finding some better solutions.

2) In tabu search, the performance is sensitive
to the length of tabu list. If the length is too
short, it can not avoid cycling completely; on the
other hand, if the length is too long, it may lose
the possibility of finding some better solutions.
In our approach, such problem will not occur.

3) Tabu search requires some domain
knowledge to acquire the tabu conditions for the
moves. Since tabu conditions are based on
some heuristics, the performance of the
scheduling process is critically dependent upon
the effectiveness of the heuristics. On the other
hand, cycle detection approach is more
"systematic". It only needs to know what are
the primitive operations of the scheduling
system. Experiments [9,10] show that our
approach performs "uniformly" over different
application domains.

4) Tabu search usually requires additional
diversification strategies to jump from one
search region to another one. But in our
problem solving architecture, Initial Scheduler
already provide some global scheduling
information that can guide the search to
solutions with global view. Therefore, only
intensification strategies are needed during the
iterative repairing process. That is to say, local
search with cycle detection is much more
suitable in our repair-based scheduling system.

6.2 Compar ison with Lagrangian
Relaxation Techniques

The benefits of Lagrangian relaxation are:
• the relaxation results in easier-to-solve

subproblems
• it has the potential to obtain a near-optimal

schedule
• it provides a lower bound of the optimal

solution to the problem, i.e., the optimality
of the resulting schedule can be obtained

• it can solve a large-scale job-shop
scheduling problem within reasonable
computation time.

On the other hand, the weakness of the LR
approach is:

1) Compared to repair-based approach, LR
approach is much more difficult to design and
implement. The issues to be considered
include:

• transforming the original problem into a
dual problem via the relaxation of
operation precedence and capacity
constraints,

• decomposing the scheduling problem into
operation-level subproblems,

• reducing solution oscillation, which causes
subproblem solutions to oscillate from
iteration to iteration and may prevent
convergence of the algorithm,

• solving the dual problem, and
• devising an additional heuristic algorithm

to construct a feasible schedule.
2) LR approach is sensitive to the objective

function. As the objective function has been
changed, the algorithm has to be re-designed
completely. While repair-based approach, the
same algorithm can be applied to different
problems [9,10].

3) Compared to repair-based approach, LR
needs more computation time in solving
subproblems because all of the subproblems
have to be solved again at each iteration of
updating Lagrangian multipliers. For example,
in [8], the time complexity of solving
operation-level subproblem is of order

ijHK × ,

where K and
ijH represents the time horizon

and the number of possible machine types for
operation (i, j), respectively. This is because
solving the subproblem entails enumerating all
possible beginning times for each possible
machine type. In other words, assuming there
is no alternative machine for each operation, i.e.

1=ijH , the time complexity of solving the

original problem is approximately :

O(I×M×N×K), (10)

where I, M, N represent the number of
iterations to achieve acceptable solution quality,
the number of jobs, and the number of
operations for each job, respectively. On the
other hand, the running time of our iterative
repair algorithm can be estimated as follows:
Initial Scheduler takes O(M×N) time since it go
through M×N operations. After each repair
iteration, Conflict Management takes O(M) time
to update the set of conflicts since it has to
manage the conflicts on each machine, and cycle
detection algorithm takes O(P) time to detect
cycles if necessary, where P represents the
length of forbidden/action list. Therefore, the
time complexity of our repair-based approach is
of order M×N+I×(M+P), which is
approximately :

O(I×(M+P)), (11)

where I represents the number of iterations to
yield a conflict-free solution. The number of
iterations I is determined by the nature of the
problem instance and is therefore
nondeterministic. Generally speaking, it
depends on the number of conflicts in the initial

schedule and the problem size. Obviously, the
repair-based approach requires less
computational effort than the Lagrangian
approach.

7. Conclusions
In this paper, we demonstrated a dynamic

job-shop scheduling system based on the
iterative repair approach. We introduced how
to transform the problem into a repair-based
search problem. Through the cooperation of
initial schedule generation module, the Earliest-
Conflict-First heuristic, the local search
technique, and the cycle prevention algorithm,
the system will generate a good conflict-free
schedule.

The contribution of this paper is as follows:
(1) It proposes an approach that can be applied

to solve large-scale dynamic rescheduling
problems, specifically, the job insertion/deletion
problems. Repair-based systems only modify
the part of the schedule which is required to be
changed. As the size of the scheduling problem
becomes larger, the benefits are obvious.

(2) Compared to heuristic dispatching rules
and Lagrangian relaxation techniques, the
proposed repair-based system is more flexible.
On the one hand, the same algorithm can be
applied to job-shop scheduling problems with
different performance measures; on the other
hand, the proposed repair-based system can also
be applied to a variety of applications. It has
been successfully applied to railway scheduling
problems [9].

(3) This approach has been successfully
applied to the static job-shop scheduling
problems with weighted early/tardy objective,
which cannot be solved by the conventional
theorems on job ordering.

Experimental results show that the proposed
system can solve the dynamic job-shop
scheduling problem in an efficient and effective
manner.

REFERENCE
[1] C. S. Czerwinski and P. B. Luh,

"Scheduling products with bills of
materials using an improved Lagrangian
relaxation technique," IEEE Trans. on
Robotics and Automation, vol. 10, no. 2, pp.
99-111, 1994.

[2] F. Glover, "Tabu search - part I," ORSA J.
Computing, vol. 1, pp. 190-206, 1989.

[3] J. Gu, "Local search for satisfiability (SAT)
problem," IEEE Trans. on Systems, Man,
and Cybernetics, vol. 23, no. 4,
pp.1108-1129, 1993.

[4] M. Dell'Amico, M. Trubian, "Applying
tabu search to the job-shop scheduling
problem," Annals of Operations Research,

vol. 41, pp. 231-252, 1993.
[5] M. Zweben, E. Davis, B. Daun, and M. J.

Deale, "Scheduling and rescheduling with
iterative repair," IEEE Trans. on Systems,
Man, and Cybernetics, vol. 23 , no. 6, pp.
1588-1596, 1993.

[6] P. J. M. van Laarhoven, E. H. L. Aarts and
J. K. Lenstra, "Job shop scheduling by
simulated annealing," Operations Research,
vol. 40, no. 1, pp.113-125, 1992.

[7] R. Sosic and J. Gu, "Efficient local search
with conflict minimization: A case study of
the n-queens problem," IEEE Trans. on
Knowledge and Data Engineering, vol. 6,
no. 5, pp. 661-668, 1994.

[8] S. French, "Sequencing and scheduling: an
introduction to the mathematics of the
job-shop," John Wiley & Sons, 1982.

[9] T. W. Chiang and H. Y. Hau,
"Repair-based railway scheduling system
with cycle detection, " IEICE Trans. on Inf.
& Syst., vol. E79-D, no. 7, pp. 973-979,
July, 1996.

[10] T. W. Chiang and H. Y. Hau, "Solving job
insertion problem in job shop scheduling
using iterative improvement," in Proc.
IEEE Int. Conf. on Systems, Man, and
Cybernetics, Beijing, vol. 2, pp. 1525-1530,
1996.

TABLE I
Results for Three 10-Job 10-Machine Problems
with Minimum Weighted Tardiness Objective.

SPT LPT EDD ODD MOD OPIProblem
No. Cost
1 52 88 31 36 36 43
2 63 81 43 22 22 48
3 97 102 80 66 76 70

Ave. 70.7 90.3 51.3 41.3 44.7 53.7

TABLE II
Results for Three 10-Job 10-Machine Problems
with Minimum Weighted Tardiness Objective.

RBA-1 RBA-2 RBA-3 RBA-4Problem
No. Cost Time Cost Time Cost Time Cost Time
1 48 0.44 7 0.27 21 0.44 9 0.27
2 26 0.44 15 0.44 34 0.72 9 0.39
3 90 0.61 54 0.82 58 0.71 76 0.82

Ave. 54.7 0.50 25.3 0.51 37.7 0.62 31.3 0.49

TABLE III
Three 10-Job 10-Machine Problems with
Minimum Weighted Tardiness Objective.

RBA-1 RBA-2 RBA-3 RBA-4Problem
No. Cost Time Cost Time Cost Time Cost Time
1 48 0.55 3 0.39 28 0.27 18 0.39
2 20 0.38 15 0.33 28 0.33 28 0.49
3 70 0.6 59 0.93 87 0.99 75 0.71

Ave. 46 0.51 25.7 0.55 47.7 0.53 40.3 0.53

TABLE IV
Experimental Results for Job Insertion

Origin ODD-R Repair-R FITGProblem

No. Cost Cost Cost Time Cost Time

1 10 36 7 0.27 8 0.09

2 16 22 15 0.44 23 0.11

3 49 66 54 0.82 49 0.05

Ave. 25 41.3 25.3 0.51 26.7 0.08

TABLE V
Experimental Results for Job Deletion

Origin ODD-R Repair-R FITGProblem

No. Cost Cost Time Cost Time Cost Time

1 7 32 0.05 7 0.17 7 <0.01

2 16 33 0.05 31 0.28 16 <0.01

3 63 71 0.05 52 0.74 48 <0.01

Ave. 28.7 45.3 0.05 30 0.4 23.7 <0.01

Figure 1. The iterative repair algorithm

Figure 2. The algorithm for cycle detection.

 Figure 3. Results of scheduling problem No.1
with weighted tardiness objective using DTWK.

Figure 4. The schedule before the breakdown of
Machine_2.

Figure 5. The schedule generated by
repair-based approach after the breakdown of
Machine_2 at time interval (0, 20).

1. (Initialization)
1.1 Generate the initial schedule.
1.2 Find all conflicts in the initial schedule and

put these conflicts to SC .
1.3 Evaluate co .
1.4 count := 0.

2. 2.1 If SC is empty then stop, else select and
delete the earliest conflict from SC.

2.2 Put all possible repair methods to SR.
3. 3.1 Select and delete the highest priority repair

method from SR.
3.2 Test to repair the selected conflict.
3.3 Evaluate cn.

4. If cn < co or SR is empty, then perform the
repair and goto step 5, else goto step 3.

5. 5.1 Update SC .
5.2 co := cn.
5.3 Increase count by one.
5.4 Goto step 2.

Algor ithm CD
begin

for all element (i, j, Rk, Δ) in ALIST do
SUM[i][j][Rk] := SUM[i][j][Rk] + Δ ;

end;
for all element (i, j, Rk, Δ) in ALIST do

if SUM[i][j][Rk] ≠ 0
then return FALSE;

end;
return TRUE;

end;

0.00 40.00 80.00 120.00 160.00 200.00

0.00

50.00

100.00

150.00

200.00

250.00

(Total Cost)/5

Conflict Cost

Performance Cost

9

10 20 30 40 50 60 70

1

2

3

4

0
0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

10 20 30 40 50 60 70

1

2

3

4

0
0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12

