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Abstract

This paper discusses and develops a methodology
to solve the problem of flight scheduling, which is
proved to be a multi-objective optimization problem.
A multi-objective optimization problem has many
constraints and performance indices to be considered
simultaneously. Unfortunately, the constraints and
performances are usually conflicting. To deal with
such problems, in this research we employ the

Method of Inequalities (MOI) to formulate the

objective functions and present them in a vector form.

We also employ a multi-objective rank-based genetic
approach as the optimization method. Furthermore,
to overcome the conflicts of the objective functions,
which consist of available ground holding time,
take-off  place, maintaining issues, etc.
simultaneously, a 2-degree freedom design method is
used to find feasible solutions. We have successfully
applied the proposed method to solve a practical
problem of flight scheduling for a domestic airline
company.

Keywords: Method of Inequalities, genetic
algorithm, multi-objective optimization, 2-degree

of freedom design, flight scheduling

1.Introduction

Flight scheduling is extremely important in
resource planning in airline carriers [1]. Its main
process is to generate a daily flight schedule that
determines which aircraft should be assigned to
which flight. When planners want to generate daily
flight schedules, they should consider various
constraints and performance indices, for example,
available aircrafts, available airports, ground-holding
time, maintenance rules, and fueling constraints, and
so on. Most airline carriers may have several
performance indices, such as minimizing the fleet
size, minimizing the total cost, and maximizing the
benefits. Since the flight scheduling will affect the
total cost of airline carriers, airline carriers should
make the highest benefit under the lowest cost as
possible. Therefore, the best way to achieve this goal
is to optimize the flight scheduling.

Practically, the flight scheduling process consists
of two phases [14]: a schedule construction phase
and a schedule evaluation phase. In the construction
phase, the planners propose a draft flight schedule
based on various limitations such as the number of
aircrafts, the number of maximal flights, efc. In the

schedule evaluation phase, the planners evaluate



the draft schedule, and adjust it to match all
constraints repeatedly. Also, the total cost and the
minimization of fleet size should be considered.
Several models of flight scheduling have been
proposed for decades. Most of these models are
proposed with various objective functions and
constraints [3][4][5][6][7], such as minimizing the
fleet size, or maximizing total profits. Since this kind
of problem has been proved to be NP-complete [8],
exact solution

some typical

[31[6][9][10][7], such as branch-and-bound method,

techniques

and cutting aircraft method are often used. Lee [10]
proposed a Lagrangian technique to reduce the
computational complexity. Also, the Dantzig-Wolfe
decomposition [4], which is a kind of linear
programming solution technique, has been added to
the Lagrangian multiplier technique to solve the
problem of flight scheduling. Furthermore, some
other models were also proposed, like integer linear
programming model [12], multi-criteria model [9],
mixed integer programming model [13], and
minimum cost network flow models. Yan et al. [14]
proposed a decision support framework for
multi-fleet routing and multi-stop flight scheduling.

However, most of these researches use
deterministic method to solve the problem of flight
scheduling. These methods often assign flights to the
aircrafts step by step. It is unpractical when the
number of aircrafts and flights become large.
Furthermore, if one cannot find out feasible solutions,
one may be confused whether there exists no feasible
solutions or the method is incorrect. Consequently,
an effective way is extremely important to solve the
problems. Therefore, we employ a heuristic method,
multi-objective genetic algorithm to solve the
problem of flight scheduling.

Genetic algorithm, which is proposed by John

Holland in 1962 [15], exploits a novel field of

multi-objective  optimization. The mathematical
framework was developed in the late 1960s in
Holland’s [16]. This kind of algorithms is stochastic
optimization algorithms that are originally motivated
by the mechanisms of natural selection and evolution
genetics. By using Darwinian's survival-of-the-fittest
strategy, genetic algorithms can prevent unfit
characteristics and use random information exchange,
with exploitation of knowledge contained in old trial
solutions, to affect a search mechanism with
surprising power and efficiency. This algorithm has
been successfully used in many fields. With the
characteristics of maintaining various candidate
solutions at the same time, GA is very suitable for
solving the multi-objective optimization problems.
More details about GA may be found in Goldberg’s
[11].

Liu [21] proposed a Multi-objective Genetic
Algorithm (MGA) to the application of control
systems design. In this research, MGA is applied to
solve the problem of flight scheduling. First, the
Method of Inequalities [19] is used to formulate
various constraints and performance indices. We also
use a rank-based selection method company with the
auxiliary vector performance index. Furthermore,
similar to the multiple thread problems in computer
science when a multi-objective problem is to be
optimized, the deadlock problems may occur since
some of the objectives are conflicting. In order to
prevent such problem, it uses a 2-degree of freedom
design method to find feasible solutions instead of
traditional 1-degree of freedom design method. The
method relaxes one of the objectives and optimizes
the other conflicting objective alternatively.

We have applied the proposed method to solve

flight-scheduling problems. The results show that it



can solve the problem under the limitation of the
number of aircrafts instead of the minimization of the
number of aircrafts that are usually employed in
traditional method. It provides the airline carriers a
greater chance to obtain a neo-optimal flight
schedule and help to decrease the cost of flight
scheduling.

The remainder of this paper is organized as follows.

Section 2 introduces the problem of flight scheduling
and formulates the problem. Specific constraints are
also described in this section, too. The proposed
methods are presented in Section 3. Experimental
results are presented in Section 4. Discussions are
given in Section 5, and conclusions are given in the

last section.

2. The Problem of Flight Scheduling and
Mathematical Models

In this section, we first give the problem statement

of flight scheduling.
Suppose that the available set of a aircraft is AC,
AC ={ac; |i =1,2,...,a}  Eq.(2.1)
Let the available set of @ airports be AP,
AP ={ap,; |i =12,...,00}  Eq.(2.2)

Each entry in AP contains various information,
such as the airport name, a key to identify whether it
is a fueling station, a key to identify whether it is a
maintenance station, and a key to identify whether it
is an off-land station or an in-land station. Thus, it
can be formulated as a vector, defined as follows:

ap; = (name(i),fuel(i),m(i),qﬁ”(i))Eq. 2.3)
where name® is the name of airport i, and

fuel® = O if ap; has a fuel station
' otherwise

@ _ O if ap; has a maintenance station
m" =
otherwise

5 _ O if ap; is an off —land station
Off( ) = %)

if ap; is an in — land station

forall isw.

In each daily flight schedule, the maximal number
of flight of assigned to each aircraft should not
exceed the number listed in the laws and regulations.
Let p represent the maximal number of flights that
each aircraft is allowed in one day, and then the set
of daily flights, or timetable F, defined as:

F={f1i=12,...y}

where y<af3. Since each entry in F contains

Eq. (2.4)

various information, which can be defined as a

vector:

fi = Gd YD gD D Jap 5 ap (7)) Eq. (2.5)

Gd :flight identifier
b

where D‘,(qid)
(id)
D

s
Fap)  :arrival airport

:departure time of apgd)

:arrival time of apgd)

:departure airport

and apl),ap) O AP. The four fields 5", ¢4,
ap$® , and ap'' are indexed by the identifier id of
each entry in F.

According to the definitions above, the flight
schedule can be represented as a 2-dimensional

matrix, denoted as S:

Dsll Sy oo Si8 0
U . .0
52 0
S=0: s, : 0O Eq.(2.6)
g . 0
[o-11 - Sa18[]
Esm e e Sop E
where _ [anidentifier of a flight O F ,actual flight
v ,a dummy
Eq. (2.7)

foralli<a,j<p.
The first thing one should do is to assign the duties
into the flight schedule S to generate a draft flight

schedule. Here, s; means a flight identifier for the jth



duty of the ith aircraft.

As described earlier, the problem contains various
objectives. Some are constraints, and others are cost
evaluation. Let the set of objectives OBJ be written
as

OBJ ={obj; |i =1,2,...,11} Eq.(2.8)
where 7T is the number of objectives. Here we let
the value of m be 6. The six objectives are
discussed as follows:

1. The departure time of each flight assigned to an
aircraft should be 25 minutes latter than the
arrival time of its previous flight.

2. The origin airport of each flight assigned to an
aircraft should be the same as the destination
airport of its previous flight.

3. Each aircraft should not fly longer than the
fueling period.

4. Each aircraft should not fly longer than the
maintenance period.

5. The destination of last flight of each aircraft in a
daily flight schedule should be an in-land
airport.

6. The number of aircraft should be equal to or less

than available number of aircrafts.

3. Multiobjective GA Approaches

We integrate genetic algorithm with a number of
methods to solve this problem. First, we employ the
Method of Inequalities (MOI) to represent our
objectives. Second, since the number of objective is
more than one, a better method, rank-based
evaluation method [20] is used to evaluate each
candidate solution. To prevent the problem of
conflicting objectives during the search procedure, a
2-degree of freedom design method is used to solve

the deadlock problem. Finally, we integrate these

methods in the genetic algorithm to solve the

problem of flight scheduling.

3.1 Method of Inequalities

In general, most optimization problems have an
objective function with a single value that should be
maximal or minimal. However, some problems
cannot be combined into a single value. Suppose that
the ith objective function is ¢ , these objective

functions may have the following form:

min{@ (p), i =1,2,---, 17} Eq. (3.1)
papP

where p is the set of tunable parameters, and 7Tis the
number of objectives.

Lots of problems include various design objectives
that should be optimized simultaneously. The
objectives are usually conflicting in most case. It is
natural to represent these objectives in the form of
inequality constraints on multiple performance
indices. The specification can be represented by
inequalities as follows:

@) <E, (i=12,..,m)
@®) s

depending on the tunable parameter vector p, P is the

Eq. (3.2)
where a scalar performance index
set of possible p, and g, is an admissible
performance bound specified by the designer.

In multi-objective optimization, a Pareto optimal
solution consisting of many non-dominated solutions
is considered to be a wise choice [21]; a Utopian

solution, which is the best in all dimensions, can be

considered as a special case of Pareto optimal

solutions. For Pareto optimization, define the
performance index
@(p) =[a(p) @(p) - ¢(P)]' Eq.(3.3)

which is assumed to have Pareto optimal solutions.
To discuss the Pareto optimal solutions, we use the
following notations for vector inequalities. For the

vector inequality of two vectors x and y with



elements denoted as x;and y;, one can write x <y if
and only if for each element, inequality x; < y;holds,
or x >y if and only if for each element, inequality x;
> y; holds. However, this is rarely the case in
multi-objective optimization. For the most case, one
can use the dominated relation, e.g. x dominates vy,
denoted as x <y if and only if x <y, and the
relations beyond this is called non-dominated. With
the notation x <y, a vector p is defined as a Pareto
optimal solution if and only if there exists no vector
P(*p)

utopian solution is a special case of Pareto optimal

satisfying  ®(p) < ®(p) . Note that a

solution.
A vector of auxiliary performance indices related
to the inequality performance specifications is

defined as

0 (fpp)<e) . _

0
A(p.£)=0 =1,2,..,7

() -€ (ifap) >¢)"
Eq. (3.4)

and an auxiliary vector index is defined as
/\(pae) = [Al (pael )’/\2 (p7€2 )s e 7/\M (paEM )]v Eq (35)

where €=[g, ¢, £,,]is a set of admissible
performance bound, which can be obtained by

training.

By using above methods, we may formulate the
objectives described in Section 2 in the form of

inequalities.

OBJ(pag) = [Objl(pagl)aObjz(pagz)'"70bjM (pagM )]‘

Eq (3.6)

0 ifo@p)<e
obipey=d O Gfamse)
B)bji(p) —&; (lf(p,(p) > gi)

Eq(3.7)

3.2 Improved Rank-based Multiobjective Method

One of the major problems of applying MGA to
multi-objective optimization is the computation
complexity of multi-criterion fitness. Especially
when the number of objectives gets large, the
calculation of multi-objective fitness becomes
tedious.

In this paper, we employ a computation procedure
proposed by Liu [21] for nondominated sorting.
Suppose that two vectors with non-negative elements

satisfy the relation that the vector x dominates the

vector of y, or x <y if and only if the inequality

’, Eq. (3.8)

M=

X, <

i

M=

i i

holds. In general, the value of rank of each vector can
be determined by using the number of candidate
solution that it dominates in the current iteration.

Eq. (3.8) can be applied to the improved
rank-based fitness assignment method. Suppose that
the set of vectors I1,

M={A, N, Ny} Eq. (3.9)
where N is the size of [1.Theset 1 contains N
vectors in M dimensions,

N =LA A} Eq. (3.10)

The procedure of improved rank-based fitness
assignment method is shown as follows:

Input: a set of vectors M ={A,A\,,---,Ay}, a
counter K, temporary set Q, G,
Output: a set of vectors [1={A, ,A,,---, Ay} ,

which is assigned fitness values to each

N\ according to its rank.

Step 1: Sort vectors A, in 1 from the least to

the largest according to zi” A, -Let K =1,

=17

Step2: Let  temporary  non-dominated  set
Q = [, temporary dominated set G =0 .
Step 3: Let the first point A, of M be a



criterion.

Step4: Remove the dominated points A, by
checking whether or not the following

conditions are satisfied.

max g; <0 0(0,)(g; <0)»

where g; are the components of

g, =N, -N,,j=123,.,M, and

i=23,..,N.

Step 5: Remove the criterion A, and the dominated
points A, from M . Save A, to the
temporary non-dominated set Q, A, to the
temporary dominated set G.

Step 6: If M# O then go to Step 3.

Step 7: Rank the points of Q as K. Let [1= G
and X =K +1.

Step 8: If Mz 0O then go to Step 2.

Step 9: The fitness of each vector Vy(i) is given

by the following linear function

= 2o r 1= rank i B- G-1D)

where rank(i) is the rank of ith vector.

Each rank(i) will be less than or equal to

N. Rax is the maximal value of rank(i),

and 7 is considered as a GA diversity

maintaining parameter that is specified by a
designer. Here, we let 1< 7 <2.

According to above procedure, we may assign a

rank to each candidate solution, and obtain the fitness

values of each vector, or candidate solution.

3.3 2-Degree of Freedom Design
The deadlock problem can happen for
multiobjective  optimization problems, due to
objectives are often conflicting.
In general, the factors that may cause deadlock

problems are shown in the following:

—_—

.Mutual exclusion: There exists at least one
non-sharable resource. In other words, any

resource can only used by one process at a time.
After the resource is released, other processes can
use this resource.

2.Hold and Wait: There exist at least one-process
that holds a resource and wait for another resource
that is hold by another process.

3. Non-preemptive: Each resource has no priority;
consequently, a resource may be released after the
process that holds it completes the job.

4. Circular wait: There must exist a set of processes
{Proc 0, Proc 1... Proc n} that wait for resources,
where Proc 0 waits for the resource that Procl
holds, Proc 1 waits for the resource that Proc2
holds, ... , Proc n-1 waits for the resource that

Proc n holds, and Proc n waits for the resource that

Proc 0 holds.

Since we may generate several candidate solutions
by a random procedure, it is possible to generate
infeasible solutions that do not match the objectives
described in Section 2. These infeasible schedules
should be adjusted until they match the objectives.
However, the first objective, called the time objective
and the second objective, called the airport objective
may not be optimized simultaneously. Then a
deadlock problem occurs.

In order to solve the deadlock problem, the method
of multi-degree of freedom is employed. In this case,
the method of 2-degree of freedom is used. It may
find solutions to meet one constraint first, and then to
meet the other constraint, repeatedly. To achieve the
goal of 2-degree of freedom, we should divide time
constraint and airport constraint, Proc jimegairpor> INtO
two parts. In other words, one is a procedure only

used to solve airport constraint, denoted as Procuce,



and the other is only used to solve time constraint,
denoted as Proc;,.. Thus, we alternatively use the
procedures Proci,. and Proc,.. instead. Therefore,
we should first optimize for one constraint, and then
optimize the other constraint. Figure 1 represents the
block diagram of 1-degree of freedom design method
and Figure 2 represents the 2-degree of freedom

design method.

Figure 1. The block diagram of 1-degree of freedom

Plight

Proc time& airpor | Timetable [ Schedule

design method

Proc time
]—v Timetable
Proc airport
Flight
Schedule

Figure 2. The block diagram of a 2-degree of

freedom design method

3.4 Multiobjective Optimization with Genetic
Algorithm

Integrating the Method of Inequalities, Improved
Rank-Based Fitness Assignment Model, with the
2-degree of freedom design method, and the genetic
algorithm are used to optimize the flight schedules.
The steps of this algorithm is shown as follows:

Encoding: The model is also a 2-dimensional form,
which is the same as Eq. (2.6) in Section 2. Thus,
each row represents the flights assigned to an aircraft,
and each element represents a flight. All flights
contain the information of flight identifier, departure
time, arrival time, departure airport, and arrival
airport. As described earlier, for the purpose of
convenience computing, we assign dummy duties to

a chromosome (or a flight schedule) to make all

chromosomes have the same length.

(et [ §

Preprocessing

Degree-2

A

GA operators
Selection
Crossover
Mutation

Evaluate

Stop Criteria

Figure 3. The 2-degree of freedom design method
with MGA

Preprocessing: Since there may be some conflicts
between the time and place constraints, we propose
to relax some of them at first and then tune the others.
In order to optimize the time constraint, we arrange
the flights assigned to each aircraft according to the
departure time. This will enhance the validity of time
constraint.

Selection: We use the improved rank-based
selection operation. According to the rank value,
which is computed by the method in Subsection 3.2,
the individuals with better evaluation value will have
more chance to be selected.

Crossover:

We use a single-point crossover

method. First, we translate the 2-dimensional
chromosome into a one-dimensional string. In order
to 1illustrate our crossover method, we use a
simplified chromosome. Each uppercase letter
represents a flight duty. The parents and the dividing
point are on the left side; the generated offspring are
on the right side.

Mutation: A two-point mutation method. First,

select two flight duties are selected randomly. Then,



their positions are exchanged.

4. Experimental Results

In this section, applying them to solve a practical
problem of flight scheduling validates the proposed
methods. As shown in Figure 4, there are two
off-land airports among 7 airports. The airline routes
belong to a hub-and-spoke network. All arcs in this
figure represent available routes. The numbers of
available aircraft and airports are 9 and 7,
respectively. The maximal number of flights assigned
to each aircraft is no more than 12.

The main parameters of genetic algorithms are as
follows: Population size is 100, the maximal number
of generation is 5000, crossover rate is 1, mutation
rate 0.2, and reproduction rate is 0.8. The experiment
is run on an Intel Pentium 266 MHz PC. Our

algorithm is implemented in Borland C++ Builder

4.0

{.3

FarTennac e Icices
= —
-, -

(]

{ TNN KHH

" *

In-land Stations

Off-land Stations

Figure 4.The Hub-and-Spoke Network of all
flights
As we described earlier, the problem of flight
scheduling has several conflicting objectives to
optimize simultaneously. Six objectives, described in
Eq. (2.8), are considered in this experiment. For more
detailed design, we find all the objectives can be
separate into two kinds of constraints and one kind of
performance: 1) constraints of time: obj;, obj; and

objy, 2) constraints of place: obj,, objs and 3) cost

| — Lnavialable fime
—= Lnavilable por

150K

JiRH]

B0 MO0 3500 4000 4500 S0

GFawmbon

Figure 5. The convergence of violations of the identical airports and available time



performances, objs. Especially, obj; and obyj,
representing the available ground-holding time and
the identical departure and arrival airport constraints
are very difficult to be satisfied simultaneously. In
this research we design the schedule with two steps:
first considering obj, and obj, and then optimizing
the others.

Figure 5 presents the convergence of the two
constraint indices (unavailable denaturing time and
identical airport), respectively. In this figure, the
constraint indices are normalized. At the beginning
of the experiment, the number of violations of
available time and identical airport are extremely
high. As iteration increases, they are decreased
simultaneously. Finally, the program obtains a
feasible solution near the 4500th generation. The
feasible timetable we generated has no violations of
available time and identical airport. Therefore, the
value of unavailable time and airport are both zero.
Furthermore, to optimize the remaining constraints
and performance, obj; to objs, we use the pervious
result as the initial value and run the program again.

Resolutely, this system can provide a mechanism
for 2-degree of freedom design method and the
objectives can be added to the problem easily. In
other words, planners can deal with many objectives
step by step. Moreover, since we limited the number
of aircrafts previously, it makes a great convenience

for planner to generate a reasonable solution.

5. Discussion
As shown in Figure 5, we may obtain that both
unavailable time and unavailable airport converge at
point A. Since the number of unavailable airport
converges naturally, unavailable time converges
manually by the preprocessing procedure, the

number of unavailable airports will converge more

smoothly than unavailable time. After point B, both
the constraints converge very smooth.

In the period between B and C, it causes a
deadlock problem. In other words, this becomes a
premature solution since all ground holding time
match the ground holding time constraint, but the
airports do not match the airport constraint. By the
proposed method, we may solve the deadlock
problem by a 2-degree of freedom design method.
Since this is caused by two conflicting objectives, we
relax the ground holding constraint first. Therefore,
at point C the unavailable time may increase. At the
same time, unavailable number of airport may
decrease. Hence, the 2-degree of freedom certainly
solve the deadlock problem. At point D, both
constraints decrease to 0, and it finds out a feasible
solution. According to the experimental results, we
verify that the proposed method can overcome the

deadlock problem, and find out a feasible solution.

6. Conclusions

We have proposed a multi-objective Genetic
algorithm to solve the problem of flight scheduling.
By using this algorithm, we have obtained feasible
flight schedules under the limitation of fixed number
of aircrafts instead of just minimizing the number of
aircraft. When perturbation occurs, this system uses a
mechanism for decision support.

The experimental results show that the proposed
algorithm can solve the deadlock problem caused by
conflicting objectives in a 2-degree of freedom
design method. Consequently, it can decrease the

cost of flight scheduling.
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