A Simulated Evolution Algorithm for The Synthesis of
Trapezoid-Shaped Membership Functions

B R 2B A R BB EICRE X

Shih-Hsu Huang
RO
Department of
Electronic Engineering,
Chung Yuan
Christian University,

Chung Li, Taiwan, R.O.C.

PEALEFIRE A

Wen-Hon Peng
BXE
Department of
Electronic Engineering,
Chung Yuan
Christian University,

Chung Li, Taiwan, R.O.C.

YRREEFIRESA

Jian-Yuan Lai
HE T
Department of
Electronic Engineering,
Chung Yuan
Christian University,
Chung Li, Taiwan, R.O.C.
FRAZEFTIRE A
PRERMTIET LR E
4= 22 3%
28976039@cycu.edu.tw

PR PR L8 E PR PIET L & E
4= 22 3% 4= 22 3%
shhuang@cycu.edu.tw 28976036(@ cycu.edu.tw

Abstract

In the past few years, there have been an
increasing number of systems based on fuzzy
logic in various fields of applications, such as
ATM network control, GPS data processing,
aircraft flight control, image processing, and so
on. In a fuzzy system, the fuzzy rules are
characterized by membership functions.
Therefore, when designing a fuzzy system, the
membership functions play a very important
role because they are the “brain” in the fuzzy
inference process. In order to better control the
fuzzy system, we need to have an effective
design methodology to synthesize the
membership functions. In this paper, we will
present a simulated evolution based algorithm
for automatic synthesis of the trapezoid-shaped
membership functions, which are based on the
representation format presented in [1,2]. Given
some test patterns and their desired outputs, the
proposed approach iteratively improves the
membership functions by simulated evolution.
Our optimization goal is to find suitable
trapezoid-shaped membership functions as the
knowledge base such that the total control
error is minimized. The main distinction of the
proposed approach is that it fully utilizes the
properties inherited in trapezoid-shaped
membership functions. As a result, the
possibilities of variations in the simulated
evolution can be accurately estimated.
Experimental data shows that the proposed
approach achieves very good results and thus is
well suitable for the fuzzy logic controller
presented in [1].

Keywords: Fuzzy System, Membership
Functions, Simulated Evolution Algorithm,
Control Error, Automatic Synthesis, Fuzzy
Logic, and Fuzzy Logic Controller.

HE

WHE o BT O R A AR
FHEFRE R ZGER) flhe 0 @RREIEH
R AL A GRMIRR T ~ HLERATIES ~ B
BREE HAERABMALTREIERZ
BlF o A—EAEMALT EZAUFER R
PO SAEE B HRR - Bk 5B R AR
ST AR RS B & o PTOA
SR R B B AL EMR &
BEZ o B THA KRG EATEMRIES > KA
LIAR — BRI H AT ARATRE IS
e AR 0 BRAVFRE — 1B AR B 1L
BELBAHROBELTFRE B BGOSR A
Yoo SHATU SR BB KT ik 0 AR
[2] © 7T R 32 gb & o7 7 ok 69 A0 2B 48 0 4
%o MR TEERN (1] REH L 8L &A1
ZATH R R B et 0 Bl — AR B
BES M AL > MBS [1,2] ZARBEAR 22 AR,
RAnEL > ER—EREOEM A SEITR
B REHRXAREZHMIER JHEHEH
RAM RAGBANEERE GERERMEY
e RRGERELERER > Hdhsii
BALEE S, REALGE Y UK ER
LB H B2 % o RIVTRAILHBE S £
KFBRECALI KRB ETMME 0 RER R
Z AGIERIRE o RMAIREEEEL X

Zwde RESARABLEE S BOSH
Mo FREEREFRE B EAERAEGE RS
RZHE - FRERBET KMAGEEET
DAF BB 2 A B3R £ > B pbAR A 8 R 7 L
[1] PR 2 a4 4] 5 A At 2 5
A st o

MisEFE I AL~ 7B & BREILE
Bk~ SR E - BHE R > Bl
AR R B

1. Introduction

During the past two decades, fuzzy logic
control has emerged to be one of the most
active and successful areas in scientific
researches and industrial applications. By the
efforts of countless researchers, there have been
an increasing number of applications based on
fuzzy logic in various fields of applications,
such as ATM network control [3], GPS data
processing [4], decision-making support system
[5], automobile transmission control, automatic
train operation systems [6], image processing
[7,8], process control [9,10], and signal
processing [11]. The reasons for the success of
fuzzy logic lies in its capacity to tolerate
information expressed in a way, which is
uncertain, imprecise, and at times only
qualitative. Problems, which are too complex
or even impossible to deal with using
traditional quantitative techniques, can often be
solved with a limited computational complexity
when a fuzzy approach is used.

The underlying idea of fuzzy approach is to
build a model of human expert who is capable
of controlling the plant without thinking in
terms of a mathematical model. The fuzzy rules
and fuzzy logic controller are the two important
parts for modeling a fuzzy system. The fuzzy
rules define the knowledge base of the control
expert, while fuzzy logic controller performs
the fuzzy inference.

In a fuzzy system, the fuzzy rules are
characterized by membership functions and
stored in the memory. A great number of fuzzy
systems use general-purpose processors to
perform the function of fuzzy logic controller.
But dedicated hardware implementation is
necessary for real-time fuzzy applications. The
digital hardware fuzzy logic controller
originated from Togai and Watanabe [12].
Many variations [13,14] have been proposed to
improve the inference performance.

In [1,2], we have proposed a high-speed
VLSI fuzzy logic controller, which is well
suitable for real-time fuzzy applications. By
using 0.35um process as the target technology,
the speed reaches up to 3.75M FLIPS (Fuzzy

Logic Inferences Per Second). The speedup is
achieved by an effective architecture for the
computations of trapezoid-shaped membership
functions. As a result, the format of
membership function is limited to trapezoid
shape.
When designing a fuzzy system,
membership functions play a very crucial role
because they are the “brain”. In order to reduce
the control error, the membership functions
should be constructed carefully. The
construction of membership functions can be
intuitive or be based on some algorithmic
operations. The optimization goal is to find
suitable membership functions as the
knowledge base such that the total control
errors are minimized.
In order to better control the fuzzy system
designed with our high-speed fuzzy logic
controller, we need to have an effective
approach to synthesize trapezoid-shaped
membership functions. In this paper, we will
present a simulated evolution algorithm to
tackle this problem. The main distinctions of
the proposed approach are elaborated as the
below:
® It is specific to trapezoid-shaped
membership functions. Therefore, it is
well suitable for our fuzzy logic
controller.

® More importantly, it fully utilizes the
properties inherited in trapezoid-shaped
membership functions. As a result, the
convergence can be easily achieved and
hence the CPU time can be saved.

The remainder of the paper is organized as
follows. Section 2 will survey the related
concepts, especially the trapezoid-shaped
membership functions for our VLSI fuzzy logic
controller. Then, in Section 3, we will present
the formulations for the problem of
synthesizing membership functions. The
proposed simulated evolution algorithm will be
described in Section 4. Experimental results
and the comparisons will be shown in Section 5.
Finally, some concluding remarks will be given
in Section 6.

2. Preliminaries

In this section, we will provide an overview
of the related works. Firstly, in Section 2.1, we
will brief the concept of fuzzy logic. Then, in
Section 2.2, we will introduce the function of
fuzzy inference. Finally, in Section 2.3, we will
review our format for trapezoid-shaped
membership functions and our VLSI
architecture to tackle the fuzzy inference in
terms of the format.

2.1 Fuzzy Logic

Zadeh proposed the extension of ordinary
set theory to fuzzy sets [15]. Fuzzy logic
replaces “true” and “false” with continuous set
membership values ranging from ZERO to
ONE, which mirrors natural language concepts.
Therefore, a fuzzy set, in fact, is a membership
function u,: M — [0,1], which associates

each element in the universe disclosure set M
with a real value between ZERO and ONE. For
example, action is required when “the speed is
approximately 30 km/h”, as shown in Figure 1,
so 25 km/h returns a degree of membership of
0.7. In other words, the membership function
U, can be defined as a fuzzy set S

={(m ,u (m))|m e M}, where 0= M (m) =
L.

membership value
A

i .

| .
30 km/h

Figure 1. An example used to illustrate the
concept of membership function.

2.2 Fuzzy Inference Process

Since the inputs from a plant are crisp
values, a fuzzification operator Fuzz is used
first. Fuzzification could be defined as a
mapping from an observed input space to
membership functions in certain input
universes of disclosure.

Without loss of generality, fuzzy logic
controller usually suppose that the fuzzy
system has two-input (X and Y) and one-output
(0O) with r fuzzy rules of the form:

Rule R;: IF (X is A;) and (Y is B;) then (O is C))

where 4; and B;, are the antecedent membership
functions associated with the linguistic
(fuzzified) input variables X and Y, respectively,
and C; is the consequent membership function
associated with the linguistic (fuzzified) output
variable O.

The fuzzy inference process can be
depicted as the below. Firstly, fuzzified inputs

X and Y are simultaneously broadcasted to all
fuzzy rules to be compared with the antecedent
parts. The matching degrees between (X and 4,)
and between (¥ and B;) are given by the
max-min calculation method as the following
two equations:
o = max(min(X (m), 4 (m)))
o' = max(min(¥ (m), B (m)))
The weight of rule i is calculated by:
o =min(a,0)
Hence, rule R; recommends a control
decision as follows:
O (m) = min(w,,C (m))
Last, the combined fuzzy results of all
control rules is given by:

O(m) = U0, (m) = max(0,(m)....,0,_, (m))

Since the inference process should output some
crisp control results practically, it necessitates
the use of a defuzzifier. If the center of gravity
(COQG) algorithm is employed, the final crisp
output o can be calculated as:

_ S(mx0(m)
© 50(m)

)

u
Fuzz(y)

A, Fuzz(x)

u H1
Fuzz(x) As Fuzz(y)

(c)
Figure 2. A graphical implication for max-min
calculation method with fuzzified inputs.

Let us use Figure 2 as an example.
Suppose that two fuzzy rules R1 and R2 are
designed in the system. The antecedent
membership functions A; and B; and the
consequent membership function C; are

associated with rule R;. Figure 2 (a) shows the
fuzzy inference process. The antecedent
membership functions A, and B, and the
consequent membership function C, are
associated with rule R,. Figure 2 (b) shows the
fuzzy inference process. By combining the
results of rule Ry and rule R, and applying the
COG computation, the crisp output o is
obtained as shown in Figure 2 (c).

2.3 Our Fuzzy Logic Controller

In real-time applications, it is therefore
necessary to use hardware architecture
dedicated to fuzzy computation. In [1], we have
proposed a high-speed VLSI fuzzy logic
controller to increase inference speed. Our
basic idea is to propose an effective format for
trapezoid-shaped membership functions. Then,
by making use of both the advantage of the new
format and the property inherited in trapezoid
shape, the latency of a fuzzy inference can be
considerably reduced. Furthermore, in order to
exploit temporal parallelism, the activity of
fuzzy inference is divided into four pipelining
stage. The proposed architecture has been
implemented by using the design kit of CIC
0.35um cell library and the processing speed
reaches to 3.75M FLIPS. The detailed
pipelined architecture is given in [1].

l-ts(m) A

OlLo L1 RI RO m

membership function

Figure 3. An example used to illustrate our
format.

In order to represent all possible trapezoid
shapes for membership functions, our format is
to store the four corner points. As a result, our
new format uses four tuples (LO, L1, R1, R0)
to describe a trapezoid-shaped membership
function, in which LO is the leftmost x-axis
point in the lower side of the trapezoid, L1 is
the leftmost x-axis point in the upper side of the
trapezoid, R1 is the rightmost x-axis point in
the upper side of the trapezoid, RO is the
rightmost x-axis point in the lower side of the

trapezoid. Figure 3 gives an example to
illustrate the format. As shown in [2], the new
format may achieve higher inference speed
with fewer memory requirements.

3. Problem Definition

For real-time fuzzy logic control, in
addition to the speed, the accuracy is also very
important. In order to ensure the accuracy, we
need an effective methodology to derive the
fuzzy inference rules. Because the fuzzy
inference rules are represented by membership
functions, the problem we study in this paper is:
Given some test patterns with their desired
outputs, to modify the associated membership
functions to more appropriate shapes. The
constraint is that all the membership functions
are limited to trapezoid shapes. The
optimization goal is to minimize the total
control error of test patterns.

3.1 The Formulations

Suppose that the fuzzy system has r fuzzy
inference rules. For each rule R,, it is described
by antecedent membership functions A; and B,,
and consequent membership function C;, where
i=1,2, ..., and r. Initially, all the membership
functions are specified by the system designer.

Assume that we are given k pairs of test
patterns to verify the control performance of
the specified membership functions. The test
patterns are (X;,Y1), (X2,¥2), ..., and (X4,y:), and
their desired outputs are 0y, 0y, ..., and oy,
respectively. However, based on the specified
membership functions, the outputs of these test
patterns are 01*, 02*, ..., and o,:, respectively.
We say that the difference between o; and o,»* is
the control error of the test pattern (x;,y;), where
i=1,2,...,and k.

As described in Section 2.3, we use four
tuples to represent a trapezoid-shaped
membership function. Suppose that M is a
membership function in our format. For the
convenience of presentation, we denote M' is
the first element, M? is the second element, M?
is the third element, and M* is the fourth
element, respectively. It is obvious that M' <
M =M’<M".

Our goal is to design an automatic synthesis
system to construct the membership functions
in appropriate places. The inputs are r fuzzy
inference rules and k test patterns with their
desired outputs. The cost function is to
minimize

k
Y .(0,-0,))
i=1

Subject to:

%
® |[(0;j—0;)<e,wherei=1,2, ..., and
k, and e is the specified error tolerance.
) A}SA%SA?SA?,Wherei

=1,2,...,andr.

) B% < Bi2 < B? < B? , Where i =
1,2, ...,andr.

® Cl <C? ¢} <t wherei=
1,2, ...,andr.

3.2 Motivation

Firstly, the system designer specify all the
membership functions, including A, By, Ci, A,,
B,, Cy, ..., A,, B,, and C,, by his intuition. Then,
based on the initial specified membership
functions, our automatic synthesis tool
iteratively improves the membership functions
by relocating them to appropriate places. As a
result, the control error can be minimized.

Let us use Figure 4 as an example. Suppose
that Figure 4 (a) is the fuzzy inference process
based on initial membership functions, i.e., Aj,
B, A,, and B,. The crisp output o " is obtained
as shown in Figure 4 (b). We find that o," is far
away from o,. To reduce the control error, we
relocate the places of membership functions B,
and A,. The modified fuzzy membership
functions and the fuzzy inference process are
shown in Figure 5 (a). The crisp output o, is
given in Figure 5 (b). We find that the new o,
is closer to 0.

A, Fuzz(y

) Fuzz(y)

oi 0,

(b)
Figure 4. An example. It is used to illustrate
the effects of antecedent membership functions
on fuzzy inference.

Our basic idea is to iteratively improve the
membership functions by simulated evolution.
For a fuzzy rule R,, it is characterized by three
membership functions A;, B;, and C;. Therefore,
we can use the three membership functions A;,
B;, and C; as the genes of the membership
functions R;. As a result, for a fuzzy system
with r fuzzy inference rules, each generation of
the simulated evolution has 3r genes. We define
that the variation of gene is the relocation of
membership function. Then, our problem is to
derive reasonable probabilities of variations
such that the best generation can be achieved
quickly.

H A, Fuzz(x)

HA Fuzz(y) Ay’

4’-7 0
0’ o,

(b)
Figure 5. The example shows the result of
fuzzy inference after the places of membership
functions B, and A, are relocated.

4. The Proposed Algorithm

Firstly, the system designer specifies the
trapezoid-shaped membership functions by his
intuition. In many cases, the membership
functions can be further improved. In the
following, we will present a simulated
evolution based algorithm to optimize the
membership functions. Our optimization goal is
to minimize the total control error under the
constraint of trapezoid shape and the specified
error tolerance of each test pattern. Figure 6
gives our simulated evolution algorithm.

The first generation of the simulated
evolution is the initial fuzzy system design. We
define the membership functions are the genes
of the evolution. A possible variation of a gene
is the relocation of membership function. The
simulated evolution algorithm will iterate many
generations until no better result can be
obtained within n generations, where n is the
parameter specified by the user. The best result
Gpest among all the generations is returned as
the output.

Procedure our_approach();
begin
count=0;
repeat
Gpew=find_a_new_generation();
if (COSt(GneW) < COSt(GCurrent)) then
begin
best— Gnew;
chrrent: new;
count=0;
end
else
begin
generate a random number X ;
if (x<e ") then

current: new;
else
count=count+1;
end
until (count > n);
end

Figure 6. The algorithm of our simulated
evolution approach

According to the current generation Gyrrens
the routine find a new generation produces a
new generation Gy, with some variations of
genes. Whenever the new generation causes
lower cost, the new generation is accepted.
Otherwise, the new generation is accepted with

a probability e ~%? | where is a fixed positive
parameter and ¢ is the number of iterations. If a
new generation is accepted, it becomes Geyrrent-
Otherwise, the Gyyene rfemains no change.

For the evolution of a new generation, each
gene may have a variation. Figure 7 gives the
pseudo code of the routine
find a new generation. There are two
important tasks in this routine. At first,
it should determine the probabilities of all the
possible variations. This step is very important
because a good criterion would assist faster
design convergence. Next, it varies each gene
based on the specified probabilities.

Procedure find a new_generation();
begin
build the probability table();
for i=1 to r do
begin
generate a random number x;
if (x > n) then
generate a variation(C;);
else
begin
generate a variation(A,);
generate a variation(B;);
end

end
end

Figure 7. The pseudo code used to find a new
generation.

During the inference of a fuzzy rule, both

the antecedent membership functions and
consequent membership function are the
factors to final crisp output. To reduce the
problem complexity, we prefer to fix one factor
and change another factor at one time. The
probability to change which factor is
determined by the probability m, which is
specified by the user.

Procedure generate a variation(M);
begin
for P =1to 4 do
begin
generate a random number x;
if (x < Prob(M(left))) then
Mp—min(]l;/IM,Mp -1);
else if (x<Prob(M(left))+Prob(M(right)))
MP= MP+1;
end
end

Figure 8. The pseudo code used to generate a
variation of a membership function M.

In our architecture, we use four corner
points to characterize a membership function.
Therefore, the variation of a gene also means
the variations of the four corner points. Figure
8 gives the pseudo code. Given a membership
function M, the routine generate a variation
tries to modify the corner points M', M% M,
and M*, respectively. We assume that each
corner point has the same probability
distribution of position variation. Let
Prob(M(left)) and Prob(M(right)) denote the
probabilities of left shift and right shift of the
membership function M, respectively.
Although probability distributions are the same,
individual random numbers are used to vary the
corner points, respectively. For each corner
point M®, our methodology is as the below.
Suppose that the condition of left shift happens,
M" minus 1 if M*' <M". On the other hand, if
the condition of right shift happens, the value
of corner point plus 1.

An accurate estimation of the probabilities
of wvariations would greatly speedup the
evolution. Given a test pattern, suppose that the
obtained crisp output o; is greater than the
desired output o;,, we have the following two
methods to improve the system:

(1) The first method is to shift left the
consequent membership function. As a
result, o; is decreased.

(2) The second method is to decrease the
weights of rules. For each rule R;, where j
=1, 2, ..., and r, the procedures are
claborated as the below. Firstly, we
determine which antecedent membership
function contributes to the weight w; by
comparing the matching degrees ajA and

o,”. Suppose that A, decide the weight w;,.
The method to decrease the weight w; is as
the below. If A; is left to the fuzzified input,
we should shift A, left. If A, is right to the
fuzzified input, we should shift A; right.
Figure 9 gives an example.

a A Fuzz(xi) # A Fuzz(x:)

x X

(a)
Fuzz(xi) Aj # Fuzz(xi) Aj

X X

(b)
Figure 9. (a) The condition of A; is left to the
fuzzified input; (b) the condition of A, is right
to the fuzzified input

Similarly, suppose that the obtained crisp
output 0,-* is less than the desired output o;, we
have the following two methods to improve the
system:

(1) The first method is to shift right the
consequent membership function. As a
result, o; is increased.

(2) The second method is to increase the
weights of rules. For each rule R;, where j
=1, 2, ..., and r, the procedures are
elaborated as the below. Firstly, we
determine which antecedent membership
function contributes to the weight w; by
comparing the matching degrees q,-A and
o,”. Suppose that A, decide the weight w;.
The method to increase the weight w; is as
the below. If A; is left to the fuzzified input,
we should shift A; right. If A; is right to the
fuzzified input, we should shift A, left.

For each membership function M, we
define two counters: M(left) and M(right). A
fuzzy rule is associated with six counters,
including Aj(left), A (right), B(left), B(right),
Ci(left), and Cjright). Whenever we want to
shift left membership function M, the counter
M(left) plus 1. On the other hand, whenever we
want to shift right membership function M, the
counter M(right) plus 1. Note that, initially, the
values of all the counters are zero.

The probabilities Prob(M(left)) and
Prob(M(right)) are defined as M(left)/k and
M(right)/k, respectively, where k is the number
of test patterns.

5. Experimental Results

The proposed simulated evolution
algorithm has been implemented in a C
program running on an Intel Pentium-III
personal computer. Two benchmarks are used
to test the effectiveness of the synthesis
methodology. The first test case is a truck
backer-upper control system, which is adopted
from [16]. The second test case is nonlinear
control example, which is adopted from [17].
Both experimental data shows that our
approach can achieve very good results. The
details of our experiments are elaborated as the
below.

5.1 Truck Backer-Upper Control
System

The truck backer-upper control system is
designed with the goal to park the truck in a
prescribed parking lot. Three variables x, y and
6 were defined to describe this system, where
the variable @ specifies the angle of the truck to
the horizontal while the coordinate pair (x,y)
specifies the position of the rear center of the
truck in the plane [0,100]x[0,100]. The details
including the mathematical relationships
among these variables are described in [16].
Table 1 shows the 5x7 rule table. Figure 10
shows the diagram of simulated truck and
Figure 11 gives the fuzzy membership

functions for x, ¢ and 6.

Front

Figure 10. Diagram of simulated truck.

“(x)l NB NM ZE PM PB

0 10 20 30 40 50 60 70 &0 90 100

we) t
1

NB NM NS ZEPSFM PEB

-90 45 0 45 90 135 180 115 2'."!]'= ¢

”(9)1“1413 NM NSZEPS PM B

0

-30 -0 -10 0 10 10 30 "

Figure 11. Fuzzy membership functions for x,
¢ and 0 with 5x7 rules.

Table 1. The 5 X 7 rule table of truck
backer-upper control system.
B NB | NM | ZE | PM | PB

NB PS | PM | PM | PB | PB
NM NS | PS | PM | PB | PB
NS NM | NS | PS | PM | PB
ZE NM | NM | ZE | PM | PM
PS NB | NM | NS | PS | PM
PM NB | NB | NM | NS | PS
PB NB | NB | NM | NM | NS

In this experiment, we try to implement the
fuzzy system using our fuzzy logic controller.
The membership function shown in Figure 11
cannot be used directly, because the size of
universe disclosure set of our fuzzy logic
controller is 64. Therefore, we need to map the

variables x, @ and 6 to the interval from 0 to 63.

As a result, the membership functions,
including antecedent membership functions and
consequent membership function, need
modifications.

Firstly, we derive 3600 test patterns and
their desired outputs. These test patterns are
used to train the simulated evolution algorithm.

The variables x and ¢ are associated with

antecedent membership functions A and B,
respectively, and the variable @ is associated
with consequent membership function C.
Initially, we assume that the membership
functions are uniformly distributed in the space
of universe disclosure set with triangular
shapes. Note that triangular shape is a special
case of trapezoid shape.

NB NM ZE PM PB
;
0.8
0.6
X
u)
0.2
00 1‘0 20 50 40 50 éO 7‘0 %
NBNM NS ZE PS PM PB
.
0.81
0.61
O
0.2f]
00 10 20 30 40 50 60 70 q)
NB NM NS ZE PS PM PB
0.8
0.6
ne) .
0.2
00 10 20 30 40 50 60 70 9

Figure 12. The membership functions

generated by our algorithm.

With 11787 generations in the evolution
the result is obtained. Figure 12 gives the
synthesized membership functions. We can see
that they cover all entire range. The average
control error is 1.88. Figure 13 shows the
original three-dimensional control surface
according to data pairs given in [16]. Using the
same test patterns and the synthesized
membership functions, a very similar control
surface can be obtained as shown in Figure 14.
Therefore, our approach achieves very good
results. This result is listed in the case 1 of
Table 2.

Matlab

Figure 13. The control surface of truck
backer-upper control system using the data
pairs given in [16].

Leaming

N - 40

. 50
70 60

Figure 14. The control surface generated by the
synthesized membership functions, which are
shown in Figure 12.

Another concern is that the effects of initial
membership functions in the simulated
evolution. Table 2 tabulates the experimental
results for six cases of different initial
membership functions. The first column gives
the initial average control error in average. The
last three columns presents the synthesized
results, including the final average control error,
the total number of generations, and the CPU

time. Experimental data shows that our
approach can converge to a small value no
matter the given initial membership functions.

Table 2. Our experimental results for the
example of truck backer-upper control system.

Tnitial Results

Case| average aFi?;I Total |CPU run
control c\(/)(; tri? number of | time

error error _|@enerations| (second)
1 4.87 1.88 11787 9092
2 5.27 1.94 19460 12418
3 5.67 1.82 4246 2686
4 5.44 1.99 16539 10983
5 5.57 1.92 4662 3596
6 5.74 1.92 11852 7530

Performance

w
=1

N
o

N
=]

o

o

The square of average control error
(%]

pRS]

05 1 15 2

Generation x10*
Figure 15. Average cost value of simulated
evolution algorithm at each generation of truck

backer-upper control system.

5.2 Nonlinear Control

The nonlinear example to be controlled is
represented by

O = (2x+4y™+0.1) (3)

The system has two inputs and one output.
There are 441 pairs of source input-output
values collected as the test patterns. In order to
let the test patterns to fit our presented fuzzy
logic controller, we map variables x, y and o to
the initial from 0 to 63. With the 441 training
test patterns and initial membership functions,
our algorithm generates appropriated control
rules. After 12717 generations evolute, the final
result is obtained. The control surface
generated by the synthesized membership
functions is shown in Figure 16, which is
almost the same as the control surface given in
[17]. This result is listed in the case 1 of Table
3. Note that the control errors also exist in the

fuzzy system of [17]. The control errors are
caused by hardware limitations, e.g., the
precision of floating points.

S~ <7 20

Figure 16. The control surface generated by the
synthesized membership functions.

Table 3 tabulates the experimental results
for six different cases of initial membership
functions. The first column gives the initial
average control error in average. The last three
columns presents the synthesized results,
including the final average control error, the
total number of generations, and the CPU time.
Experimental data shows that our approach can
converge to a small value no matter the given
initial membership functions.

Table 3. The experimental results for the
example of nonlinear control.

Tnitial Results

Case| average a\lj:rl:l . Total | CPU run
control contr(%l number of | time

error error generations| (second)
1 3.91 1.94 12717 1862
2 3.62 1.97 11413 1679
3 2.42 1.72 19889 2926
4 2.28 1.70 8731 1285
5 3.54 1.90 15629 2204
6 4.07 1.95 17515 2470

6. Conclusions

In this paper, we presented an automatic
synthesis system for the design of
trapezoid-shaped membership functions, which
are based on the format presented on [1,2].
Based on some test patterns and their desired
outputs, our approach is to iteratively improve
the membership functions by simulated
evolution. The optimization goal is to minimize
the total control error. Experimental data shows
that the proposed approach achieved very good

result and thus is well suitable for the design of
membership functions of fuzzy system that
uses the fuzzy logic controller presented in [1].

References

[1] S.H. Huang and J.Y. Lai, “A High-Speed
VLSI Fuzzy Logic Controller with Pipeline
Architecture”, accepted by 10th IEEE
International Conference on Fuzzy Systems,
2001.

[2] S.H. Huang and J.Y. Lai, “An Efficient
Membership Function Representation for
High-Resolution Fuzzy Systems”, in the
Proc. of the Workshop on the 21st Century
of Digital Life and Internet Technologies
(CD-ROM), 2001.

[3] G. Ascia, V. Catania, D. Panno, F. Ficili,
and S. Palazzo, “A VLSI Fuzzy Expert
System for Real-Time Traffic Control in
ATM Networks”, IEEE Trans. on Fuzzy
Systems, vol. 5, pp. 20--31, 1997.

[4]J. L. Chang, Y. Y. Chen, F. R. Hang, “Fuzzy
Processing on GPS Data to Improve the
Position Accuracy”, in the Proc. of
Intelligent Systems and Information Fuzzy
System Symposium, pp. 557--562, 1996.

[5] Simutis, R.,” Fuzzy logic based stock
trading system”, Proc. of the
IEEE/TAFE/INFORMS Conference on
Computational Intelligence for Financial
Engineering, pp. 19--21, 2000.

[6] S. Yasunobu and S. Miyamoto, “Automatic
Train Operation by Predictive Fuzzy
Control”, in Industrial Application of Fuzzy
Control, M. Sugeno, Ed. Amsterdam, The
Netherlands: North-Holland, pp. 1--18,
1985.

[7] D. Sinha, P. Sinha, E. R. Dougherty and S.
Batmen, “Design and Analysis on Fuzzy
Morphological Algorithms for Image
Processing”, IEEE Trans. on Fuzzy
Systems, pp. 570--584, 1997.

[8] Barra, V. and Boire, J.Y., “Automatic
segmentation of subcortical brain structures
in MR images using information fusion”,
IEEE Trans. on Medical Imaging, Vol. 20,
pp. 549--558, 2001.

[9] L. I. Larkin, “A Fuzzy Logic Controller for
Aircraft Flight Control”, Industrial
Applications of Fuzzy Control, M. Sugeno.
Ed. Amsterdam: North Holland, pp.
87--103, 1985.

[10] Shouping Guan, Han-Xiong Li and Tso,
S.K, “Multivariable Fuzzy Supervisory
Control for The Laminar Cooling Process
of Hot Rolled Slab”, IEEE Trans. on
Control Systems Technology, Vol. 9, pp.
348--356, 2001.

[11] Kuang-Yow Lian, Chian-Song Chiu,
Tung-Sheng Chiang, and Peter Liu,

10

“LMI-Based Fuzzy Chaotic
Synchronization and Communications”,
IEEE Trans. on Fuzzy Systems, Vol. 9, No.
4, pp. 539--553, 2001.

[12] M. Togai and H. Watanabe, “Expert
System on a Chip: An Engine for
Real-Time Approximate Reasoning”, IEEE
Expert Magazine, vol. 1, pp. 55-62, 1986.

[13] H. Watanabe, W.D. Dettloff, and K.E.
Yount, “A VLSI Fuzzy Logic Controller
with Reconfigurable, Cascade
Architecture”, IEEE J. Solid-State Circuits,
vol. 25, pp. 376--381, 1990.

[14] T.C. Chiueh, “Optimization of Fuzzy
Logic Inference Architecture”, Computer,
pp. 67--71, 1992.

[15] L.A. Zadeh, “Fuzzy Sets”, Inf. Control,
vol. 8, pp. 338--351, 1965.

[16] Bin-Da Liu, Chuen-Yau Chen and Ju-Ying
Tsao, “Design of Adaptive Fuzzy Logic
Controller Based on Linguistic-Hedge
Concepts and Genetic Algorithms”, IEEE
Trans. on System, man and cybernetics, vol.
31, No. 1, pp. 32--53, Feb. 2001.

[17] Jer Min Jou, Pei-Yin Chen and Sheng-Fu

Yang, “An Adaptive Fuzzy Logic
Controller: It’s VLSI Architecture and
Application”, IEEE Trans. on VLSI

Systems, Vol. 8, No. 1, pp. 52--60, 2000.

