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ABSTRACT 
With the popularity of the Internet and the 

flexibility of MPEG-4 encoding, transporting 
MPEG-4 video in the Internet will be an 
important component of multimedia applications 
in the near future. Unlike other applications, 
video applications typically have limitations in 
packet delay and packet loss, which cannot be 
guaranteed by the current Internet. It is an 
important issue to design a congestion control 
mechanism of MPEG-4 delivery system that can 
minimize delay and packet loss to maximize the 
perceptual quality of service. 

We present a congestion control mechanism 
based on the client-server model. The video 
server adjusts the data output rate depending on 
the perceived network feedback from the video 
client to avoid delay and loss. The client keeps 
track of the video data received to estimate the 
future output rate as the feedback for the server. 
This mechanism is thus referred to as rate 
control mechanism based on client feedback. It 
can rapidly adjust the output data rate close to 
the bandwidth available and utilize network 
resources efficiently. The experimental results 
obtained via simulation shows that the proposed 
system is satisfactory. 
 

1. INTRODUCTION 
With the advance of computer technology and 

digital storage, the potential of digital video is 
growing rapidly. Many people watch a video 
through digital devices instead of analog ones. In 
recent years, the appearance of VOD (video on 
demand) technologies provides people a 
convenient way to watch a video at any time and 
in any place. 

With the flexibility and efficiency provided by 
coding a new form of visual data called visual 
object (VO), it is foreseen that MPEG-4 [7] will 
be capable of addressing interactive 
content-based video services, as well as 
conventional storage and transmission of video. 

Due to the growth of popularity and the 
progress of technology of the Internet, it is 
possible to watch a video through the network. 
Like many multimedia applications, to transport 
digital video data over the Internet needs much 
bandwidth and has requirement in the limitations 

of packet delay and loss, which cannot be 
guaranteed by the current Internet. Furthermore, 
the traffic load condition over the Internet varies 
drastically over time, which is detrimental to 
video transmission. It is an important issue to 
design an efficient video delivery system that 
can maximize users' perceived quality of service 
(QoS) while achieving high resource utilization 
in the Internet. The rate control mechanism is an 
important component to help the system achieve 
these goals. 

In recent years, some video delivery systems 
and rate control mechanisms are proposed. For 
example, the additive increase and multiplicative 
decrease (AIMD) [5] and the multiplicative 
increase and multiplicative decrease (MIMD) 
[12] algorithms are widely used by many 
systems. However, they have a major 
disadvantage that the increment of the server's 
rate cannot be decreased when the rate getting 
close to the link bandwidth available, and that 
incurs oscillation and more packet loss. Another 
mechanism called linear increase and 
multiplicative decrease with history (LIMD/H) 
algorithm [13] can achieve smooth variations of 
server's rate when the available bandwidth is 
invariant, but it cannot increase the server's rate 
adaptively when the rate is far below the 
available link bandwidth. 

In this paper, we present a rate control 
mechanism applied on transporting MPEG-4 
video data over the Internet. This mechanism is 
based on client feedback that adjusts data output 
rate of the server depending on the perceived 
network status, and the client keeps track of the 
data received to dictate the future output rate. In 
the experiment we will prove that it can recover 
the server's rate adaptively when the available 
bandwidth is still large, and smooth the 
variations of the rate when the rate is close to the 
link bandwidth. 
 

2. BACKGROUND 
2.1 Concepts of Internet Video Streaming 

The major difference between Internet 
streaming video and local storage video is that 
people are able to watch the video while 
downloading is still in progress. In other words, 
people can watch the video at the time when 



they want to watch without waiting for the 
completion of downloading, and there is no need 
preparing storage device with enough capacity in 
the client. 

The current Internet is a best effort service 
network and interconnects sites with widely 
varying bandwidth capabilities. It is simple to 
reconnect and to retransmit the lost data when 
congestion or disconnection occurs during 
downloading a discrete file. However, it is not 
desirable when downloading continuous data. 
That is, display will be interrupted if 
reconnection or retransmission is to be 
proceeded. The most challenging issue is how to 
keep the data transmission continuous and to 
achieve the best perceptual quality when 
continuous media data is transmitted over the 
Internet. 

To avoid the influences of congestion, the 
server has to control the data output rate 
according to the perceived network status. 
Packet loss or disconnection may occur if the 
server dose not lower its output rate during the 
congestion. A video server may serve more than 
one client, and buffer has to be reserved in each 
connection to smooth the data output rate. Fig. 1 
shows the concepts of Internet video streaming. 
 

 
Fig. 1 Concepts of Internet video streaming 

 
To minimize the influence of packet delay or 

disorder, buffer has to be reserved in the client, 
too. Besides, the client has to monitor network 
conditions to provide some information for the 
server. Although the server has controlled the 
data output rate to prevent packet loss, packet 
loss is unavoidable in the Internet and may have 
a significant impact on perceptual quality. The 
client has to deal with the incomplete data when 
packet loss occurs: for instance, to discard or to 
repair the incomplete video frames. 
2.2 Overview of the MPEG-4 Encoding 

MPEG-4 is an ISO/IEC standard developed 
by MPEG (Moving Picture Experts Group), the 
committee that also developed the standards 
MPEG-1 and MPEG-2. These standards made 
interactive video on CD-ROM and Digital 
Television possible [1]. 

MPEG-4 is built on the proven success of 
three fields: 

• Digital television 
• Interactive graphics applications (synthetic 

content) 
• Interactive multimedia (World Wide Web, 

distribution of and access to content) 
MPEG-4 provides the standardized 
technological elements enabling the integration 
of the production, distribution and content access 
paradigms of the above three fields [1]. 

The most important goal of both the MPEG-1 
and MPEG-2 standards was to make the storage 
and transmission of digital audiovisual material 
more efficient through compression techniques. 
Because the video encoding of the MPEG-1 and 
MPEG-2 is frame-based, to interact with the 
frame-based video content is limited to the video 
frame level [2]. 

MPEG-4 includes the concepts of video object 
(VO) and video object plane (VOP). A video 
object in a scene is an entity that a user may 
access and manipulate. The instances of video 
objects at a given time are called video object 
planes (VOPs) [2]. Those VOPs can be 
separately encoded, stored, or transmitted. The 
MPEG-4 based multimedia systems can 
reassemble, delete, or replace some VOPs of the 
video stream as necessary for providing 
human-machine interaction. 

In Fig. 2, the scene consists of one 
background and two foreground objects, which 
can be encoded separately, and the receiver can 
decode any single object and manipulate it at 
presentation time. For example, one foreground 
object can be mixed with other background 
object to make a new scene. 

 

 
Fig. 2 Content-based image coding [4] 

 
MPEG-4 video encoding supports all 

functionalities already in MPEG-1 and MPEG-2, 
in particular the compression efficiency. Fig. 3 
shows a detailed block diagram of the MPEG-4 
video encoder. This is a conventional hybrid 
DCT structure, but augmented by further blocks. 
There is a block for contour coding and a 
number of prediction modes are also supported: 
• conventional motion compensated and 

block-based (8×8 and 16×16 blocks) 
prediction 

• global motion compensation using affine 
motion parameters 

• static and dynamic sprite prediction for the 



background 
 

 
Fig. 3 Block diagram of the MPEG-4 video 
encoder [3] 
 

The improved compression efficiency is 
mainly achieved by the following measures: 
• improved slice layer and macroblock layer 

syntax 
• switched 8×8 and 16×16 motion 

compression, which allows for more precise 
prediction 

• block-overlapping motion compensation, 
which reduces block artifacts at low data 
rates 

• global motion compensation for scenes with 
global camera motion 

• post-filtering avoid ringing and block 
artifacts 

Although increased compression efficiency is 
not the main target of the MPEG-4 
standardization, MPEG-4 will offer efficient 
coding at bit rates between 5 kbit/s and 15 
Mbit/s or higher, so that a significantly larger 
range than that of MPEG-1 and MPEG-2 will be 
covered. At low data rates between 5 kbit/s and 
100 kbit/s the quality will be better than that of 
H.263, while at high data ranges, between 1 
Mbit/s and 15 Mbit/s, a quality better than that 
of MPEG-2 is targeted [3]. 
2.3 RTP and RTCP Protocols (RFC 1889) 

Although TCP protocol gives reliability on 
transmission of data over the Internet, the delays 
of retransmission is not acceptable for MPEG-4 
video applications. It is better to employ UDP 
protocol as the transport protocol for the 
transmission of MPEG-4 video data. Since UDP 
does not provide reliability that TCP does, a 
layer to detect packet loss need to be added [6]. 

RTP (real-time transport protocol) is an 
Internet standard protocol, which provides 
end-to-end delivery services for data with 
real-time characteristics, such as interactive 
audio and video. RTCP (RTP control protocol) 
monitors the quality of service and to convey 
information about the participants in an on-going 
session [6]. 

RTP provides some basic functionalities 
which are common to almost all real-time 
applications. A key feature supported by RTP is 
the packet sequence number, which can be used 
to detect packet loss and to reorder packets at the 
receiver. RTCP provides QoS feedback through 
the use of sender reports (SR) and receiver 
reports (RR) at the source and destination [5]. 
2.4 An Architecture for Transporting 
MPEG-4 Video 

Fig. 4 shows the end-to-end architecture for 
transporting MPEG-4 video over the Internet, 
and it includes stages as the following: 
• raw bit-stream is encoded by the MPEG-4 

encoder 
• the compressed video bit-stream is 

packetized and then passed through the 
RTP/UDP/IP module before entering the 
Internet 

For packets that are successfully delivered to the 
client, the following are done by the client: 
• packets first pass through the RTP/UDP/IP 

module 
• the compressed bit-stream is decoded by the 

MPEG-4 decoder 
A QoS monitor is kept at the client side to detect 
network congestion status based on the behavior 
of the arriving packets [5]. The information of 
network congestion status is sent to the server by 
the feedback control protocol. Based on this 
information, the server estimates the available 
network bandwidth and change the output rate of 
the MPEG-4 video stream. 
 

 
Fig. 4 An end-to-end architecture for 
transporting MPEG-4 video [5] 
 

Fig. 5 shows the protocol stack for 
transporting MPEG-4 video. The visual 
information is compressed at the compression 
layer, and generates elemenary streams (ESs), 
which contain the coded representation of the 
VOs. The ESs are packetized at the SL 
(synchronization layer), the SL-packetized 
streams include information about timing and 
synchronization, as well as fragmentation and 
random access [5]. Streams are multiplexed into 
a FlexMux stream at the TransMux Layer, which 
is then passed through the RTP, UDP, and IP 



layers. The resulting packets are sent into the 
Internet. At the client side, the video stream is 
processed in the reverse way. 
 

 
Fig. 5 Data format in MPEG-4 in each 
processing layer at an end system [5] 
 
2.5 Rate Control 

Internet video applications, which differ from 
other applications, typically have the limitations 
of packet delay and loss. The Internet today 
support best-effort service only, and there is no 
bandwidth-reservation mechanism or other QoS 
guarantees. Therefore, a mechanism must be in 
place for MPEG-4 transporting system to sense 
network conditions, so that the server can adjust 
the appropriate output rate [5]. 

Ideally, it is better to perform congestion 
indication and feedback by switches or routers of 
the Internet. Under such an environment, it is 
possible to design powerful feedback control 
mechanism that the server can calculate the 
accurate available bandwidth. But in the current 
Internet environment, switches or routers do not 
report information about network conditions. 
Under such an environment, we treat the Internet 
as a black box where packet loss and delay are 
beyond our control. The feedback control 
mechanism will solely be placed on the end 
points (server and client) without any additional 
requirements on IP switches or routers [5]. 

At the beginning, the server gradually 
increases data output rate and probe available 
network bandwidth. The data output rate will 
overshoot the available bandwidth and 
congestion may occur. The client monitors 
network condition all the time and sends 
information back to the server. Once the server 
receives the feedback, it continually increases or 
decreases its output rate. In order to match the 

TCP manner, normally the output rate is reduced 
to 1/2. 

At first, we describe the source-based rate 
control based on additive increase and 
multiplicative decrease (AIMD) algorithm [5]. 
The AIMD rate control algorithm is shown as 
follows: 
 
if (p ≦ Pth) 
 r := min{(r + AIR), MaxR} 
else 
 r := max{(α × r), MinR} , 
 
where p is the packet loss ratio; Pth is the 
threshold for the packet loss ratio; r is the 
sending rate at the source; AIR is the additive 
increase rate; MaxR and MinR are the maximum 
rate and the minimum rate of the sender, 
respectively; and α is the multiplicative decrease 
factor. 

Packet loss ratio p is measured by the receiver 
and conveyed back to the sender. An example of 
source rate behavior under the AIMD rate 
control is illustrated in Fig. 6. 
 

 
Fig. 6 Source rate behavior under the AIMD rate 
control [11] 
 

Another source-based rate control mechanism 
is the multiplicative increase and multiplicative 
decrease (MIMD) algorithm [12]. The MIMD 
rate control algorithm is shown as follows: 
 
if (med_loss > tol_loss) 
 max_rate = max(max_rate / 2, min_rate); 
else 
 max_rate = gain × max_rate; 
 
During a control action, the control algorithm 
adjusts the maximum output rate of the coder 
max_rate so that the median loss rate stays 
below a tolerable loss rate. The median loss rate 
is denoted by med_loss, and the tolerable loss 
rate by med_loss. Specially, max_rate is 
decreased by a factor of two if the median loss 
rate is larger than tol_loss. Otherwise, it is 
increased by a fixed fraction of its current value. 
An example of source rate behavior under the 
MIMD rate control is illustrated in Fig. 7, where 



we set gain = 1.02. 
 

 
Fig. 7 Source rate behavior under the MIMD 
rate control 
 

The source rate behaviors under the AIMD 
and MIMD algorithms have a major 
disadvantage: it cannot decrease the increment 
of the server’s rate when the rate gets close to 
the link bandwidth. That is, wide oscillation and 
more packet losses will occur due to this 
characteristic. 

The third source-based rate control 
mechanism is the linear increase and 
multiplicative decrease with history (LIMD/H) 
algorithm [13]. The LIMD algorithm is the same 
with the AIMD algorithm. The LIMD/H rate 
control algorithm is shown as follows: 
 
if (f = 0) 
 r ← r + α, and hi ← 1. 
else if (f > 0) 
 r ← r × (1 – β × hi+1), and hi+1 ← 2hi. , 
 
where r denotes the sending rate, f the loss 
fraction, α the linear increase constant, β the 
multiplicative decrease constant, h the history 
parameter, and i the time step. The h variable, 
initially set to 1, is doubled if there is a packet 
loss in a time step, and reset to 1 if there is no 
packet loss. 

In case of LIMD/H, β is set to be a small 
value (between 0.1 and 0.2) in order to achieve 
smooth variations of server’s rate when the 
available bandwidth is invariant. LIMD/H thus 
throttles its transmission rate gently when there 
was no packet loss in the previous time step, and 
progressively more aggressively when previous 
time step has also experienced packet loss. An 
example of source rate behavior under the 
LIMD/H rate control is illustrated in Fig. 8. 

In order to design the algorithm to be 
TCP-friendly, α needs to be adjusted by the 
following rule: 

β
βα
−

=
2
3  The rule is proved in 

[13], and yields [α, β] pairs of [0.15, 0.1], [0.33, 
0.2], [0.53, 0.3], [1, 0.5], etc. 

 

 
Fig. 8 Source rate behavior under the LIMD/H 
rate control [13] 
 

Although the LIMD/H achieves smooth 
variations of server’s rate when the available 
bandwidth is invariant, it cannot increase the 
server’s rate adaptively when the rate is far 
below the link bandwidth. 

In order to employ a rate control mechanism 
that can increase the rate adaptively when the 
unused bandwidth is large, and can smooth the 
variations of rate when the rate getting close to 
the link bandwidth, we present a rate control 
mechanism based on client feedback applied on 
transmission of MPEG-4 video. The detailed 
mechanism will be described in Chapter 3. 
 

3. SYSTEM ARCHITECTURE 
3.1 Overview 

In order to proceed out experiments on rate 
control mechanism based on client feedback, we 
have to build an end-to-end MPEG-4 delivery 
system that transports encoded MPEG-4 video 
data over the Internet. The system mainly 
consists of two parts: server and client, and 
follows the architecture described in Section 2.4. 
The system architecture will be described in 
Section 3.1.1 and 3.1.2. 
3.1.1 Server 

Fig. 9 shows the block diagram of the server. 
The YUV raw video data is input into the 
MPEG-4 encoder, MPEG-4 compressed data is 
generated, and then the compressed data is 
stored in the storage devices. We use Microsoft 
Optimization Model Software 3.0-010315 to be 
our MPEG-4 encoder, which is the reference 
software of the MPEG-4 standardization process 
[8]. In the output rate control module, some 
video frames are discarded according to the 
value of output rate limit, and the remaining 
frames are packetized into several packets. 
Finally, data packets pass through the network 
module and to be sent into the Internet. 

 



 
Fig. 9 System architecture of the server in video 
streaming 
 

 
Fig. 10 Output rate control module in video 
streaming 
 

 
Fig. 11 Network module of the server 

 
Fig. 10 shows the block diagram of the output 

rate control module. Frame discarding module 
periodically keeps the value of remaining output 
size available in a time interval and determines 
whether the next coming frame is to be 
discarded. If the total available output size in a 
time interval is not enough for all of the frames, 
some frames have to be discarded. The order of 
frame discarding is according to the importance 
of I-frame, P-frame, and B-frame. The remaining 
frames are input into buffer and are sent to the 
client. 

Fig. 11 shows the network module of the 
server. The output rate control module generates 
a packetized stream, which is turned into RTP 
packets. On the other hand, the information from 
feedback control module is transferred to the 
RTCP generator. The resulting RTCP and RTP 
packets go to the UDP/IP layer for transport over 
the Internet. 

3.1.2 Client 
Fig. 12 shows the block diagram of a client. It 

is similar to the one described in Section 2.4. 
When the client receives a packet, the packet is 
passed through the network module, and the 
compressed MPEG-4 video data is input into the 
buffer of the MPEG-4 decoder. Finally, data is 
decoded and is displayed by the display device. 
Simultaneously, the QoS monitor keeps track of 
the congestion status of the network according to 
the received packets. Information about previous 
network condition is sent to the server by the 
feedback control module. 
 

 
Fig. 12 System architecture of the client 

 
Fig. 13 shows the network module of the 

client. The received IP packets are first 
unpacked by UDP/IP layer, and are dispatched 
by filter to RTP and RTCP analyzers. RTP 
packets are unpacked by RTP analyzer and put 
into the buffer of MPEG-4 decoder. At the same 
time, QoS monitor detects and records the 
packet loss and data-bits received for 
information used to be feedback to the server. 
On the other hand, the RTCP analyzer unpacks 
RTCP packets and sends the information to the 
feedback control module. 
 

 
Fig. 13 Network module of the client 

 
3.2 Packetization 

In order to achieve the optimal transport of 
MPEG-4 video over the Internet, an appropriate 



packetization algorithm has to be employed. It is 
clear that the use of large packet size will reduce 
the total number of generated packets and 
overhead. On the other hand, the packet size 
cannot be larger than the path MTU (maximum 
transmission unit). Path MTU is defined to be 
the minimum of the MTUs along all the 
traversing links from the source to the 
destination. This is because any packet larger 
than path MTU will result in IP fragmentation, 
which brings overhead for each fragmented 
packet. To make things worse, loss of one 
fragmented packet will corrupt other fragmented 
packets within the original packet. Furthermore, 
for MPEG-4 video, it is also not advisable to 
packetize the data that contain information 
across two VOPs. With these considerations, the 
packet size is chosen to be the minimum of the 
current VOP size and the path MTU [14]. 

The packetization algorithm we use in this 
experiment is shown as follows: 
 
while (there is encoded data to be packetized) { 

search for next VOP_start_code and 
BitCount counts the number of bits; 
if ((next VOP_start_code is found) and 
(BitCount – length of VOP_start_code ≦ 
MaxPL)) { 

  /* Packetize by VOP boundary */ 
packetize the bits before next 
VOP_start_code; 

 } 
else if (BitCount – length of 
VOP_start_code > MaxPL) { 

Packetize as many bits as possible 
without exceeding MaxPL and 
without crossing into next VOP; 

 } 
 else { 

/* Next VOP_start_code is not found 
*/ 

  Packetize the remaining data; 
 } 
} 
 
BitCount is a counter that registers the number 
of bits read for current packetization process. 
MaxPL is the maximum payload length and is 
equals to (path MTU – length of headers). 
VOP_start_code is a predefined code at the 
beginning of a VOP and is regarded as the 
boundary between two consecutive VOPs. 

If a complete VOP fits into a packet, then 
packetize such VOP with a single packet. 
Otherwise, as many bits as possible will be 
packetized into a packet without crossing over 
into the next VOP even if space is available in 
the last packet for the current VOP, i.e. data from 
consecutive VOPs are never put into the same 
packet. This packetization algorithm achieves 

robustness to packet loss [14]. 
3.3 Rate Control Mechanism 

In every time interval, the client keeps track of 
the estimated transmit rate S  and then 
compares it with the client’s measurement of the 
actual receiving rate O  to dictate the future 

transmission rate .  is sent to the 
server as the data output rate in the next time 
interval [9]. 

k
ˆ

k
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ˆ
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If there is no congestion in the network, the 
server gradually increases the transmission rate 
until the packet loss ratio exceeds the threshold. 
When congestion occurs, the client goes into the 
congestion mode and sends feedback to the 
server to decrease the transmission rate. The 
mechanism is described as follows: 

 
)(ˆˆ

1 kSS kk µε+=+
 

βαε )ˆ()(
k

k

S
Ok ×=  if packet loss is under the 

threshold 
kSk ˆ)( ×−= γε  if packet loss exceeds the 

threshold , 
 
where k denotes a time step index, µ is the 
adaptation factor and ε(k) is the error determined 
based on the transmission rate, the receiving rate 
and packet loss. 

In case the packet loss is under the threshold, 
α and β determine the increasing rate. When β is 
larger, the server recovers the transmission rate 
faster after decreasing the transmission rate due 
to congestion. Additionally, the proposed 
mechanism minimizes the number of packet loss 
because it smoothly decreases the increment of 
transmission rate to near the link bandwidth. An 
example of source rate behavior is illustrated in 
Fig. 14. 
 

 
Fig. 14 Source rate behavior under the proposed 
rate control mechanism 
 

In case the packet loss exceeds the threshold, γ 
determines the decrement of server’s output rate. 
We use γ = 0.5 because it is matched with TCP 
mechanism. It decreases the transmission rate at 



one half as soon as it detects congestion so that it 
behaves TCP friendly manner. That is, it shares 
the available bandwidth fairly with TCP 
mechanism. All three factors are related to each 
other, especially α and γ are strongly related to 
determine the TCP friendly manner. 
 
4. EXPERIMENTS AND RESULTS 

4.1 Simulation Environment 
4.1.1 Data Source 

The source data we use is the standard raw 
video sequence “Bream” in CIF format for the 
MPEG-4 video encoder. The encoder performs 
MPEG-4 coding described in Section 2.2. The 
encoded bit-stream is packetized with the 
packetization algorithm described in Section 3.2 
as well as RTP/UDP/IP protocol before being 
sent to the network. Packets may be dropped due 
to congestion in the network. For arriving 
packets, the client extracts the packet content to 
form the bit-stream for the MPEG-4 decoder. 
For a lost packet, the VOP associated with the 
lost packet will be discarded and a previous 
VOP will be copied over. The source encoder 
encodes an Intra-VOP every 15 frames. The 
source data is divided into two video objects, 
and these two objects are encoded into two 
MPEG-4 bit-streams. VO1 is a foreground 
object which is a bream swimming, and VO2 is 
a background object that pans from right to left 
slowly. Table 1 shows the Information of source 
data. 
 

Table 1 Information of source data 
 VO1 VO2 
 

  

Resolution 352×288 pixels 352×288 pixels 
Frame rate 30 frames/s 30 frames/s 
I-VOP Every 15 frames Every 15 frames 
P-VOP 4 between 2 

I-frames 
4 between 2 
I-frames 

B-VOP 2 between 2 
P-frames 

2 between 2 
P-frames 

Size of 
I-frame 

Max: 6511 bytes 
Min: 2482 bytes 
Avg.: 5633 bytes 

Max: 2527 bytes 
Min: 1963 bytes 
Avg.: 2213 bytes 

Size of 
P-frame 

Max: 3082 bytes 
Min: 1169 bytes 
Avg.: 1698 bytes 

Max: 447 bytes 
Min: 265 bytes 
Avg.: 337 bytes 

Size of 
B-frame 

Max: 2575 bytes 
Min: 791 bytes 
Avg.: 1290 bytes 

Max: 1149 bytes 
Min: 315 bytes 
Avg.: 530 bytes 

 

4.1.2 Network Topology 
We employ the standard peer-to-peer 

benchmark network configuration as shown in 
Fig. 15. Such a simple network configuration 
captures the fundamental property of a transport 
path within the Internet cloud since there is only 
one bottleneck link between the server and the 
client. In the configuration of routers, buffer size 
is 10 Kbytes and buffer management is tail 
dropping. In this experiment, we set the 
maximum available bandwidth of the bottleneck 
link (link 12) to 60 Kbytes/s. 

 

 
Fig. 15 A peer-to-peer network 

 
In this experiment we employ the AIMD 

algorithm described in Section 2.5 as the 
comparison. Table 2 shows the simulation 
parameters of the two algorithms. Ideally, the 
packet size is defined to be the minimum of the 
MTUs (maximum transit unit) along all the 
traversing links from the source to the 
destination. In the case when path MTU 
information is not available, the default MTU, 
i.e., 576 bytes, will be used [5]. 
 

Table 2 Simulation parameters 
 AIMD 

algorithm 
The proposed 
algorithm 

Max packet 
size 

576 bytes 576 bytes 

Initial rate 20 KBps 20 KBps 
Additive 
increase rate 

0.5 KBps Dynamic 

Decreasing 
factor 

0.5 0.5 

Sender 
report 

Every 75 
packets sent 

Every 75 
packets sent 

Receiver 
report 

Every 25 
packets 
received 

Every 25 
packets 
received 

Max 
bandwidth 

60 KBps 60 KBps 

Threshold of 
packet loss 

5 % 5 % 

Buffer size 256 Kbytes 256 Kbytes 
 
4.1.3 Frame Discarding 

During the transmission of MPEG-4 
bit-stream over the Internet, if the total available 
output size in a time interval is not enough to 
accommodate all of the frames, some frames 
have to be discarded. The order of frame 
discarding is listed as follows: 
• B-frame of VO2 
• P-frame of VO2 



• B-frame of VO1 
• P-frame of VO1 
In this experiment we do not discard I-frames of 
VO1 and VO2 to ensure the minimum limit of 
display quality. 
4.2 Experimental Results 
4.2.1 Data Output Rate 

Fig. 16 shows the source rate of the two 
algorithms during the 120 seconds simulation 
run. The proposed algorithm increases the 
server’s rate faster when the current rate is not 
close to the link bandwidth, and the rate 
increases smoothly when it getting close to the 
link bandwidth. The proposed algorithm makes 
the server gains more bandwidth utilization due 
to these characteristics. 

 

 
Fig. 16 Source rate of the two algorithms 

 
4.2.2 Frame Rate 

Fig. 17 shows the frame rate of VO1 during 
the 120 seconds simulation run. When we 
employ the proposed algorithm, the percentage 
of time that frame rate greater than or equal to 
20 frames/sec is 86.67 %, and there is only 48.75 
% when we employ the AIMD algorithm. 
Because of the proposed algorithm makes the 
server gains higher output rate, the perceptual 
quality of VO1 is better then that of the AIMD 
algorithm. 

Fig. 18 shows the frame rate of VO2 during 
the 120 seconds simulation run. In this 
experiment B-frames and P-frames of VO2 are 
the first two chosen to be discarded when the 
link bandwidth is no longer enough, and so the 
VO2 can only increase its frame rate when the 
VO1 reaches the maximum frame rate. Because 
the link bandwidth is 60 Kbyte/s and is not 
enough for all frames of VO1 and VO2, the 
maximum frame rate that VO2 can reach is only 
18 frames/s. When we employ the proposed 
algorithm, the percentage of time that frame rate 
greater than or equal to 10 frames/sec is 34.17 %, 
and it is only 10.00 % when we employ the 
AIMD algorithm. 

 

 
Fig. 17 Frame rate of VO1 

 

 
Fig. 18 Frame rate of VO2 

 
5. CONCLUSIONS AND FUTURE 

WORK 
5.1 Conclusion 

In this paper, we present a rate control 
mechanism based on client feedback applied on 
transmission of MPEG-4 video over the Internet. 
The client monitors the network congestion 
status when receiving packets from the server, 
and it dictates the future output rate based on 
previous network condition, and then sends the 
congestion information back to the server by 
feedback messages. 

The proposed mechanism makes the server 
recover the transmission rate faster after 
decreasing the transmission rate due to 
congestion. Additionally, it minimizes the 
number of packet loss because it smoothly 
decreases the increment of transmission rate to 
near the link bandwidth. 

We build a MPEG-4 delivery system to 
transmit MPEG-4 bit-stream to the client over 
the Internet, and employ the simple AIMD 
algorithm as comparison. If the output rate is not 
enough for all of the frames, the system discards 
some frames until the size of frames is close to 
the output rate. 

Frame rate has a great influence on the 
perceptual quality of display. We use a video that 
has two video objects as the sample data. In our 
experiments, the proposed mechanism makes the 
server gain higher output rate, and the server can 
output more video frames to the client. We 



achieve a great progress in the frame rate of the 
foreground object, and the frame rate of the 
background is satisfying. 
5.2 Future Work 

In the future, there are still possible 
improvement in the implementation and 
extension of our system and experiments: 
• In the encoding stage, we can employ the 

layer enhancement coding, i.e. fine 
granularity scalability (FGS) [10], to achieve 
better perceptual quality and data reliability. 

• Link fairness is a popular topic in recent 
years. The parameters of the proposed 
mechanism can be adjusted so that the 
bandwidth can be shared more fairly with 
other TCP links. 
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