| mplementation of an Efficient Channelization Code Assignment
Algorithm in 3G WCDMA

¥z Agai

L WCDMA i Bk

/ﬁ-n = 2. \"J:’%‘L

Jui-Chi Chen and Wen-Shyen E. Chen

Mk 5

e

Institute of Computer Science
National Chung Hsing University
250 Kuokuang Road, Taichung, Taiwan, R.O.C.
{rjchen, echen} @cs.nchu.edu.tw

#&

%= R EREN WCDMA i B I 24 § 4
TR G mpeE B AR P m+f“j_?’§‘£ Ve
PedgReR AR S AR F o4 - el
R ARG R 3R ”zﬂ;F’J”mFE%\c &R
- R A %#%bk’iﬁoﬂmw*'mmﬁzj’fﬁi;ﬁ% e
X RSAFRRR DR c Rithw Y P o A PER
B4 ek eh BLRU B Al ws s 7 o)
HAFSER Y A BB E e R fh 2 R AT R
PR ke BB BB B0 LRI EE D
Mo F ARk AT RRR LT LU chn IE TR
T oo A pEerdt e BLRU vt % = A @ s
WCDMA g e i 2 - B (FanE#E o

M4k WCDMA, i mae s, & 2 %8s

|

Er 3;

Abstract

Channelization codes are valuable and scarce resources
in 3G WCDMA. The objective of channelization code
assignment is to support as many users as possible with
less complexity. Some code assignment algorithms have
been proposed. Most of the agorithms suffer from
code-set fragmentation problem. To resolve this issue,
code exchange and reassignment policies can be applied,
but the system complexity will be increased. In this paper,
we propose an efficient BLRU (Best-fit Least Recently
Used) code assignment algorithm with less fragmentation
and complexity to approximate the reassignment based
optimal solution. Simulation results compare the blocking
probability among three approaches. Considering both the
system complexity and the blocking probability, the
BLRU algorithm is a good candidate for channelization
code assignment in 3G WCDMA.

keyword : WCDMA, Channelization Code Assignment,
OV SF code

* This research is supported by the National Science Council of
the Republic of China under grant number
NSC89-2213-E-005-058.

I. Introduction

The third generation (3G) mobile systems are
characterized by high throughput, wideband services, and
flexibility. Direct sequence code division multiple access
(DS-CDMA) [1-2] predominates in the wireless access
technology for 3G systems because of its large capacity
and high flexibility in offering variable-rate services [3-7].
In Universal Mobile Telecommunication System (UMTS)
wideband CDMA (WCDMA), spreading code
transmission supports a variety of wideband services from
low to very high data rates [8]. One of the spreading codes
is channelization code. The channelization codes are
orthogonal variable spreading factor (OVSF) codes that
preserve the orthogonality between channels of different
rates and spreading factors. From the point of view of a
code-limited system, they are valuable and scarce
resources.

For such a reason, the objective of OVSF code
assignment is to support as many users as possible with
less complexity. Some single code and multicode
assignment algorithms have been proposed [3-7].
Observing some different criteria to compare the single
code and multicode policies, none of them provides
obvious superiority [9-12]. In addition, both single code
and multicode assignment agorithms suffer from
fragmentation of the available codes in a system. The
fragmentation degrades the performance of code
assignment. In order to resolve this issue, code exchange
and reassignment policies can be deployed [3]. However,
the system complexity (SC) is aso increased due to those
extra efforts dealing with code exchange and reassignment
processes.

In this paper, we propose an efficient code assignment
algorithm with less fragmentation and complexity, caled
Best-fit Least Recently Used (BLRU) agorithm, to

approximate the reassignment based optimal solution
concerned with blocking probability (BP). The BLRU
algorithm needs neither code exchange nor reassignment
process, therefore, SC is decreased. At the same time,
we devise a compact data structure to store an OV SF code
table and an unused-code list. It can save extra storage for
the unused code list and avoid search operation of the
OV SF code tree. Additionally, an OV SF code generation
function is designed to generate the corresponding
codeword, instead of storing areal codeword straight in an
array, to save about 89 percent of space. As aresult, it is
especialy suitable for mobile sets (M S).

The rest of this paper is organized as follows. The
OV SF code system is described in Section 1. Section 11
illustrates a compact data structure and the BLRU code
assignment algorithm. In order to realize the cost of the
BLRU algorithm, Section IV evaluates its time and space
complexity. Simulation results are shown in Section V.
Finally, concluding remarks are given in Section V1.

1. OVSF Code System

The channelization operation in WCDMA transforms
each data symbol into a humber of chips. The number of
chips per data symbol is caled spreading factor. The
channelizing structure of the reverse link (uplink) in the
OVSF code system is shown in Figure 1. The data
symbols are spread in channelization operation firstly and
then scrambled in scrambling operation [4].

Channelization Code C*
ch,SF
DPDCH —» C
(data) scramble
I+jQ
——=
Channelization Code C | @
DPCCH_.QL@_Q,(%}_I
(contral)

Figure 1: Channelizing structure of the reverse link in the
OV SF code system

In channelization operation, a code tree shown in
Figure 2 recursively generates the OV SF codes based on a
modified Walsh-Hadamard transformation [4]. For
example, th, y uniquely describes the codes, where Nis
the spreading factor of the code, kis the code number, and
1£KEN. Let C,,, denote the set of N binary OV SF codes

{Ch A}, where N=2" ranges from 4 to 256 and C,, is

one N elements’ row vector. Then the generation method
for the OV SF code-set is described as

Cona =1,

A 1 N A 1 1 > 7 N
gcch,ZH_ gcch,l Cch,lH _ g 1 1 l;'
2 Y [u
écch,zﬂ @Cch,l Cch,lg %‘- -1y

ér1 o

€@ a2 orni2 U

A 1 7

écl u gcch,NIZ Ch-N/ZL,’l

A ch N - €2 2 u

?CZ l;l e wmni2 ch,ni2 U

Copn =8 onl=gc2 C? Us

e ... u é ch,N12 ch.N/zl:l

écN U a .. 1

&t €~ N2 U

g ch,N 12 ch,N/ZL,'l

e NI2 Nz U

@ ch,N/2 SN2 g

where thm is the binary complement of Cc"h s The
vector C* =(c{,c5,...,)1 {1 " can be called a
codeword. If thy,\, is used (assigned), other users
cannot use all ancestor codes of C;] v and al

descendant codes generated from this code. Certainly, all
codes of C;’ n areorthogonal to each other.

Furthermore, both the forward link (downlink) and the
reverse link in WCDMA can apply OVSF code(s) to
match the request data rate. Without loss of generality, the
data rate described in this paper is normalized by the basic
data rate R, of an OVSF code with the maximum
spreading factor (MaxSF). We assume that MaxSF = 256
here.

G e

¢, ={11y
. : C? eeeeeee

¢, =
CB ---------

G =13

C‘}m :{]} h8
P — Ce _{L Ll]} c‘;’vs ---------
o4 - ths ---------

¢, =3 |
] o

C ={1-1-13 2=

e 3 g
SF=1 SFep SFea o=

Figure 2: Code tree for generation of the OV SF codes

Actually, the number of the OVSF codes is limited.
The base station (BS) may therefore run out of the codes
and block an incoming call. Four issues affecting the BP

of the OV SF code system are stated in the following. The
first is how much bandwidth the system can provide. An
overloaded system blocks incoming calls more frequently.
The second is the arrival rate (calls per unit time) and the
incoming call-duration. High arrival rate and long
call-duration may dramatically increase the system load.
The third is the variable request data rate. An incoming
call is blocked if the available codes in BS are not enough
to fulfill the request. The fourth is the grade of OVSF
code-set fragmentation. After a sequence of code
assignment and release operations, the OVSF code tree
consists of many fragmental nodes. This fragmentation
will degrade the performance of the code assignment. For
example, as shown in Figure 3, a new call requesting a
single code CC’;,’Z, which cannot be supported, will be

blocked athough the system has enough overall capacity
(the aggregation of thA, Cihys, and C?h’S equals to

the code ng,z)- This is called “fragmentation,” which

resultsin less code assignment flexibility and higher BP. A
dynamic assignment approach in [3] can gather the
available codes together dynamically so as to provide
more flexibility by exchanging them. One disadvantage of
the approach is the increased SC, because it needs to deal
with the code exchange and reassignment processes.

@ Available code
Blocked code

@

Assigned code

Figure 3: An example of OVSF call blocking due to
fragmentation

1. Best-fit Least Recently Used Algorithm
To achieve less fragmentation and complexity, we
propose an efficient BLRU code assignment algorithm.
Firstly, a compact data structure is devised to store the
OV SF code table and the unused code list. It can save

extra storage for the list and avoid searching the code tree.
The primary structure of a code entry in an OVSF code
table implemented by a 2D array is shown in Figure 4.
Field Code No. (e.g., n) is the index to the rth code entry.
Shaded Codeword is a binary sequence that represents an
OV SF code by taking its prefix SF bits. This field is not
required if the Decimal Walsh Code Generating Function
(DWCGF, will be illustrated in Section V) is further
applied. The Used Flag field is set to “false” initially and
is changed to “true” as the codeword in the same entry is
assigned. Field SF stores the current spreading factor
possessed by a code entry. Both fields PREV and NEXT
are used for the unused (available) OV SF code list shown
in Figure 6. Given a code entry in the unused code list,
field NEXT points to its successor, and field PREV points
to its predecessor. The unused code list is therefore
embedded in the code table; that is, we do not need any
other additional memory to store the list. Moreover, the
code table embeds the OVSF code tree, al codeword
entries, and used code records.

Cods Used
No. Codeword Flag SF | PREV|NEXT
8 bits 256 bits 1bit 8hits 8hits 8 bits

SF: spreading factor
PREV: the pointer to its predecessor
NEXT: the pointer to its successor
Figure 4: The primary structure of a code entry in an
OV SF code table

Code No. SF

1 [4]

ONNE"
x=256
() ==

65 | 4]

129 [4]
I EIEES
103 L8]

@ SF=8
225 [8] x=32
v Embedded OV SF Code Tree

Code Table (Virtual and Dynamic)

Figure 5: An example presents that the code table embeds
the OV SF tree

An example of the embedded OV SF code tree can be
seen in Figure 5. For each code /, its dynamic left child

code is code no. /i and right child code is code no. i +
MaxSFI2*SF. When a user requires a code with SF=8,
Code 193 (SF = 4) needs to be split into two codes Code
193 and Code 225, with SF = 8. The value of field SF of
each code entry is dynamically changed according to the
current status. When Code 1 and Code 65 with SF = 4 are
released, these two codes should be merged into Code 1
with SF = 2. Thus, the code table simultaneoudy
maintains the OV SF code tree. Meanwhile, this code table
requires only 256 code entries and saves 255 nodes and
254 linksin areal OV SF code tree.

Figure 6 demonstrates the unused code list organized
by a logical doublellinked list and ordered by the
spreading factor. In fact, the list is embedded in the code
table as described above. Besides pointers PREV and
NEXT in each code entry, the code table requires some
other pointers. Pointer Head points to the first element of
the list, pointer Tail points to the last element of the list,
and other logA{MaxSF) + 1 pointers (namely, SFpointer[x],
OEXEB if MaxSF = 256) let the BLRU algorithm directly
index into the best-fit code entries. The unused code list
needs only to link those code entries which are the roots of
unused code sub-trees. For example, as shown in Figure 3,
only thy 4 Cihyg, and thyg codes have to be linked

inthe list, but not th’S or thyg.

SFpointer[0] —» Head
SFpointer[1] —»
Assignment
(The Best-fit
SFpoi nter[log,x] —» e entry)
(Front)
SF
=MaxSF/x
SFpointer[logx + 1] —»
(Rear)
Release
(Natural LRU
queueing)
SFpointer[log,MaxSF]
<+—Tail

Figure 6: The unused OV SF code list organized by a
logical double-linked list

A datarate R;for cal /isa multiplication of the basic
transmission rate R, where 1 (spreading factor = 256) £ R;
£ 64 (spreading factor = 4). Then caculate R/s
approximate single-code rate x(R)=28%&R-D0

Subsequently, user admitted code can be represented by

the prefix MaxSF/x bits of the codeword indexed by
SFpointer[logAx)] if the index is not NULL and MaxSFix
equals to the field SF. That is the best-fit strategy. Perhaps
none of the unused codes has the same spreading factor to
MaxSFIx, the code has to be split if the field SF is greater
than MaxSFix. Otherwise, the call is blocked if the pointer
index is NULL. This best-fit strategy in the BLRU
algorithm is the most straightforward one to select an
unused code from the set of available codes. It aways
chooses the code with the best spreading factor first.

In static code assignment, assigning a code at random
certainly results in a lot of fragmental codes. In dynamic
code assignment, as described in [3], the optimal dynamic
code assignment algorithm aternatively suffers from the
additional overhead of code exchange and reassignment,
although the overhead is minimized as much as possible.
This overhead increases the SC dramatically, in a software
and/or hardware.

Intuitively, a good approximation to the optimal
solution is based on the observation that codes assigned
first will have a higher probability to be released first. The
popular least recently used (LRU) algorithm is considered
to have an adequate performance. It tends to minimize the
number of fragmental codes. In our BLRU algorithm,
searching for a LRU code is not required since the
corresponding SFpointer points to the front of the best-fit
entries and each entry group with the same spreading
factor is a natural LRU queue. Of course, timestamps or
time counters are not required either. The brief flowchart
of the BLRU algorithm is plotted in Figure 7 and the
algorithm is shown as follows.

BLRU code assignment algorithm

Input: A request datarate R; for call
Output: An allocated code number N; if call accepted or a
Null code number if call blocked.
Step 1:
> Calculate the approximate single-code rate x
which is dightly higher than R;.
Formula Xx(R) - 28%%&R-90
Step 2:
MaxSF- Maximum spreading factor
> Check if the code rate x is greater than the
remaining available rates in system. If so, this
call will be blocked.
If X > (MaxSF — UsedDataRates) then goto Step 8.
Step 3:
> Check if there exists a code with SF3 MaxSFi/x.
If not, this call will be blocked.

If SFpointer[log, x].SF = NULL then goto Step 8.

Step 4:
> Best-fit strategy
SFpointer[log, X].CodeNo is the best-fit choice
If SFpointer[log, X].SF = MaxSFix then goto Step
6.
Step 5:

> Code Splitting
CSF - SFpointer[log, x].SF
while (CSF > MaxSFix)
Split one code with spreading factor CSF into
two codes with spreading factor CSF/2.
CSF - CSF/2.
Modify SFpointer[log, x] and some codes
fields PREV and NEXT.
Step 6:
> LRU code assignment
Retrieve the front element of the entry group with
spreading factor MaxSF/x.
N; - SFpointer[log, x].CodeNo
> On the contrary, the code will be inserted into
the rear position of the entry group with
spreading factor MaxSF/x as acode isreleased.
Step 7:
> Call accepted
Code No. = N;
goto Step 9
Step 8:
> Call blocked
Code No. = NULL
Step 9:
Return

Start

Call setup
Request rate x

xX£ Available

Use BLRU Algorithm to
decide admitting this cal

BLRU Algorithm allocates
the code for this cal

v
(Block thiscall] [Accept thiscall)
Figure 7: A brief flow chart of the BLRU algorithm.

IvV. Complexity Analysis

To analyze the time complexity of the code assignment
operation, al the steps in the BLRU agorithm are
considered. Each step needs to execute only one time from
Step 1 to Step 4. So do those steps from Step 7 to Step 9.
In Step 6, the retrieve operation runs in O(1) time since at
most some pointers must be modified for the unused code
list. Only in Step 5, to split a code, the WHILE loop needs
running k times, where k is no more than logA{ MaxSF).
Therefore, the time complexity of the assignment part can
beillustrated as
T(K = k+ O(1) £ logAMaxSF) + O(1)

=8+0(1), > if MaxSF=256
= 0O(1).

Similarity, with according to the code rel ease operation
of the BLRU algorithm, all steps take O(1) time except for
the codes merging step. For codes merging, the WHILE
loop has to run mtimes. Hence, the time complexity of the
release part can be represented by
T(m) = m+ O(1) £ logAMaxSF) + O(1)

=8+0(1), v if MaxSF=256
=0(D).

Totally, the BLRU algorithm takes only constant time
in the worst case. Neither any dynamic code exchange and
reassignment nor the code searching operation is required.

On the other hand, an OVSF code generation
function — DWCGF -- is designed to generate the
corresponding codeword, instead of storing a rea
codeword straight in an array. Given a code number (index)
N, DWCGF d(S; 9 is an efficient and correct code
generating function that can save about 89 percent of
space. How the DWCGF works is described as follows.

The data rate R; for call / can be assigned an
approximate single-code rate x defined by
X(R) = 2800:(ZR-Di
Assume that code number N;, an index of a code entry, is
assigned. Let us define that
g= (N/'l) :(Ni'1)+1:Ni+X'1

MaxSF | SF X X
, Where 1£ g £SF, g N. Following the data-structure rule
described as above, (N-1) must be the multiplication of x
and the codes from N; to N;+x-1 will not be used. From
the point of view on the code tree, the codes from N+1 to
N+x-1 are the descendants of the code N;. Simultaneously,
the used flag associated with the code N, turns to “true.” If
each code entry consists of a real codeword (256 bits) in

the code table, the prefix SF bits of the codeword are
fetched directly. Alternatively, the DWCGF formula can
derive the codeword with spreading factor SF in only O(1)
running time. The DWCGF formulais shown by

d1, 1) =0.
d(5F.9) = (575,94 9+ (V27 +1+[(g- Dmod2)

*W27 - 1- 2*d(5’72,é%£?].

Next, we trandate the decimal value of dSF g to a
sequence of binary digits and retrieve the least significant
SF bits. With digit O represents +1 and digit 1
represents —1, this maps the result to an OV SF code.

Examples of the OVSF code generation via DWCGF
are shown in Table 1. The boundary condition of A SF, g
isthat A1, 1) = 0. By DWCGF and the table index N,, BS
can obtain any OV SF codeword with at most |og,(MaxSF)
timesrecursively.

Let n = spreading factor. The time complexity of
function A S5 ¢ can therefore be described by the
recurrence
T(n) =T(n2) + O(1),
where T(1) = O(1) is the boundary case.

By iteration method,

T(n) £ T(MaxSF) > intheworst case
= T(MaxSF/2) + O(1)
= (T(MaxS/4) + O(1)) + O(1)

=T(1) + log{MaxSF) * O(1)

=0(1) + logA{MaxSF) * O(1)

=9* 0O(1), v if MaxSF=256

=0(1)
Thus, the DWCGF function also performs only in constant
time.

To analyze the space requirement, we do not require
the real OV SF code tree and the unused code list. And,
each code entry in Figure 4 without the codeword part
requires only 33 bits when DWCGF is used. An
implemented OVSF code table with 256 entries plus
eleven additional pointers requires only about 1K bytes of
memory. On the contrary, if DWCGF is absent, the code
table requires about 9K bytes of memory. In brief,
applying the function DWCGF can save further 89 percent
of space. This alternative is especially feasible and
suitable for the M Ss with avery small memory size.

Table 1: Examples of OV SF code generation via DWCGF

Walsh code OV SF code
SF| CGF X
Value| SF bits Code word Code
1]d(1,1) 0/0 (1) Cus
d(2,1) 0[00 (1,2) C,y
d(2,2) 1|01 (1,-1) Cso
4 |d(4,1) 0/0000 (1,1,1,2) Cyz
d(4,2) 3/0011 (1,1,-1,-1) Cy2
d4,3) 5/0101 (1,-1,1,-1) Cyz
d(4,4) 6/0110 (1,-1,-1,1) Cuu
8 |d(8,1) 0/00000000 |(1,1,1,1,1,1,1,1) Css

d82)| 15/00001111 |(1,1,1,1,-1-1,-1,-1) |Csy
d83)| 51/00110011 |(1,1,-1,-1,1,1,-1-1) |Cgs
d84)| 60/00111100 |(1,1,-1,-1-1-1,1,1) |Css
d85)| 8501010101 |(1,-1,1,-1,1,-1,1-1) |Cgs
d8,6)| 9001011010 |(1-1,1-1,-1,1-11) |Css

d8,7)| 102/01100110 |(1,-1,-1,1,1,-1,-1,1) |Cs

d(8,8)| 10501101001 |(1,-1,-1,1,-1,1,1-1) |Css

V. Simulation Results

Three approaches, namely, the random, the BLRU, and
the reassignment based optimal
algorithms, are simulated here for comparison. With
respect to the code-limited system, the total BP represents
the performance of the channelization code assignment
algorithm. In case of approximate single code, the BS will
assign only one code whose rate is slightly higher than the
requested. Request data rate is normalized to 2" style.
These simulations use the following parametersasin [3].

. Call arrival process is Poisson with mean arrival rate

| =4-64 callsunit time.
. Call duration is exponentialy distributed with a
mean value of 1/m= 0.25 unit of time.

. Maximum spreading factor = 256.

. Capacity test: code-limited.
In addition,

« R denotes the maximum request data rate

« Ryean denotes the mean request data rate

The simulations employ two types of request
rate-source models: a uniform distribution and an

exponential one. The uniform simulation generates the
request rate R; distributed uniformly with the mean rate =

code assignment

R nean @nd the maximum rate = R, for call /. Figures 8 to
10 show the results with uniform rate-distribution, where
Rpmean @nd R, IS Up to 32R, and 64R,, respectively. The

mean arrival rate | ranging from 4 to 64 calls per unit time
is represented on the horizontal axis. And the average BP
for along period of time is indicated on the vertical axis.
From the three figures, the optimal solution has the lowest
BP amost always. The BLRU algorithm is close to the
optimal solution; the random approach usually is the worst
one. Figure 8 represents the typical case and the
practical operational region. Generally, the BLRU
algorithm is always superior to the random case.

3.5%

3.0% Requested data rate distributed unfornly
Withmean= 8R,
Maximum available datarate = 16R, /

7
1.0% / a
0.5% / ./

0.0%

I
n
=

o
<
S

n
S

Blocking probability

16 20 24 28 32 36 40 44 48 52 56 60 64
Mean arrival rate (calls/unit time)

‘ —¢— Optimal —&— BLRU —#— Random ‘

Figure 8: Comparison among three different algorithms
using uniform rate distribution with Re,= 8Ry
and R;= 16Ry.

. Requested data rate distributed uniformly o

With mean = 16R, /j'?‘
Maximum available data rate = 32R, //

20%

15% /E%

10% /%

4 8 12 16 20 24 28 32 36 40 4 48 52 56 60 o4
Mean arrival rate (calls/unit time)

Blocking probability

‘ —®— Optimal —&— BLRU —#— Random ‘

Figure 9: Comparison among three different algorithms
using uniform rate distribution with R ,= 16R,
and Riax= 32R,,.

Figure 9 shows the case that Ry = 16R, and Ry =
32Ry. Asthe maximum request data rate grows, the BPs of
all approaches increase and the BLRU solution is getting
closer to the optimal case. For the case shown in Figure 10,
the three lines behave almost closely. The heavy traffic
causes the system to move beyond the practical region. In
practical region, the BP needs smaller than 5 to 10 percent
generaly. Consequently, we can conclude that the BLRU
algorithm performs a well result. And, that the BLRU

algorithm needs neither code exchange nor reassignment
process is notably mentioned, athough the optimal case
dightly outperform it.

50%
454 Requested data rate distributed uniformly
5%
With mean = 32R, %
40% - ;
Maximum available data rate = 64R, /
35%
=
£30% //
g
£
% 20%
2 74
15% /
10% /
5% /
0% . :
4 8 2 16 20 24 2% 32 3 40 4 48

Mean arrival rate (calls/unit time)

‘ —&— Optimal —&— BLRU —&— Random ‘

Figure 10: Comparison among three different algorithms
using uniform rate distribution with R e,= 32R,
and Ry= 64Ry.

18.0%

14.0% -
With mean = 16R, /

/
8.0% / /
6.0% / /
4.0% / /
2.0% / /

0.0%

Maximum available data rate = 32R,

16.0%
Requested data rate distributed exponentially /

10.0%

Blocking probability

20 24 28 32 36 40 4 48 52 56 60 64
Mean arrival rate (calls/unit time)

4 8 12 16

‘ —¢— Optimal —#— BLRU —&— Random ‘

Figure 11: Comparison among three different algorithms
using exponentia rate distribution with R,
= 16R, and Re= 32R,,.

On the other hand, the exponential simulation
generates the request rate R; distributed exponentially for
call /. The results in Figures 11 to 12 with exponential
rate-distribution are similar to those described above,
except for an interesting region. The interesting region is
on the right upper corner in Figure 12, where the mean
arrival rate ranges from 50 to 64. In the region, the BLRU
algorithm outperforms the optimal case. The reason is that
the fragmentation with a moderate number of fragmental
codes has more total call accepted times in the BLRU case
rather than those in the optimal case, when both the arrival
rate and the request data rate are high enough. However,
this is only a phenomenon but not in practical working
area. High BP caused by high arrival rate and high request
rate has to be decreased by increasing the system capacity,
e.g., more micro-cells established. As a result, if we take

both the BP and the SC issues into account, the BLRU
algorithm is a better approach.

25%

L
sl

Requested data rate distributed exponentially
With mean = 16R,
Maximum available data rate = 64Ry

)
=]
S

Blocking probability
S 5
=2 y

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Mean arrival rate (calls/unit time)

m ‘ —&— Optimal —&— BLRU —&— Rand ‘

Figure 12: Comparison among three different algorithms
using exponentia rate distribution with R e,
= 16R, and R = 64R,.

vI. Conclusions

Some OVSF code assignment methods for variable
rate transmission have been investigated in the literature.
Both single code and multicode assignment algorithms
suffer from fragmentation problem, which degrades the
performance of the code assignment.

In this paper, we proposed to use the Best-fit Least
Recently Used (BLRU) algorithm to resolve the
performance issue. In addition, two different approaches
were simulated and compared to the BLRU agorithm in
terms of Blocking Probability. As a consequence,
considering both the Blocking Probability and System
Complexity, , the BLRU algorithm is a very suitable
algorithm for the channelization code assignment in 3G
WCDMA.

References

1. A. J Viterbi, CDMA: Principles of Soread Spectrum
Communications, Addison-Wesley, 1995.

2. R. Kohno, R. Meidan, and B. Milstain, “Spread
spectrum methods for
communications,” /EEE Commun. Mag., vol. 33, pp.
58-67, Jan. 1995.

3. T. Minn and K.-Y. Siu, “Dynamic Assignment of
Orthogonal Variable-Spreading- Factor Codes in
W-CDMA,” [EEE Journal on Selected Areas in
Commun., vol. 18, no. 8, pp.1429-1440, August 2000.

4, 3GPP Technical Specification 25.213, v3.3.0,
Spreading and modulation (FDD) (Released in 1999),
June 2000.

5. 1. Chih-Lin and R. D. Gitlin, “Multi-code CDMA

access wireless

Wireless Personal Communications Networks,” in
Proc. of ICC’ 95, pp. 1060-1064, June 1995.

6. T. Ottosson and T. Palenius, “The Impact of Using
Multicode Transmission in the WCDMA System,” in
Proc. of IEEE VTC’99, val. 2, pp. 1550-1554, May
1999.

7. F Adachi, K. Ohno, A. Higashi, T. Dohi, and Y.
Okumura, “Coherent Multicode DS-CDMA Mobile
Radio Access,” IEICE Trans. Commun., vol.E79-B,
no.9, pp.1316-1325, Sept. 1996.

8. Harri Holma and Antti Toskala, WCDMA for UMTS
John Wiley & Sons, 2000.

9. E. Dahlman and K. Jamal, “Wide-band Services in a
DS-CDMA Based FPLMTS System,” in Proc. of the
46th |EEE VTC 96, pp.1656-1660, Atlanta, April
1996.

10.S. Ramakrishna and J. M. Holtzman, “A Comparison
between Single Code and Multiple Code Transmission
Schemes in a CDMA System,” in Proc. of the 48th
IEEE VTC' 98, pp.791-795, May 1998.

11.S. J. Lee, H. W. Lee, and D. K. Sung, “Capacities of
Single-Code and Multicode DS-CDMA Systems
Accommodating Multiclass Services,” |EEE Trans. On
Vehicular Tech., vol. 48, no. 2, pp.376-384, March
1999.

12.P. Agin and F Gourgue, “Comparison between
Multicode with Fixed Spreading and Single Code with
Variable Spreading Options in UTRA/TDD,” in Proc.
of the2™ |EEE SPAWC'99, pp.325-328, May 1999.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8

