
Implementation of an Efficient Channelization Code Assignment
Algor ithm in 3G WCDMA

第三代無線通訊 WCDMA 信道碼配置演算法之設計
Jui-Chi Chen and Wen-Shyen E. Chen

陳瑞奇 陳文賢
Institute of Computer Science

National Chung Hsing University
250 Kuokuang Road, Taichung, Taiwan, R.O.C.

{rjchen, echen}@cs.nchu.edu.tw

摘要

第三代無線通訊 WCDMA 信道碼是非常寶貴的
資源，故信道碼配置演算法設計之目的在於盡可能以最
小的複雜度支援最多的通訊使用者，過去已有一些配置
演算法被設計提出，但都有”碼碎裂”的問題。為了解決
此一問題，碼交換與重配置的策略必須被考慮進來，但
又會造成系統複雜度的增高。在這篇論文中，我們提出
一個有效率的 BLRU 信道碼配置演算法，可以以較小
的複雜度且不用碼交換與重配置的方法來趨近最佳化
的配置結果。本研究模擬比較幾個方法之執行阻斷率的
高低，若在考慮系統複雜度與執行阻斷率的兩項因素
下，我們所提出的 BLRU 策略是第三代無線通訊
WCDMA 信道碼配置法一個很好的選擇。

關鍵詞：WCDMA, 信道碼配置, 正交變展頻碼

Abstract

Channelization codes are valuable and scarce resources
in 3G WCDMA. The objective of channelization code
assignment is to support as many users as possible with
less complexity. Some code assignment algorithms have
been proposed. Most of the algorithms suffer from
code-set fragmentation problem. To resolve this issue,
code exchange and reassignment policies can be applied,
but the system complexity will be increased. In this paper,
we propose an efficient BLRU (Best-fit Least Recently
Used) code assignment algorithm with less fragmentation
and complexity to approximate the reassignment based
optimal solution. Simulation results compare the blocking
probability among three approaches. Considering both the
system complexity and the blocking probability, the
BLRU algorithm is a good candidate for channelization
code assignment in 3G WCDMA.

keyword：WCDMA, Channelization Code Assignment,
OVSF code

* This research is supported by the National Science Council of
the Republic of China under grant number
NSC89-2213-E-005-058.

I. Introduction
The third generation (3G) mobile systems are

characterized by high throughput, wideband services, and
flexibility. Direct sequence code division multiple access
(DS-CDMA) [1-2] predominates in the wireless access
technology for 3G systems because of its large capacity
and high flexibility in offering variable-rate services [3-7].
In Universal Mobile Telecommunication System (UMTS)
wideband CDMA (WCDMA), spreading code
transmission supports a variety of wideband services from
low to very high data rates [8]. One of the spreading codes
is channelization code. The channelization codes are
orthogonal variable spreading factor (OVSF) codes that
preserve the orthogonality between channels of different
rates and spreading factors. From the point of view of a
code-limited system, they are valuable and scarce
resources.

For such a reason, the objective of OVSF code
assignment is to support as many users as possible with
less complexity. Some single code and multicode
assignment algorithms have been proposed [3-7].
Observing some different criteria to compare the single
code and multicode policies, none of them provides
obvious superiority [9-12]. In addition, both single code
and multicode assignment algorithms suffer from
fragmentation of the available codes in a system. The
fragmentation degrades the performance of code
assignment. In order to resolve this issue, code exchange
and reassignment policies can be deployed [3]. However,
the system complexity (SC) is also increased due to those
extra efforts dealing with code exchange and reassignment
processes.

In this paper, we propose an efficient code assignment
algorithm with less fragmentation and complexity, called
Best-fit Least Recently Used (BLRU) algorithm, to

approximate the reassignment based optimal solution
concerned with blocking probability (BP). The BLRU
algorithm needs neither code exchange nor reassignment
process; therefore, SC is decreased. At the same time,
we devise a compact data structure to store an OVSF code
table and an unused-code list. It can save extra storage for
the unused code list and avoid search operation of the
OVSF code tree. Additionally, an OVSF code generation
function is designed to generate the corresponding
codeword, instead of storing a real codeword straight in an
array, to save about 89 percent of space. As a result, it is
especially suitable for mobile sets (MS).

The rest of this paper is organized as follows. The
OVSF code system is described in Section II. Section III
illustrates a compact data structure and the BLRU code
assignment algorithm. In order to realize the cost of the
BLRU algorithm, Section IV evaluates its time and space
complexity. Simulation results are shown in Section V.
Finally, concluding remarks are given in Section VI.

II. OVSF Code System
The channelization operation in WCDMA transforms

each data symbol into a number of chips. The number of
chips per data symbol is called spreading factor. The
channelizing structure of the reverse link (uplink) in the
OVSF code system is shown in Figure 1. The data
symbols are spread in channelization operation firstly and
then scrambled in scrambling operation [4].

Figure 1: Channelizing structure of the reverse link in the
OVSF code system

In channelization operation, a code tree shown in
Figure 2 recursively generates the OVSF codes based on a
modified Walsh-Hadamard transformation [4]. For
example, k

NchC ,
 uniquely describes the codes, where N is

the spreading factor of the code, k is the code number, and
1≤k≤N. Let NchC , denote the set of N binary OVSF codes

N
k

k
NchC 1, }{ = , where N=2n ranges from 4 to 256 and k

NchC , is

one N elements’ row vector. Then the generation method
for the OVSF code-set is described as

,11
1, =chC









−

=











=








11

11
1

1,
1

1,

1
1,

1
1,

2
2,

1
2,

chch

chch

ch

ch

CC
CC

C
C

,

......
...

2/

2/

2

2

1

1

2/

2/

2

2

1

1

2

1

,

2/,

2/,

2/,

2/,

2/,

2/,

2/,

2/,

2/,

2/,

2/,

2/,

,

,

,































=



















=

N

N

N

N
N

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

Nch

C

C

C

C
C

C

C
C

C
C
C
C

C

C
C

C

where k
Nch

C
2/,

 is the binary complement of k
Nch

C
2/,

. The

vector Nk
N

kkk cccC
Nch

}1{),...,,(21,
±∈= can be called a

codeword. If k
NchC , is used (assigned), other users

cannot use all ancestor codes of k
NchC , and all

descendant codes generated from this code. Certainly, all
codes of k

NchC , are orthogonal to each other.

Furthermore, both the forward link (downlink) and the
reverse link in WCDMA can apply OVSF code(s) to
match the request data rate. Without loss of generality, the
data rate described in this paper is normalized by the basic
data rate Rb of an OVSF code with the maximum
spreading factor (MaxSF). We assume that MaxSF = 256
here.

Figure 2: Code tree for generation of the OVSF codes

 Actually, the number of the OVSF codes is limited.
The base station (BS) may therefore run out of the codes
and block an incoming call. Four issues affecting the BP

⊕

⊕

⊕DPDCH
(data)

⊕DPCCH
(control)

I

Q

j

I + jQ ⊕
1

,Nch
C

x
SFch

C
,

scrambleC

Channelization Code

Channelization Code
⊕

⊕

⊕DPDCH
(data)

⊕DPCCH
(control)

I

Q

j

I + jQ ⊕
1

,Nch
C

x
SFch

C
,

scrambleC

Channelization Code

Channelization Code
}1{1

1,
=

ch
C

}1,1{1
2,

=
ch

C

}1,1{2
2,

−=
ch

C

}1,1,1,1{1
4,

=
ch

C

}1,1,1,1{2
4,

−−=
ch

C

}1,1,1,1{3
4,

−−=
ch

C

}1,1,1,1{4
4,

−−=
ch

C

2
8,ch

C

1
8,ch

C

4
8,ch

C

3
8,ch

C

6
8,ch

C

5
8,ch

C

8
8,ch

C

7
8,ch

C

SF=8SF=4SF=2SF=1

}1{1
1,

=
ch

C

}1,1{1
2,

=
ch

C

}1,1{2
2,

−=
ch

C

}1,1,1,1{1
4,

=
ch

C

}1,1,1,1{2
4,

−−=
ch

C

}1,1,1,1{3
4,

−−=
ch

C

}1,1,1,1{4
4,

−−=
ch

C

2
8,ch

C

1
8,ch

C

4
8,ch

C

3
8,ch

C

6
8,ch

C

5
8,ch

C

8
8,ch

C

7
8,ch

C

SF=8SF=4SF=2SF=1

of the OVSF code system are stated in the following. The
first is how much bandwidth the system can provide. An
overloaded system blocks incoming calls more frequently.
The second is the arrival rate (calls per unit time) and the
incoming call-duration. High arrival rate and long
call-duration may dramatically increase the system load.
The third is the variable request data rate. An incoming
call is blocked if the available codes in BS are not enough
to fulfill the request. The fourth is the grade of OVSF
code-set fragmentation. After a sequence of code
assignment and release operations, the OVSF code tree
consists of many fragmental nodes. This fragmentation
will degrade the performance of the code assignment. For
example, as shown in Figure 3, a new call requesting a
single code x

chC 2, , which cannot be supported, will be

blocked although the system has enough overall capacity
(the aggregation of 3

4,chC , 1
8,chC , and 8

8,chC equals to

the code x
chC 2,). This is called “fragmentation,” which

results in less code assignment flexibility and higher BP. A
dynamic assignment approach in [3] can gather the
available codes together dynamically so as to provide
more flexibility by exchanging them. One disadvantage of
the approach is the increased SC, because it needs to deal
with the code exchange and reassignment processes.

Figure 3: An example of OVSF call blocking due to
fragmentation

III. Best-fit Least Recently Used Algor ithm
To achieve less fragmentation and complexity, we

propose an efficient BLRU code assignment algorithm.
Firstly, a compact data structure is devised to store the

OVSF code table and the unused code list. It can save

extra storage for the list and avoid searching the code tree.
The primary structure of a code entry in an OVSF code
table implemented by a 2D array is shown in Figure 4.
Field Code No. (e.g., n) is the index to the nth code entry.
Shaded Codeword is a binary sequence that represents an
OVSF code by taking its prefix SF bits. This field is not
required if the Decimal Walsh Code Generating Function
(DWCGF, will be illustrated in Section IV) is further
applied. The Used Flag field is set to “false” initially and
is changed to “true” as the codeword in the same entry is
assigned. Field SF stores the current spreading factor
possessed by a code entry. Both fields PREV and NEXT
are used for the unused (available) OVSF code list shown
in Figure 6. Given a code entry in the unused code list,
field NEXT points to its successor, and field PREV points
to its predecessor. The unused code list is therefore
embedded in the code table; that is, we do not need any
other additional memory to store the list. Moreover, the
code table embeds the OVSF code tree, all codeword
entries, and used code records.

Figure 4: The primary structure of a code entry in an
OVSF code table

Figure 5: An example presents that the code table embeds
the OVSF tree

An example of the embedded OVSF code tree can be
seen in Figure 5. For each code i, its dynamic left child

1
1,chC

2
2,chC

1
2,chC

1
4,chC

2
4,chC

3
4,chC

4
4,chC

1
8,chC

2
8,chC

3
8,chC

4
8,chC

7
8,chC

5
8,chC

6
8,chC

8
8,chC

Available code

Blocked code

Assigned code

1
1,chC

2
2,chC

1
2,chC

1
4,chC

2
4,chC

3
4,chC

4
4,chC

1
8,chC

2
8,chC

3
8,chC

4
8,chC

7
8,chC

5
8,chC

6
8,chC

8
8,chC

Available code

Blocked code

Assigned code

Code
No. Code wordCode word Used

Flag SF NEXTPREV

8 bits 256 bits 1 bit 8 bits 8 bits 8 bits

SF: spreading factor
PREV: the pointer to its predecessor
NEXT: the pointer to its successor

Code
No. Code wordCode word Used

Flag SF NEXTPREV

8 bits 256 bits 1 bit 8 bits 8 bits 8 bits

SF: spreading factor
PREV: the pointer to its predecessor
NEXT: the pointer to its successor

Codeword

SFCode No.
1 1

SF=1
ξ=256

129 2

SF=2

65 4

4

4

1 65 129

1

SF=4

193 4

225 8
SF=8
ξ=32

8

1

193

129

193 225

…

…

…

…

… Embedded OVSF Code Tree
(Virtual and Dynamic)Code Table

SFCode No.
1 1

SF=1
ξ=256

129 2

SF=2

65 4

4

4

1 65 129

1

SF=4

193 4

225 8
SF=8
ξ=32

8

1

193

129

193 225

…

…

…

…

… Embedded OVSF Code Tree
(Virtual and Dynamic)Code Table

code is code no. i and right child code is code no. i +
MaxSF/2*SF. When a user requires a code with SF=8,
Code 193 (SF = 4) needs to be split into two codes:Code
193 and Code 225, with SF = 8. The value of field SF of
each code entry is dynamically changed according to the
current status. When Code 1 and Code 65 with SF = 4 are
released, these two codes should be merged into Code 1
with SF = 2. Thus, the code table simultaneously
maintains the OVSF code tree. Meanwhile, this code table
requires only 256 code entries and saves 255 nodes and
254 links in a real OVSF code tree.

Figure 6 demonstrates the unused code list organized
by a logical double-linked list and ordered by the
spreading factor. In fact, the list is embedded in the code
table as described above. Besides pointers PREV and
NEXT in each code entry, the code table requires some
other pointers. Pointer Head points to the first element of
the list, pointer Tail points to the last element of the list,
and other log2(MaxSF) + 1 pointers (namely, SFpointer[x],
0≤x≤8 if MaxSF = 256) let the BLRU algorithm directly
index into the best-fit code entries. The unused code list
needs only to link those code entries which are the roots of
unused code sub-trees. For example, as shown in Figure 3,
only 3

4,chC , 1
8,chC , and 8

8,chC codes have to be linked

in the list, but not 5
8,chC or 6

8,chC .

Figure 6: The unused OVSF code list organized by a
logical double-linked list

 A data rate Ri for call i is a multiplication of the basic
transmission rate Rb, where 1 (spreading factor = 256) ≤ Ri

≤ 64 (spreading factor = 4). Then calculate Ri’s
approximate single-code rate  )1*2(log22)(−= iR

iRξ .

Subsequently, user admitted code can be represented by

the prefix MaxSF/ξ bits of the codeword indexed by
SFpointer[log2(ξ)] if the index is not NULL and MaxSF/ξ
equals to the field SF. That is the best-fit strategy. Perhaps
none of the unused codes has the same spreading factor to
MaxSF/ξ, the code has to be split if the field SF is greater
than MaxSF/ξ. Otherwise, the call is blocked if the pointer
index is NULL. This best-fit strategy in the BLRU
algorithm is the most straightforward one to select an
unused code from the set of available codes. It always
chooses the code with the best spreading factor first.

In static code assignment, assigning a code at random
certainly results in a lot of fragmental codes. In dynamic
code assignment, as described in [3], the optimal dynamic
code assignment algorithm alternatively suffers from the
additional overhead of code exchange and reassignment,
although the overhead is minimized as much as possible.
This overhead increases the SC dramatically, in a software
and/or hardware.

Intuitively, a good approximation to the optimal
solution is based on the observation that codes assigned
first will have a higher probability to be released first. The
popular least recently used (LRU) algorithm is considered
to have an adequate performance. It tends to minimize the
number of fragmental codes. In our BLRU algorithm,
searching for a LRU code is not required since the
corresponding SFpointer points to the front of the best-fit
entries and each entry group with the same spreading
factor is a natural LRU queue. Of course, timestamps or
time counters are not required either. The brief flowchart
of the BLRU algorithm is plotted in Figure 7 and the
algorithm is shown as follows.

BLRU code assignment algorithm

Input: A request data rate Ri for call i
Output: An allocated code number Ni if call accepted or a

Null code number if call blocked.
Step 1:

> Calculate the approximate single-code rate ξ
which is slightly higher than Ri.

Formula:  .2)()1*2(log2 −← iR
iRξ

Step 2:
MaxSF ← Maximum spreading factor
> Check if the code rate ξ is greater than the

remaining available rates in system. If so, this
call will be blocked.

If ξ > (MaxSF – UsedDataRates) then goto Step 8.
Step 3:

> Check if there exists a code with SF ≥ MaxSF/ξ.
If not, this call will be blocked.

Head

Tail

SFpointer[0]

SFpointer[1]

SFpointer[log2ξ]
(Front)

SFpointer[log2ξ + 1]
(Rear)

SFpointer[log2MaxSF]

}SF
=MaxSF/ξ

Head

Tail

SFpointer[0]

SFpointer[1]

SFpointer[log2ξ]
(Front)

SFpointer[log2ξ + 1]
(Rear)

SFpointer[log2MaxSF]

}SF
=MaxSF/ξ

Assignment
(The Best-fit
entry)

Release
(Natural LRU
queueing)

If SFpointer[log2 ξ].SF = NULL then goto Step 8.
Step 4:

> Best-fit strategy
SFpointer[log2 ξ].CodeNo is the best-fit choice
If SFpointer[log2 ξ].SF = MaxSF/ξ then goto Step
6.

Step 5:
> Code Splitting
CSF ← SFpointer[log2 ξ].SF
while (CSF > MaxSF/ξ)
 Split one code with spreading factor CSF into
 two codes with spreading factor CSF/2.
 CSF ← CSF/2.
 Modify SFpointer[log2 ξ] and some codes’
 fields PREV and NEXT.

Step 6:
> LRU code assignment
Retrieve the front element of the entry group with

spreading factor MaxSF/ξ.
Ni ← SFpointer[log2 ξ].CodeNo
> On the contrary, the code will be inserted into

the rear position of the entry group with
spreading factor MaxSF/ξ as a code is released.

Step 7:
> Call accepted
Code No. ← Ni

goto Step 9
Step 8:

> Call blocked
Code No. ← NULL

Step 9:
Return

Figure 7: A brief flow chart of the BLRU algorithm.

IV. Complexity Analysis
To analyze the time complexity of the code assignment

operation, all the steps in the BLRU algorithm are
considered. Each step needs to execute only one time from
Step 1 to Step 4. So do those steps from Step 7 to Step 9.
In Step 6, the retrieve operation runs in O(1) time since at
most some pointers must be modified for the unused code
list. Only in Step 5, to split a code, the WHILE loop needs
running k times, where k is no more than log2(MaxSF).
Therefore, the time complexity of the assignment part can
be illustrated as
T(k) = k + O(1) ≤ log2(MaxSF) + O(1)
 = 8 + O(1), > if MaxSF = 256
 = O(1).

Similarity, with according to the code release operation
of the BLRU algorithm, all steps take O(1) time except for
the codes merging step. For codes merging, the WHILE
loop has to run m times. Hence, the time complexity of the
release part can be represented by
T(m) = m + O(1) ≤ log2(MaxSF) + O(1)
 = 8 + O(1), > if MaxSF = 256
 = O(1).

Totally, the BLRU algorithm takes only constant time
in the worst case. Neither any dynamic code exchange and
reassignment nor the code searching operation is required.

On the other hand, an OVSF code generation
function – DWCGF -- is designed to generate the
corresponding codeword, instead of storing a real
codeword straight in an array. Given a code number (index)
Ni, DWCGF δ(SF, γ) is an efficient and correct code
generating function that can save about 89 percent of
space. How the DWCGF works is described as follows.

The data rate Ri for call i can be assigned an

approximate single-code rate ξ defined by
 .2)()1*2(log2 −= iR

iRξ

Assume that code number Ni, an index of a code entry, is
assigned. Let us define that

ξ
ξ

ξ
γ

1
1

)1(
1

)1(−+
=+

−
=+

−
= iii NN

SFMaxSF
N

, where 1≤ γ ≤SF, γ∈N. Following the data-structure rule
described as above, (Ni-1) must be the multiplication of ξ
and the codes from Ni to Ni+ξ-1 will not be used. From
the point of view on the code tree, the codes from Ni+1 to
Ni+ξ-1 are the descendants of the code Ni. Simultaneously,
the used flag associated with the code Ni turns to “true.” If
each code entry consists of a real codeword (256 bits) in

Start

Call setup
Request rate ξ

ξ≤ Available
Capacity?

Use BLRU Algorithm to
decide admitting this call

Can BLRU allocate a code
with SF=MaxSF/ξ ?

BLRU Algorithm allocates
the code for this call

Accept this call

Yes

Yes

Block this call

No

No

Start

Call setup
Request rate ξ

ξ≤ Available
Capacity?

Use BLRU Algorithm to
decide admitting this call

Can BLRU allocate a code
with SF=MaxSF/ξ ?

BLRU Algorithm allocates
the code for this call

Accept this call

Yes

Yes

Block this call

No

No

the code table, the prefix SF bits of the codeword are
fetched directly. Alternatively, the DWCGF formula can
derive the codeword with spreading factor SF in only O(1)
running time. The DWCGF formula is shown by
δ(1, 1) = 0.

)].2,2(*212[*

]2mod)1[()12(*)2,2(),(





−−

−++



=

γδ

γγδγδ

SF

SFSF

SF

SF

Next, we translate the decimal value of δ(SF, γ) to a
sequence of binary digits and retrieve the least significant
SF bits. With digit 0 represents +1 and digit 1
represents –1, this maps the result to an OVSF code.

Examples of the OVSF code generation via DWCGF
are shown in Table 1. The boundary condition of δ(SF, γ)
is that δ(1, 1) = 0. By DWCGF and the table index Ni, BS
can obtain any OVSF codeword with at most log2(MaxSF)
times recursively.

Let n = spreading factor. The time complexity of
function δ(SF, γ) can therefore be described by the
recurrence
T(n) = T(n/2) + O(1),
where T(1) = O(1) is the boundary case.
By iteration method,
T(n) ≤ T(MaxSF) > in the worst case
 = T(MaxSF/2) + O(1)
 = (T(MaxSF/4) + O(1)) + O(1)
 = …
 = T(1) + log2(MaxSF) * O(1)
 = O(1) + log2(MaxSF) * O(1)
 = 9 * O(1), > if MaxSF = 256
 = O(1)
Thus, the DWCGF function also performs only in constant
time.

To analyze the space requirement, we do not require
the real OVSF code tree and the unused code list. And,
each code entry in Figure 4 without the codeword part
requires only 33 bits when DWCGF is used. An
implemented OVSF code table with 256 entries plus
eleven additional pointers requires only about 1K bytes of
memory. On the contrary, if DWCGF is absent, the code
table requires about 9K bytes of memory. In brief,
applying the function DWCGF can save further 89 percent
of space. This alternative is especially feasible and
suitable for the MSs with a very small memory size.

Table 1: Examples of OVSF code generation via DWCGF

Walsh code OVSF code
SF CGF

Value SF bits Code word Code
1 δ(1,1) 0 0 (1) C1,1

δ(2,1) 0 00 (1,1) C2,12
δ(2,2) 1 01 (1,-1) C2,2

δ(4,1) 0 0000 (1,1,1,1) C4,1

δ(4,2) 3 0011 (1,1,-1,-1) C4,2

δ(4,3) 5 0101 (1,-1,1,-1) C4,3

4

δ(4,4) 6 0110 (1,-1,-1,1) C4,4

δ(8,1) 0 00000000 (1,1,1,1,1,1,1,1) C8,1

δ(8,2) 15 00001111 (1,1,1,1,-1,-1,-1,-1) C8,2

δ(8,3) 51 00110011 (1,1,-1,-1,1,1,-1,-1) C8,3

δ(8,4) 60 00111100 (1,1,-1,-1,-1,-1,1,1) C8,4

δ(8,5) 85 01010101 (1,-1,1,-1,1,-1,1,-1) C8,5

δ(8,6) 90 01011010 (1,-1,1,-1,-1,1,-1,1) C8,6

δ(8,7) 102 01100110 (1,-1,-1,1,1,-1,-1,1) C8,7

8

δ(8,8) 105 01101001 (1,-1,-1,1,-1,1,1,-1) C8,8

V. Simulation Results
Three approaches, namely, the random, the BLRU, and

the reassignment based optimal code assignment
algorithms, are simulated here for comparison. With
respect to the code-limited system, the total BP represents
the performance of the channelization code assignment
algorithm. In case of approximate single code, the BS will
assign only one code whose rate is slightly higher than the
requested. Request data rate is normalized to 2n style.
These simulations use the following parameters as in [3].

l Call arrival process is Poisson with mean arrival rate
λ = 4-64 calls/unit time.

l Call duration is exponentially distributed with a
mean value of 1/µ = 0.25 unit of time.

l Maximum spreading factor = 256.
l Capacity test: code-limited.

In addition,
l Rmax denotes the maximum request data rate
l Rmean denotes the mean request data rate
The simulations employ two types of request

rate-source models: a uniform distribution and an
exponential one. The uniform simulation generates the
request rate Ri distributed uniformly with the mean rate =

Rmean and the maximum rate = Rmax for call i. Figures 8 to
10 show the results with uniform rate-distribution, where
Rmean and Rmax is up to 32Rb and 64Rb, respectively. The

mean arrival rate λ ranging from 4 to 64 calls per unit time
is represented on the horizontal axis. And the average BP
for a long period of time is indicated on the vertical axis.
From the three figures, the optimal solution has the lowest
BP almost always. The BLRU algorithm is close to the
optimal solution; the random approach usually is the worst
one. Figure 8 represents the typical case and the
practical operational region. Generally, the BLRU
algorithm is always superior to the random case.

Figure 8: Comparison among three different algorithms
using uniform rate distribution with Rmean = 8Rb

and Rmax = 16Rb.

Figure 9: Comparison among three different algorithms
using uniform rate distribution with Rmean = 16Rb

and Rmax = 32Rb.

Figure 9 shows the case that Rmean = 16Rb and Rmax =
32Rb. As the maximum request data rate grows, the BPs of
all approaches increase and the BLRU solution is getting
closer to the optimal case. For the case shown in Figure 10,
the three lines behave almost closely. The heavy traffic
causes the system to move beyond the practical region. In
practical region, the BP needs smaller than 5 to 10 percent
generally. Consequently, we can conclude that the BLRU
algorithm performs a well result. And, that the BLRU

algorithm needs neither code exchange nor reassignment
process is notably mentioned, although the optimal case
slightly outperform it.

Figure 10: Comparison among three different algorithms
using uniform rate distribution with Rmean = 32Rb

and Rmax = 64Rb.

Figure 11: Comparison among three different algorithms
using exponential rate distribution with Rmean

= 16Rb and Rmax = 32Rb.

On the other hand, the exponential simulation
generates the request rate Ri distributed exponentially for

call i. The results in Figures 11 to 12 with exponential
rate-distribution are similar to those described above,
except for an interesting region. The interesting region is
on the right upper corner in Figure 12, where the mean
arrival rate ranges from 50 to 64. In the region, the BLRU
algorithm outperforms the optimal case. The reason is that
the fragmentation with a moderate number of fragmental
codes has more total call accepted times in the BLRU case
rather than those in the optimal case, when both the arrival
rate and the request data rate are high enough. However,
this is only a phenomenon but not in practical working
area. High BP caused by high arrival rate and high request
rate has to be decreased by increasing the system capacity,
e.g., more micro-cells established. As a result, if we take

Requested data rate distributed uniformly
With mean = 8Rb

Maximum available data rate = 16Rb

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

16 20 24 28 32 36 40 44 48 52 56 60 64
Mean arrival rate (calls/unit time)

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Optimal BLRU Random

Requested data rate distributed uniformly
With mean = 32Rb

Maximum available data rate = 64Rb

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

4 8 12 16 20 24 28 32 36 40 44 48
Mean arrival rate (calls/unit time)

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Optimal BLRU Random

B B om

Requested data rate distributed uniformly
With mean = 16Rb

Maximum available data rate = 32Rb

0%

5%

10%

15%

20%

25%

30%

35%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Mean arrival rate (calls/unit time)

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Optimal BLRU Random

Requested data rate distributed exponentially
With mean = 16Rb

Maximum available data rate = 32Rb

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Mean arrival rate (calls/unit time)

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Optimal BLRU Random

both the BP and the SC issues into account, the BLRU
algorithm is a better approach.

Figure 12: Comparison among three different algorithms
using exponential rate distribution with Rmean

= 16Rb and Rmax = 64Rb.

VI. Conclusions
Some OVSF code assignment methods for variable

rate transmission have been investigated in the literature.
Both single code and multicode assignment algorithms
suffer from fragmentation problem, which degrades the
performance of the code assignment.

In this paper, we proposed to use the Best-fit Least
Recently Used (BLRU) algorithm to resolve the
performance issue. In addition, two different approaches
were simulated and compared to the BLRU algorithm in
terms of Blocking Probability. As a consequence,
considering both the Blocking Probability and System
Complexity, , the BLRU algorithm is a very suitable
algorithm for the channelization code assignment in 3G
WCDMA.

References
1. A. J. Viterbi, CDMA: Principles of Spread Spectrum

Communications, Addison-Wesley, 1995.
2. R. Kohno, R. Meidan, and B. Milstain, “Spread

spectrum access methods for wireless
communications,” IEEE Commun. Mag., vol. 33, pp.
58-67, Jan. 1995.

3. T. Minn and K.-Y. Siu, “Dynamic Assignment of
Orthogonal Variable-Spreading- Factor Codes in
W-CDMA,” IEEE Journal on Selected Areas in
Commun., vol. 18, no. 8, pp.1429-1440, August 2000.

4. 3GPP Technical Specification 25.213, v3.3.0,
Spreading and modulation (FDD) (Released in 1999),
June 2000.

5. I. Chih-Lin and R. D. Gitlin, “Multi-code CDMA

Wireless Personal Communications Networks,” in
Proc. of ICC’95, pp. 1060-1064, June 1995.

6. T. Ottosson and T. Palenius, “The Impact of Using
Multicode Transmission in the WCDMA System,” in
Proc. of IEEE VTC’99, vol. 2, pp. 1550-1554, May
1999.

7. F. Adachi, K. Ohno, A. Higashi, T. Dohi, and Y.
Okumura, “Coherent Multicode DS-CDMA Mobile
Radio Access,” IEICE Trans. Commun., vol.E79-B,
no.9, pp.1316-1325, Sept. 1996.

8. Harri Holma and Antti Toskala, WCDMA for UMTS,
John Wiley & Sons, 2000.

9. E. Dahlman and K. Jamal, “Wide-band Services in a
DS-CDMA Based FPLMTS System,” in Proc. of the
46th IEEE VTC’96, pp.1656-1660, Atlanta, April
1996.

10. S. Ramakrishna and J. M. Holtzman, “A Comparison
between Single Code and Multiple Code Transmission
Schemes in a CDMA System,” in Proc. of the 48th
IEEE VTC’98, pp.791-795, May 1998.

11. S. J. Lee, H. W. Lee, and D. K. Sung, “Capacities of
Single-Code and Multicode DS-CDMA Systems
Accommodating Multiclass Services,” IEEE Trans. On
Vehicular Tech., vol. 48, no. 2, pp.376-384, March
1999.

12. P. Agin and F. Gourgue, “Comparison between
Multicode with Fixed Spreading and Single Code with
Variable Spreading Options in UTRA/TDD,” in Proc.
of the 2nd IEEE SPAWC'99, pp.325-328, May 1999.

Requested data rate distributed exponentially
With mean = 16Rb

Maximum available data rate = 64Rb

0%

5%

10%

15%

20%

25%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Mean arrival rate (calls/unit time)

B
lo

ck
in

g
pr

ob
ab

ili
ty

Optimal BLRU Random

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8

